RNA directed RNA synthesis

Lecture 6
Biology 3310/4310
Virology
Spring 2018

Truth is ever to be found in the simplicity, and not in the multiplicity and confusion of things
--Sir Isaac Newton
Some RNA history

- 1935 - Stanley crystallizes TMV
- 1936 - TMV crystals contain 5% RNA
- 1944 - DNA is genetic material
- 1952 - Hershey-Chase experiment
- 1953 - Structure of DNA
- 1956 - TMV nucleic acid is infectious; first demonstration that RNA can be genetic material
- By 1959, RNA was identified in many animal viruses
- 1960s - studies on viral RNA replication begin
Identification of RNA polymerases
Identification of RNA polymerases

- Polymerase discovered in (-) strand virus particles
- Sequence alignments (GDD), synthesis of recombinant proteins
- Crystal structures
RNA in the virus particle

- (-) strand RNA genomes: coated with protein

- (+) strand RNA genomes: naked (exceptions: retrovirus, coronavirus)

- dsRNA genomes
Rules for viral RNA synthesis

- RNA genome must be copied end to end with no loss of nucleotide sequence
- Viral mRNAs must be produced that can be efficiently translated by cellular protein synthesis machinery
Universal rules for RNA-directed RNA synthesis

- RNA synthesis initiates and terminates at specific sites on the template
- RdRp may initiate synthesis *de novo* (like cellular DdRp) or require a primer
- Other viral and cell proteins may be required
- RNA is synthesized by template-directed stepwise incorporation of NTPs, elongated in 5’-3’ direction
- Some non-templated synthesis
De novo initiation

3′-terminal initiation

3′-N1 N2

NTP

NTP

OH

5′

Internal initiation

5′-pppG

3′-AUC AUC AUC UG

5′

Elongation

5′-pppG UAG AC

3′-AUC AUC AUC UG

5′

Slip back

5′-pppG UAG AC

3′-AUC AUC AUC UG

5′

Primer-dependent initiation

Protein primer

3′-

NTP

Terminal protein

OH

5′

Capped primer

5′-Cap

3′-

NTP

OH

5′
Two-metal mechanism of polymerase catalysis
Which is a universal rule about RNA directed RNA synthesis?

A. RdRp may initiate *de novo* or require a primer
B. RNA synthesis initiates randomly on the RNA template
C. RNA is synthesized in a 3’-5’ direction
D. RNA synthesis is always template-directed
Sequence relationships among polymerases

- Gly-Asp-Asp in (+) strand RNA polymerases
- Asp-Asp in RT, segmented (-) strand polymerases
- Gly-Asp-Asn in nonsegmented (-) strand polymerases
Structure of UTP bound to poliovirus RdRp
(+) strand RNA viruses

(+)-strand RNA viruses
Flavi- and picornaviruses

5' C → Replication → (+) strand genome RNA (mRNA) → 5'
3' → 5'

(-) strand full-length complement

5' C → (+) strand genome RNA (mRNA) → 5'

Alphaviruses (Togaviridae - Sindbis, SFV, Chik)

5' C → Replication → (+) strand genome RNA (mRNA) → 5'
3' → 5'
mRNA synthesis

(-) strand full-length complement

5' C → (+) strand genome RNA (mRNA) → 5'
Poliovirus
viral genome = mRNA
Cleavage

VPg

Poliovirus genome RNA

©Principles of Virology, ASM Press
cis-acting RNA element (moveable)

Cellular polyadenylated RNAs not copied
Virology Lectures 2018 • Prof. Vincent Racaniello • Columbia University
Vesicle formation in virus-infected cells

Uninfected HeLa cell

Flavivirus infected cell

Coronavirus-infected cell

PV-infected HeLa cell
Go to:

b.socrative.com/login/student
room number: virus

Which is a part of the poliovirus replication strategy?

A. The production of subgenomic mRNAs
B. *De novo* (without primer) initiation of RNA synthesis
C. Circularization of template for initiation of RNA synthesis
D. All of the above
(+) strand RNA viruses

Flavi- and picornaviruses

(+) strand RNA viruses

Alphaviruses (Togaviridae - Sindbis, SFV, Chik)
Togaviridae
viral genome = mRNA
But not all of it is translated!
RNA polymerase and accessory proteins

Proteolytic processing

P1234 nsP1 nsP2 nsP3 nsP4

P123 nsP1 nsP2 nsP3

(+) strand RNA

Translation

UTR

(+)

UTR

UTR

(-) strand RNA

3'

UTR

UTR

UTR

Subgenomic mRNA synthesis

(+)

UTR

UTR

Translation/processing

Capsid PE2 6K E1

PE2 6K E1

E3 E2
(-) Strand RNA viruses

Unimolecular

5' - C

3' mRNA synthesis

5' (-) strand genome RNA

Replication

5' (+) strand full-length complement

3' (-) strand genome RNA

Segmented

5' - C

3' mRNA synthesis

5' (-) strand genome RNA

Replication

5' (+) strand full-length complement

3' (-) strand genome RNA
VSV

viral genome is not mRNA
Unimolecular

(-) strand RNA

3' \rightarrow 5'

Leader RNA

5' \rightarrow 3'

(+) strand mRNA

5' \rightarrow 3'

mRNA synthesis

Translation

N

P/C

M

G

L

Glycoprotein (G)
Lipid bilayer
Matrix protein (M)
(-) strand RNA genome coated with Nucleocapsid protein (N)
RNA polymerase (L and P proteins)
RNA polymerase binds at 3' end of N gene

Initiation of mRNA synthesis at 3' end of N gene

Synthesize N mRNA and terminate at intergenic region (ig)

Reinitiate at 3' end of P gene
Influenza virus
viral genome is not mRNA
mRNA synthesis

(-) strand genome RNA segment

Replication

20 nucleotides

Host m^7Gp primer

5' pppA unprimed

NP

Replication

3'

Appp 5'

Appp 5' unprimed

© Principles of Virology, ASM Press

Virology Lectures 2018 • Prof. Vincent Racaniello • Columbia University
How are influenza virus and VSV RNA synthesis similar?

A. The switch from mRNA to genome RNA synthesis is controlled by an RNA binding protein
B. Polyadenylation occurs at a short stretch of U residues
C. Viral mRNAs are shorter than (-) genome RNA
D. All of the above
dsRNA viruses

Reoviridae: reovirus, rotavirus

Double-stranded RNA viruses

- **Genome RNA**
 - 5' (--) strand
 - 3' (+) strand

- **mRNA synthesis**
 - 3' (--) strand full-length complement (mRNA)

- **Translation**
 - Protein

- **Replication**
 - 3' (+) strand
 - 5' (--) strand

Virology Lectures 2018 - Prof. Vincent Racaniello - Columbia University

©Principles of Virology, ASM Press
Reovirus
(+) strand not accessible by ribosomes!
Virion

Infectious sub-viral particle (ISVP)

Core

L1 L2 L3

M1 M2 M3

S1 S2 S3 S4

dsRNA

mRNA synthesis

© Principles of Virology, ASM Press
Each dsRNA segment is attached to RdRp via the 5’-cap.
RNA directed RNA synthesis

- (+) RNA, (-) RNA, dsRNA
- Polymerase basics
- Site of RNA synthesis
- Genome replication
- mRNA synthesis
- poly(A) addition