Eye-Movement Behavior Reveals Relational Memory Impairment in Schizophrenia

Lisa E. Williams, Anita Must, Suzanne Avery, Austin Woolard, Neil D. Woodward, Neal J. Cohen, and Stephan Heckers

Background: Previous studies have demonstrated impaired relational memory in schizophrenia. We studied eye-movement behavior as an indirect measure of relational memory, together with forced-choice recognition as an explicit measure.

Methods: Thirty-five patients with schizophrenia and 35 healthy participants were trained to associate a face with a background scene. During testing, scenes were presented as a cue and then overlaid with three previously studied faces. Participants were asked to recall the matching face, and both eye movements and forced-choice recognition were recorded. During Non-Match trials, no faces matched the scene. During Match trials, one of the faces had previously been paired with the scene.

Results: On Non-Match trials, when no relational memory trace was present, both groups viewed the three faces equally. In contrast, on Match trials, control participants quickly (within 500 msec) and consistently (70%–75% of test trial viewing) showed preferential viewing of the matching face. Viewing of the matching face was significantly delayed and reduced in schizophrenia participants. Forced-choice recognition of the matching face was also impaired in the patient group. An analysis of all correct Match trials revealed that preferential viewing was significantly reduced and delayed in participants with schizophrenia.

Conclusions: This study provides novel evidence for a specific relational memory impairment in schizophrenia. Patients showed deficits in their forced-choice recognition responses, as well as abnormal eye-movement patterns during memory recall, even on trials when behavioral responses were accurate. We propose that eye movements provide a promising new avenue for studying relational memory in schizophrenia.

Key Words: Eye-movement behavior, hippocampus, recognition memory, relational memory, schizophrenia

Memory impairment is a robust finding in studies of schizophrenia (1–5). In contrast to dementia or amnesia, however, schizophrenia is associated with less pronounced and more specific memory deficits (2,6–9). Patients with schizophrenia exhibit the most severe impairments in episodic memory, which require that an item be bound to a particular temporal-spatial context (10–13). This “binding” aspect of memory is most directly assessed with tests of associative or relational memory, and several groups have demonstrated specific relational memory deficits in schizophrenia, above and beyond memory impairments for individual items (11,12,14–19).

For example, patients with schizophrenia are especially impaired when asked to encode and retrieve the relationship between items, such as item hierarchy within a sequence (20) or learned pairs of items (19). In healthy individuals, relational memory abilities are supported by the hippocampus (21–26), a region known to be abnormal in schizophrenia (27–38). Relational memory is also a core feature of conscious recollection, episodic memory retrieval and autobiographic memory, the disruption of which may play a critical role in the generation of psychotic symptoms (11).

Previous studies of relational memory in schizophrenia have employed only direct outcome measures, such as explicit recall and reaction times, as indexes of memory ability (10). However, explicit responses represent an aggregate measure of a series of cognitive processes, including memory recall itself, supported by interactions between the medial temporal lobe and the frontal cortices (39), and response selection, supported by prefrontal regions and the anterior cingulate cortex (40). As such, relational memory impairments may be confounded by a more generalized deficit of cognition. Because patients with schizophrenia have well-documented deficits in executive function and response selection mechanisms (41), memory deficits observed in previous studies likely reflect the cumulative effect of impairments at multiple stages, from memory retrieval to response execution.

Our study addressed this limitation by employing a new experimental approach to assess relational memory. In addition to testing the conscious recognition of previously learned stimulus relationships, we also recorded eye movements, which can capture immediate access to stored information without reliance on verbal reports and may detect memory traces that do not reach conscious awareness (9,42–45). Such experimental paradigms can quantify participants’ ability to bind distinct elements of experience into new relational memory representations and to access them rapidly to guide successful performance. The inclusion of eye-movement measures allows for assessment of very early memory processes in patients with schizophrenia, in relative isolation from additional domains of impairment.

The experimental paradigm employed here was used by Hannula et al. (43) to demonstrate a marked relational memory deficit in patients with hippocampal amnesia. Our study extends this paradigm to schizophrenia. We tracked eye movements during relational memory encoding and recall and collected subsequent forced-choice recognition data for the trained associations. In the context of previous findings of impaired relational memory abilities in schizophrenia, we expected patients to show reduced preferential viewing of the matching face during testing.
as well as impaired explicit memory performance in the subsequent recognition test.

Methods and Materials

Participants

We obtained written informed consent from 43 healthy control participants and 42 patients with schizophrenia (n = 28) and schizoaffective disorder (n = 14) after approval of the study protocol by the Vanderbilt University Institutional Review Board, Nashville, Tennessee. Patients were recruited from the inpatient and outpatient clinic of the Vanderbilt Department of Psychiatry, as well as surrounding psychiatric caregiver communities. All participants underwent a detailed interview including the Structured Clinical Interview for DSM-IV (46) and were administered the North American Adult Reading Test (NAART) (47), the Young Mania Rating Scale (49), and the Positive and Negative Syndrome Scale (50). When available, the assessments of our research team were supplemented with clinical information obtained from the treating physicians. All participants with significant medical or neurologic illness, significant head injury or a history of drug dependence were excluded. Control participants with a significant history of psychiatric illness or treatment with psychotropic medication were also excluded. Only participants who reported normal or corrected-to-normal eyesight and intact color vision were included. After task administration, eight control participants and seven patients with schizophrenia were excluded from further analysis because of either technical problems during the data collection (five control and four schizophrenia participants) or insufficient adherence to task instructions (three control and three schizophrenia participants). Our final study group (Table 1) included 35 control participants and 35 patients with schizophrenia (n = 25) or schizoaffective disorder (n = 10). We refer to the patient group as the schizophrenia group. The two groups were closely matched for sex, age, handedness, and parental education. One participant received haloperidol, and two patients were taking psychotropic medication at the time of participation. All other patients received atypical antipsychotic medication. Chlorpromazine equivalent doses were calculated according to Woods (51).

Experimental Paradigm

Apparatus. Eye position and movement was monitored at a rate of 60 Hz using an ISCAN RK-630PCI remote eye tracker (ISCAN, Woburn, Massachusetts; http://www.iscaninc.com). Stimuli were presented on a 17-inch color display controlled by a Windows-based computer using Presentation Software (version 12.2; Neurobehavioral Systems, Albany, California; http://www.neurobs.com/presentation).

Stimuli. For each stimulus list, face stimuli consisted of 18 male and 18 female full-color face images, sized 224 × 224 pixels, on a 244 × 244 pixel uniform gray background. Background-scene stimuli were 36 full-color images of real-world scenes sized 640 × 480 pixels. Images were obtained from an existing database of 144 face and 144 background images (43).

Experimental Design

During training, participants viewed three consecutive, randomized study blocks composed of the same 36 face–scene pairs (Figure 1). The test phase followed immediately after completion of training and included 12 trials, each consisting of three faces overlaid on one scene. On the six Match trials, one of the three faces had been paired with the scene during the study phase, whereas on the six Non-Match trials none of the faces had been paired with that scene during training (Figure 1). All faces were equally familiar from the study period, and on Match trials, the matching face was assigned equally often to the three display positions (i.e., upper left, upper right, and bottom). Lists of stimuli were rotated and counterbalanced across participants to ensure that each scene was paired equally often with each face across the study.

Stimulus Presentation

Eye tracking was performed under consistent room-lighting conditions with participants sitting 35 to 40 inches from the computer screen facing the desktop eye-tracking system. After visualisation of the pupil and corneal reflection of the right eye, the eye tracker was calibrated using a 5-point spatial calibration procedure (center and four corners of the screen), which was repeated before each experimental block. Participants were allowed to take breaks between training blocks if necessary. An experimenter initiated each trial when the participant focused his or her eyes on a central fixation cross-hair and reported being ready to proceed. On training trials, a background scene was presented alone for 3 sec, followed by a 5-sec display of an individual face superimposed on the scene. Participants were instructed to study and memorize face–scene pairings carefully for a recognition test to follow (“I will begin showing you pictures of faces paired with background scenes. Please try to memorize which face goes with which scene because you will be tested on these pairings later”). Test trials began with a 3-sec presentation of a previously studied scene, followed by a 10-sec display of three faces superimposed on the scene. Participants were instructed to try to remember which of the three faces had been paired with the background scene during training, without giving an explicit response, and to keep their eyes focused on the computer screen, even if no matching face was detected.

Eye-Movement Recording

Eye movements were recorded and analyzed for each test trial. Borders were defined around the face stimuli (244 × 244 pixel frame) to assign eye-movements to a particular display...
element (training: face or background; test: face upper left, face upper right, face bottom, or background). Viewing measures included 1) the duration of fixations on the display elements (faces and background) and 2) time-course measures of the proportion of time allocated to the various display elements across the 10-sec trial.

Explicit Memory Testing
To assess explicit recognition of the face–scene pairings, we administered a subsequent four-alternative forced choice memory test in 30 control and 31 schizophrenia participants after viewing of the 12 test trials was completed. No eye movements were recorded in this phase. Participants viewed the 12 test displays in the same order as during the preceding test phase and indicated the matching face by pressing a computer key corresponding to its position on the display or pressing the space bar if they thought none of the faces had been paired with that scene during training.

Statistical Analysis of Behavioral and Eye-Movement Data
Group differences in overall viewing patterns were tested using two statistical approaches, 1) an analysis of variance (ANOVA) for average viewing of individual faces and background during Match and Non-Match trials and 2) a regression analysis of total viewing of each display element across trial types using a generalized linear model. The time course of preferential viewing of the matching face during Match trials was compared between groups for the first 2 sec of test display viewing using a repeated-measures ANOVA including face type (matching, non-matching), time (8 × 250 msec bins), and group (control, schizophrenia). Explicit recall was compared between groups with two-tailed, independent-samples t tests.

Results
Eye-Movement Behavior
Participants spent most of the 10-sec trial viewing the display elements (Match: control subjects = 9.1 ± .4 sec, schizophrenia subjects = 8.6 ± .6 sec; Non-Match: control subjects = 8.6 ± .6 sec, schizophrenia subjects = 8.4 ± .8 sec), with minimal time spent on blinks or looking away from the computer monitor (Figure 2 and 3).

The Match trials allowed us to study viewing patterns when no relational memory of face–scene pairs could guide eye movements. The two groups did not differ significantly in how they viewed the three faces in the Match trials [F(2,66) = 9.9, p = .001 for the interaction of the two main effects face location (upper left, upper right, bottom) and group (control and schizophrenia); Figure 3A]. In contrast, the two groups differed significantly when viewing face–scene pairs during Match trials (Figure 2). The healthy control participants spent significantly more time (6.9 ± 2.0 sec) than the schizophrenia patients (3.8 ± 2.0 sec) viewing the matching face [F(1,67) = 60.1, p < .001 for the interaction of the two main effects face type (matching, non-matching) and group (control and schizophrenia); Figure 3B]. Patients with schizophrenia and patients with schizoaffective disorder did not significantly differ in their average viewing of the matching face [t(33) = .7, p = .51].

We entered all Match and Non-Match trials into a regression analysis of total viewing time, using a generalized linear model. This yielded a significant face type by group interaction (Wald χ² = 82.8, p < .001; Figure 3C), in addition to significant main effects of group (Wald χ² = 78.7, p < .001), face type (Wald χ² = 218.2, p < .001), and face location (Wald χ² = 13.4, p < .001; slightly greater viewing of face in the upper left location, no

Figure 1. Experimental paradigm. During each of three training blocks, participants were presented with 36 face–scene pairs. Immediately following the conclusion of training, participants viewed 12 test displays, consisting of one of the background scenes from training and three familiar faces. Half of the test trials contain one face previously paired with the scene (“Match”), and the other half present three faces that were not paired with the scene during training (“Non-Match”). Each trial is preceded by a 3-sec presentation of the scene in isolation.
significant group by location interaction). This provides compelling evidence for a selective relational memory deficit in schizophrenia: healthy participants demonstrated markedly greater viewing preference of the matching face compared with the non-matching face, whereas schizophrenia patients did not (Figure 3C).

Time-Course Analysis of Proportional Viewing Time

To better understand these differences between groups in overall viewing pattern, the average proportion of time spent on each of the different display elements (matching face, non-matching face, background) was compared in 250-msec bins for Match trials (Figure 4A and 4B). This bin size was selected on the basis of previous studies with this paradigm that demonstrated this organization is sufficient to capture the rapid onset of preferential viewing of the matching face (43,45). To determine the onset of preferential viewing, we compared the percentage viewing of the Matching Face to chance (i.e., 33.33%) at each time bin during the first 2 sec of test stimulus viewing (Figure 4C and 4D). In control participants, preferential viewing of the matching face emerged within 500 msec and 4D). Later time bins (between 4 and 6 sec) revealed preferential viewing of the matching face, but this pattern was not as consistent and robust, never exceeding 50% (Figure 4B). This marked difference in proportional viewing time was confirmed by a significant three-way interaction of face type (matching, non-matching) time (8 × 250 msec bin) and group (control, schizophrenia) during the first 2 sec (F(7,62) = 2.4, p = .03).

Explicit Relational Memory Testing

Explicit relational memory was assessed in a separate test block immediately following the recording of eye movements in most of our sample (30 healthy control subjects, 31 schizophrenia patients). Healthy control subjects were significantly more accurate than schizophrenia subjects on Match trials [mean accuracy and SD: control 94 ± 10%, schizophrenia 51 ± 28%, t(59) = 7.8, p < .001], Non-Match trials [control 76 ± 28%, schizophrenia 25 ± 30%, t(59) = 6.8, p < .001], and testing overall [control 85 ± 15%, schizophrenia 38 ± 27%, t(59) = 8.3, p < .001]. Although explicit relational memory was impaired in the schizophrenia group, their accuracy was significantly greater than chance levels (51% correct vs. 25% chance performance) on the four-alternative forced choice test [t(30) = 5.24, p < .001]. This indicates that explicit relational memory for face–scene pairings was impaired, but not absent, in the schizophrenia group.

Correct Trial Analysis

We also analyzed eye movements during all Match trials for which the face–scene pairings were subsequently correctly

Figure 2. Typical eye-movement behavior on Match trials for a participant in the control group (A) and in the schizophrenia group (B) when the matching face is in the bottom position. Circles indicate regions of fixation, and the radius of the circle reflects fixation duration (larger circles represent longer fixations). Lines represent the path of eye movements on the display. Normal control subjects spent preferentially more time fixating on the matching face with limited exploration of the two nonmatching faces or the background. In contrast, preferential viewing of the matching face was markedly reduced in the schizophrenia group, with more transitions between the display elements.

Figure 3. Average viewing time of display elements for each group during Non-Match trials (A), Match trials (B), and across all trials (C). Error bars represent standard error of the mean (SEM). On Non-Match trials, when no relational memory trace was present, both groups viewed faces at the three screen locations equally. On Match trials, healthy control participants spent most of the 10-sec trial viewing the matching face, relative to the two nonmatching faces. This preferential viewing was much reduced in schizophrenia patients, resulting in a significant group by face type interaction in the Match condition [F(1,67) = 60.1, p < .001]. A similar interaction between group and face type also emerged from a regression analysis of all test trials (Wald χ² = 82.8, p < .001).
identified (168, or 93% of trials in control participants and 93, or 50% of trials in patients with schizophrenia). Both groups viewed the matching face preferentially, but the magnitude of this preference was much greater in the control participants (6.8 ± 1.6 sec) than the schizophrenia patients (4.5 ± 1.8 sec), resulting in a significant face type by diagnosis interaction \[F(1,58) = 24.9, p < .001\]. In the control group, the time course for all (Figure 4) and correct (Figure 5) Match trials did not differ. In contrast, schizophrenia patients showed greater preferential viewing of the matching face on the correct trials, but viewing preference still did not reach the normal pattern (Figure 5B). For early viewing in the schizophrenia group, only the 1250-msec time bin reached significantly greater than chance levels \(t(28) = 2.9, p < .05\) corrected. In the control group, preferential viewing of the matching face emerged within 500 msec after presentation of the test face triad (C). A strong preferential viewing pattern was maintained throughout the trial, with control subjects spending 70% to 75% of total viewing time on the matching face (A). In contrast, for the schizophrenia group, viewing of the matching face never exceeded chance levels during early display viewing (D) and was not as robust as the control participants, never exceeding 50% for any individual time bin (B).

Predictors of Relational Memory Performance During Testing

Relational memory performance during testing was quantified for all participants on explicit (percent correct on all trials, Match trials, and Non-Match trials) and eye-movement measures (average viewing of matching face on all trials, and correct trials only). For the control group, no demographic variable significantly predicted test performance. For schizophrenia patients, both premorbid IQ and parental education were strong predictors of all explicit measures of relational memory (IQ: all \(r_{s} > .47\), all \(p_{s} < .008\); parental education: all \(r_{s} > .40\), all \(p_{s} < .04\)). In contrast, these factors did not strongly relate to eye-movement behavior, with only one significant correlation between parental education and viewing of the matching face on all trials \(r = .35, p = .046\). Relational memory performance was not significantly correlated with any other demographic variable, current medication (chlorpromazine equivalent doses), duration of illness, or current psychotic symptoms (Positive and Negative Syndrome Scale). This pattern of results supports the idea that these forced-choice recognition and eye-movement measures index two distinct abilities, with the former being more tied to general intelligence and executive function than to pure memory ability.

Eye Movement During Training

We did not find any significant difference between the two groups in the exploration of the face–scene pairs during training. On training trials, the groups spent equal time viewing the display [control participants 4.2 ± .6 sec, schizophrenia patients 4.5 ± 2.2 sec, \(F(1,64) = .9, p = .36\), the faces control participants 3.8 ± .6 sec, schizophrenia patients 4.1 ± 2.1 sec, \(F(1,64) = .6, p = .46\), and the background scene...
Discussion

The results of this study provide new and compelling evidence for a selective relational memory impairment in schizophrenia. We were able to demonstrate this deficit by studying eye-movements as an indirect measure of relational memory and by recording the explicit, forced-choice recognition of previously learned face–scene pairs. Control participants were able to search and find, with their eyes, the one face—among three equally familiar faces—that matched (i.e., had been previously studied with) the scene within 500 msec of viewing. In contrast, preferential viewing of the matching face was significantly delayed and reduced in magnitude for the schizophrenia participants, despite normal viewing patterns of the Non-Match displays, which contained no relational memory information. This pattern of results was also present in an analysis of correct trials only, indicating the observed eye-movement abnormalities persisted even for trials on which the face–scene pair was correctly identified. Such a dissociation between explicit and eye-movement measures may indicate that schizophrenia patients invoke compensatory mechanisms to recognize the trained associations, as early, automatic relational memory processes are impaired relative to healthy control subjects.

Our findings provide novel support for the hypothesis that schizophrenia is associated with episodic and relational memory deficits (15,16,20,52,53). Whereas previous studies have employed traditional experimental approaches to study accuracy and reaction time during explicit memory tests (10), here we
expanded the study of relational memory in schizophrenia to include indirect measures of memory via assessment of eye-movement patterns, using a paradigm that is sensitive to relational memory deficits in amnesia patients with medial temporal lobe damage (43,44). These measures are a useful addition to the study of relational memory in patients with schizophrenia because they do not rely on explicit verbal reports and allow for the quantification of very early memory retrieval abilities in relative isolation from additional impairments in response selection and execution. The absence of a strong correlation between eye-movement measures and premorbid IQ/parental education in our schizophrenia group further supports the notion that this indirect metric captures a memory ability that can be separated from forced-choice recognition, which we find to be highly correlated with these general intelligence variables. The vast majority of previous eye-movement studies in schizophrenia have focused on either saccadic or smooth pursuit eye movements (54), which have been linked to several cognitive processes, including attention, selection, expectation, working memory, prediction, and mismatch detection (55). Here we provide evidence that the study of eye-movement behavior can reveal relational memory deficits in schizophrenia.

Impaired relational memory in schizophrenia may be due to deficits during encoding or retrieval of relational information. Lepage et al. (17) suggested that schizophrenia patients have difficulties forming relations between items during encoding, which manifest in impaired conscious recollection at test. According to our view of relational memory (25,26,56) as well as other memory frameworks (57), the binding of elements of episodes must be captured in hippocampal-dependent representations during encoding in order for successful retrieval of the relevant episodic content to occur during test. In our experimental paradigm, the background-scene preview presented during the first 3 sec of each test trial provides the opportunity for reactivation of the face–scene associations acquired during training (58). Retrieval of the relevant associations can occur rapidly, as captured in the early onset of preferential viewing of the matching face in control participants. The impaired performance in the schizophrenia group observed here, including delayed and only modest preferential viewing of the matching face on Match trials, may be caused by insufficient relational memory binding during encoding, insufficient reactivation of relational representations during retrieval, or both.

Although this behavioral paradigm cannot directly index the neural basis of these between group differences, convergent lines of evidence indicate both explicit and eye-movement measures of relational memory rely on the hippocampus. Patients with lesions to the medial temporal lobe tested on this paradigm fail to develop preferential viewing of the matching face in the context of impaired explicit relational memory retrieval (45). In addition, a recent functional magnetic resonance imaging study using this paradigm finds that the cued retrieval process used during the test trials involves the hippocampus (45), with evidence for increased hippocampal activation during the background-scene preview for trials on which the matching face is subsequently viewed preferentially (successful retrieval) relative to trials on which a non-matching face is viewed (unsuccessful retrieval). However, it is not known whether these eye-movement abnormalities are specific to hippocampal damage or are also present in other patient populations with known memory impairments, such as patients with prefrontal lesions. Further studies are needed to explore whether the well-known hippocampal abnormalities in schizophrenia (27–34) lead to the behavioral deficits observed in our study.

Face recognition has been studied extensively in patients with schizophrenia, typically revealing a deficit in processing of emotion information (59,60) and the classification of a visual stimulus as a face (61). However, increasing information content and strength of facial signals, as well as prolonging the delay between presentation of stimuli, can improve performance in face differentiation (62). In this study, each face was presented for 5 sec during encoding, allowing for consolidation of individual images, making it unlikely that the observed relational memory deficits are due to impaired recognition of the face stimuli.

Our experiment revealed a specific relational memory impairment in schizophrenia and demonstrated good correspondence between the eye movement and explicit recognition measures despite several limitations. The number of test trials was relatively modest, including only six Match and six Non-Match trials, although this is comparable to previous investigations of relational memory in schizophrenia (18,20). Furthermore, forced-choice recognition testing occurred in a separate block, after the initial eye-movement testing phase. Both of these limitations can be addressed in future studies by implementing experimental designs with more test trials, while assessing explicit recall after each test trial (45). Finally, almost all participants with schizophrenia were chronic patients, treated with antipsychotic medication. Future studies should explore eye-movement behavior as an index of relational memory deficits in the early stages of schizophrenia.

In summary, our study provides novel and compelling evidence for relational memory impairment in schizophrenia, as indicated by abnormal eye-movement behavior, even when explicit recognition is successful. We propose that eye movements provide a promising new avenue for the study of relational memory in schizophrenia because they allow for the assessment of rapid, nonverbal memory processes that are separable from, but likely contribute to, patients’ explicit memory deficits.

This work was supported by a grant from the National Institute of Mental Health to Dr. Stephan Heckers (Grant No. R01-MH070560).

The authors reported no biomedical financial interests or potential conflicts of interest.

www.sobp.org/journal

