"...everywhere an interplay between nucleic acids and proteins; a spinning wheel in which the thread makes the spindle and the spindle the thread"

--ERWIN CHARGAFF
Virology breakthrough in the 1950’s:

The viral nucleic acid genome is the genetic code

Hershey-Chase experiment with phage T4

Fraenkel-Conrat’s work with TMV
The bigger surprise: thousands of different virions, seemingly infinite complexity of infections

But a finite number of viral genomes
Key fact makes your life easier:

Viral genomes must make mRNA that can be read by host ribosomes

All viruses on the planet follow this rule, no known exception
David Baltimore (Nobel laureate) used this insight to describe a simple way to think about virus genomes.

The original Baltimore system missed one genome type: the gapped DNA of the *Hepadnaviridae*.

Virology Lectures 2018 • Prof. Vincent Racaniello • Columbia University

©Principles of Virology, ASM Press
Definitions

- mRNA (ribosome ready) is always the plus (+) strand
- DNA of equivalent polarity is also the (+) strand
- RNA and DNA complements of (+) strands are negative (-) strands
- Not all (+) RNA is mRNA!
The elegance of the Baltimore system

Knowing only the nature of the viral genome, one can deduce the basic steps that must take place to produce mRNA.
The seven classes of viral genomes

- dsDNA
- gapped dsDNA
- ssDNA
- dsRNA
- ss (+) RNA
- ss (-) RNA
- ss (+) RNA with DNA intermediate
Why is mRNA placed at the center of the Baltimore scheme?

A. Because all virus particles contain mRNA
B. There is no specific reason
C. Because all viral genomes are mRNAs
D. Because mRNA must be made from all viral genomes
E. Because Baltimore studied mRNA
Viral DNA or RNA genomes are structurally diverse

- Linear
- Circular
- Segmented
- Gapped
- Single-stranded (+) strand
- Single-stranded (-) strand
- Single stranded, ambisense
- Double-stranded
- Covalently attached proteins
- Cross-linked ends of double-stranded DNA
- DNA with covalently attached RNA
What is the function of genome diversity?

- DNA and RNA based
 - RNA genomes appeared first in evolution (RNA World)
 - Switch to DNA genomes
 - Only RNA genomes on planet today are viral
 - Viroids: Relics of RNA world?
- Linear, circular, segmented, ds, ss, (+), (-)
Memorize 7 genome types and key virus families

If you know the genome structure you should be able to deduce:
- How mRNA is made from the genome
- How the genome is copied to make more genomes
What information is encoded in a viral genome?

Gene products and regulatory signals for:

- Replication of the viral genome
- Assembly and packaging of the genome
- Regulation and timing of the replication cycle
- Modulation of host defenses
- Spread to other cells and hosts
Information NOT contained in viral genomes

- No genes encoding the complete protein synthesis machinery (AARS, eIFs, tRNAs)
- No genes encoding proteins involved in energy production or membrane biosynthesis
- No classical centromeres or telomeres found in standard host chromosomes
- Probably we haven’t found them yet - 90% of giant virus genes are novel
Largest known viral genomes

<table>
<thead>
<tr>
<th>Virus</th>
<th>Length</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pandoravirus salinus</td>
<td>2,473,870</td>
<td>2,541</td>
</tr>
<tr>
<td>Pandoravirus dulcis</td>
<td>1,908,524</td>
<td>1,487</td>
</tr>
<tr>
<td>Bodo saltans virus</td>
<td>1,385,869</td>
<td>1,227</td>
</tr>
<tr>
<td>Megavirus chilensis</td>
<td>1,259,197</td>
<td>1,120</td>
</tr>
<tr>
<td>Mamavirus</td>
<td>1,191,693</td>
<td>1,023</td>
</tr>
<tr>
<td>Mimivirusesis</td>
<td>1,181,549</td>
<td>979</td>
</tr>
<tr>
<td>Moumouivirus</td>
<td>1,021,348</td>
<td>894</td>
</tr>
<tr>
<td>Mimivirusesis M4</td>
<td>981,813</td>
<td>620</td>
</tr>
<tr>
<td>C. roenbergenensis virus</td>
<td>617,453</td>
<td>544</td>
</tr>
<tr>
<td>Mollivirus sibericum</td>
<td>651,000</td>
<td>523</td>
</tr>
</tbody>
</table>
Smallest known viral genomes

<table>
<thead>
<tr>
<th>Virus</th>
<th>Length</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viroid</td>
<td>120</td>
<td>none</td>
</tr>
<tr>
<td>Satellite</td>
<td>220</td>
<td>none</td>
</tr>
<tr>
<td>Hepatitis delta satellite</td>
<td>1,700</td>
<td>1</td>
</tr>
<tr>
<td>Circovirus</td>
<td>1,759</td>
<td>2</td>
</tr>
<tr>
<td>Anellovirus</td>
<td>2,170</td>
<td>4</td>
</tr>
<tr>
<td>Geminivirus</td>
<td>2,500</td>
<td>4</td>
</tr>
<tr>
<td>Hepatitis B virus</td>
<td>3,200</td>
<td>7</td>
</tr>
<tr>
<td>Levivirus</td>
<td>3,400</td>
<td>4</td>
</tr>
<tr>
<td>Partitivirus</td>
<td>3,700</td>
<td>2</td>
</tr>
<tr>
<td>Barnavirus</td>
<td>4,000</td>
<td>7</td>
</tr>
</tbody>
</table>
Go to:

b.socrative.com/login/student
room number: virus

What information may be encoded in a viral genome?

A. Gene products that catalyze membrane biosynthesis
B. Gene products that catalyze energy production
C. Complete protein synthesis systems
D. Centromeres or telomeres
E. Enzymes to replicate the viral genome
Viral DNA genomes

- The host genetic system is based on DNA
- Many DNA viruses emulate the host
- However, almost all viral DNA genomes are NOT like cell chromosomes
- Unexpected tricks have evolved
dsDNA genomes

Adenoviridae

Herpesviridae

Papillomaviridae

Polyomaviridae

Poxviridae
dsDNA genomes

Genomes copied by host DNA polymerase

Polyomaviridae (5 kbp)

Papillomaviridae (8 kbp)

Genomes encode DNA polymerase

Adenoviridae (36–48 kbp)

Herpesviridae (120–220 kbp)

Poxviridae (130–375 kbp)
Gapped dsDNA genomes

This genome cannot be copied to mRNA

Hepadnaviridae
Hepatitis B virus
ssDNA genomes

- DNA or + DNA → ± DNA → + DNA → − DNA

Circoviridae (1.7–2.2 kb)

Parvoviridae (4–6 kb)

TT virus (ubiquitous human virus)

B19 parvovirus (fifth disease)
Which DNA genome, on entry into the cell, can be immediately copied into mRNA?

A. dsDNA
B. gapped dsDNA
C. circular ssDNA
D. linear ssDNA
E. All of the above
RNA genomes

- Cells have no RNA-dependent RNA polymerase (RdRp)
- RNA virus genomes encode RdRp
- RdRp produce RNA genomes and mRNA from RNA templates
dsRNA genome

Reoviridae (19–32 kbp in 10 dsRNA segments)

Rotavirus (human gastroenteritis)
ssRNA: (+) sense

- *Picornaviridae* (Poliovirus, Rhinovirus)
- *Caliciviridae* (gastroenteritis)
- *Coronaviridae* (SARS)
- *Flaviviridae* (Yellow fever virus, West Nile virus, Hepatitis C virus, Zika virus)
- *Togaviridae* (Rubella virus, Equine encephalitis virus)
ssRNA: (+) sense

Coronaviridae (28–33 kb)

5′ C UTR → AₙA₉H₃′

Flaviviridae (10–12 kb)

5′ C UTR → 3′

Picornaviridae (7–8.5 kb)

5′ VPg UTR → AₙA₉H₃″

Togaviridae (10–13 kb)

5′ C UTR → AₙA₉H₃′

Genome

- RNA
ssRNA(+) sense with DNA intermediate

One viral family: *Retroviridae*

Two human pathogens:

Human immunodeficiency virus (HIV)
Human T-lymphotropic virus (HTLV)
The remarkable retroviral genome strategy

Retroviridae (7–10 kb)

A ss (+) RNA with DNA intermediate:

B

Retroviridae

– DNA

+ RNA

– DNA

DNA

+ RNA

provirus

© Principles of Virology, ASM Press
ssRNA, (-) sense

Paramyxoviridae (Measles virus, Mumps virus)

Rhabdoviridae (Rabies virus)

Filoviridae (Ebola virus, Marburg virus)

Orthomyxoviridae (Influenza virus)

Arenaviridae (Lassa virus)
ssRNA, (-) sense

Segmented genomes: Orthomyxoviridae
(10–15 kb in 6–8 RNAs)

(-) strand RNA segments

Nonsegmented genomes: Paramyxoviridae (15–16 kb)
Rhabdoviridae (13–16 kb)
Reassortment: Consequence of segmented genome
Ambisense RNA genomes

Arenaviridae
RNA pol in virion
A
Linear (+) strand RNA genome of a picornavirus

B
Go to:

b.socrative.com/login/student
room number: virus

Which statement about viral RNA genomes is correct?

A. (⁺)ssRNA genomes may be translated to make viral protein
B. dsRNA genomes can be directly translated to make viral protein
C. (⁺)ssRNA virus replication cycles do not require a (-) strand intermediate
D. RNA genomes can be copied by host cell RNA-dependent RNA polymerases
E. All of the above
This method allowed the application of genetic methods to animal viruses
Engineering mutations into viral genomes - the modern way

- Infectious DNA clone: transfection
- A modern validation of the Hershey-Chase experiment (1952)
- Deletion, insertion, substitution, nonsense, missense
- Viral vectors
Genetic methods

Transfection

- Production of infectious virus after transformation of cells by viral DNA, first done with bacteriophage lambda

- Transformation-infection
Infectious poliovirus DNA

Poliovirus

(+) Viral RNA

5'

Infection

Transfection

Cultured cells

5'

3'

cDNA synthesis and cloning

Transfection

Poliovirus DNA

In vitro RNA synthesis

(+) strand RNA transcript

3'
Infectious influenza virus DNA

Viral protein

Translation

(+) mRNA

RNA polymerase II
(splicing)

A₉A₇OH₃'

Plasmid

Pol II

Viral DNA

Pol I

RNA polymerase I

(-) vRNAs

8-plasmid transfection

Infectious virus
Resurrecting the 1918 influenza virus

- Influenza virus was not identified until 1933
- In 2005, influenza RNA was isolated from formalin-fixed, paraffin-embedded lung tissue sample from autopsy of victim of influenza in 1918
- Influenza RNA also isolated from frozen sample obtained by in situ biopsy of the lung of a victim buried in permafrost since 1918
- Complete nucleotide sequence of all 8 RNA segments determined
- Virus was recovered by transfection of cells with 8 plasmids containing genome sequences
Synthetic Virology and Biosecurity
NSABB: National Science Advisory Board for Biosecurity

• Federal advisory committee to provide advice, guidance, and leadership regarding biosecurity oversight of \textit{dual use research} to all Federal departments and agencies with an interest in life sciences research

• Advises on and recommends specific strategies for the efficient and effective oversight of federally conducted or supported dual use biological research, taking into consideration national security concerns and the needs of the research community

• Infectious viral DNA enables experiments not previously possible