On the Cu/P and Mn/Ni Interactions During Irradiation of A533B Reactor Pressure Vessel Steels

R. Chaouadi¹, W. Van Renterghem¹, E. Stergar¹, S. Gavrilov¹, E. van Walle¹ and R. Gérard²

¹ SCK•CEN, Boeretang 200, 2400 Mol, Belgium
² TRACTEBEL-Engie, Avenue Ariane 7, 1200 Brussels, Belgium

rachid.chaouadi@sckcen.be

International Light Water Reactors Material Reliability Conference
Chicago, 1–4 August 2016
Objectives and Motivation

- Long term operation
- Available databases
 - Multiple–variable experiments
 - Difficulty to determine the effect of a single variable but also combined effects
- Selection of key elements Cu, P, Ni and Mn
- Cu/P and Ni/Mn synergies
 - RADAMO-13 irradiation program
 - Systematic single–variable experiments with Cu/P and Ni/Mn
 - Irradiation hardening and microstructure
Experimental Conditions

- Irradiation space optimization
 - Transition temperature determination requires a higher number of specimens
 - Tensile tests: miniature specimens (triplicated)
 - At least a factor of 4 in space gain

- Excluding non-hardening embrittlement (often the case)
 - Proportionality between irradiation hardening and embrittlement
 - Load diagram illustration

- Chemically-tailored composition
 - Reference: A533B Cl.1
 - Targeted elements: **Cu, P, Ni** and (Mn) (→ Cu/P and Ni/Mn interaction)
 - Experimental evidence
 - Artificial Neural Networks
Consistency between the various properties

- Flow properties: strain rate and temperature dependence
- Characteristic loads – SFA
- Crack arrest → NDT
- Micro-cleavage fracture stress
- $T_1 - T_0$ master curve correlation

⇒ **Simple tensile tests** can provide important information when baseline condition is well characterized
Dominant Elements

736 data points; $\Phi_{\text{ref}} = 2.5 \times 10^{19} \text{ n/cm}^2$

72 data points; $\Phi_{\text{ref}} = 11.4 \times 10^{19} \text{ n/cm}^2$

Major influence \Rightarrow Cu and Ni

Major influence \Rightarrow Cu, Ni and P

Key elements: Cu, Ni and P (confirmed by ANN: see JNM 408 (2011) 30-39).
<table>
<thead>
<tr>
<th>n°</th>
<th>C</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mn</th>
<th>Ni</th>
<th>Cu</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.21</td>
<td>0.23</td>
<td>0.010</td>
<td>0.005</td>
<td>0.02</td>
<td>0.05</td>
<td>0.05</td>
<td>0.51</td>
</tr>
<tr>
<td>2</td>
<td>0.21</td>
<td>0.24</td>
<td>0.010</td>
<td>0.006</td>
<td>0.82</td>
<td>0.00</td>
<td>0.05</td>
<td>0.53</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>0.24</td>
<td>0.010</td>
<td>0.006</td>
<td>1.71</td>
<td>0.06</td>
<td>0.05</td>
<td>0.54</td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
<td>0.24</td>
<td>0.009</td>
<td>0.005</td>
<td>0.04</td>
<td>0.74</td>
<td>0.05</td>
<td>0.51</td>
</tr>
<tr>
<td>5</td>
<td>0.21</td>
<td>0.26</td>
<td>0.013</td>
<td>0.005</td>
<td>0.80</td>
<td>0.67</td>
<td>0.05</td>
<td>0.48</td>
</tr>
<tr>
<td>6</td>
<td>0.20</td>
<td>0.24</td>
<td>0.011</td>
<td>0.007</td>
<td>1.73</td>
<td>0.69</td>
<td>0.04</td>
<td>0.51</td>
</tr>
<tr>
<td>7</td>
<td>0.21</td>
<td>0.24</td>
<td>0.010</td>
<td>0.006</td>
<td>0.01</td>
<td>1.68</td>
<td>0.05</td>
<td>0.51</td>
</tr>
<tr>
<td>8</td>
<td>0.20</td>
<td>0.24</td>
<td>0.010</td>
<td>0.007</td>
<td>0.80</td>
<td>1.72</td>
<td>0.05</td>
<td>0.49</td>
</tr>
<tr>
<td>9</td>
<td>0.21</td>
<td>0.26</td>
<td>0.010</td>
<td>0.008</td>
<td>1.78</td>
<td>1.68</td>
<td>0.04</td>
<td>0.51</td>
</tr>
<tr>
<td>10</td>
<td>0.21</td>
<td>0.25</td>
<td>0.008</td>
<td>0.008</td>
<td>1.48</td>
<td>0.69</td>
<td>0.01</td>
<td>0.51</td>
</tr>
<tr>
<td>11</td>
<td>0.21</td>
<td>0.25</td>
<td>0.018</td>
<td>0.006</td>
<td>1.47</td>
<td>0.69</td>
<td>0.01</td>
<td>0.51</td>
</tr>
<tr>
<td>12</td>
<td>0.21</td>
<td>0.25</td>
<td>0.029</td>
<td>0.006</td>
<td>1.46</td>
<td>0.69</td>
<td>0.01</td>
<td>0.50</td>
</tr>
<tr>
<td>13</td>
<td>0.20</td>
<td>0.25</td>
<td>0.011</td>
<td>0.008</td>
<td>1.49</td>
<td>0.72</td>
<td>0.05</td>
<td>0.50</td>
</tr>
<tr>
<td>14</td>
<td>0.20</td>
<td>0.25</td>
<td>0.020</td>
<td>0.008</td>
<td>1.46</td>
<td>0.69</td>
<td>0.05</td>
<td>0.50</td>
</tr>
<tr>
<td>15</td>
<td>0.21</td>
<td>0.27</td>
<td>0.029</td>
<td>0.006</td>
<td>1.45</td>
<td>0.68</td>
<td>0.05</td>
<td>0.51</td>
</tr>
<tr>
<td>16</td>
<td>0.20</td>
<td>0.26</td>
<td>0.010</td>
<td>0.007</td>
<td>1.50</td>
<td>0.68</td>
<td>0.14</td>
<td>0.51</td>
</tr>
<tr>
<td>17</td>
<td>0.21</td>
<td>0.25</td>
<td>0.019</td>
<td>0.008</td>
<td>1.48</td>
<td>0.69</td>
<td>0.14</td>
<td>0.50</td>
</tr>
<tr>
<td>18</td>
<td>0.20</td>
<td>0.25</td>
<td>0.027</td>
<td>0.007</td>
<td>1.47</td>
<td>0.69</td>
<td>0.14</td>
<td>0.51</td>
</tr>
<tr>
<td>19</td>
<td>0.21</td>
<td>0.25</td>
<td>0.012</td>
<td>0.008</td>
<td>1.48</td>
<td>0.69</td>
<td>0.29</td>
<td>0.51</td>
</tr>
<tr>
<td>20</td>
<td>0.20</td>
<td>0.25</td>
<td>0.020</td>
<td>0.007</td>
<td>1.47</td>
<td>0.68</td>
<td>0.29</td>
<td>0.51</td>
</tr>
<tr>
<td>21</td>
<td>0.20</td>
<td>0.25</td>
<td>0.028</td>
<td>0.007</td>
<td>1.47</td>
<td>0.68</td>
<td>0.29</td>
<td>0.51</td>
</tr>
<tr>
<td>22</td>
<td>0.21</td>
<td>0.25</td>
<td>0.002</td>
<td>0.008</td>
<td>0.04</td>
<td>0.00</td>
<td>0.01</td>
<td>0.48</td>
</tr>
<tr>
<td>23</td>
<td>0.20</td>
<td>0.25</td>
<td>0.028</td>
<td>0.008</td>
<td>1.78</td>
<td>1.64</td>
<td>0.30</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Ni/Mn Effects : 9 steels

<table>
<thead>
<tr>
<th>Ni</th>
<th>Mn</th>
<th>Cu</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>~0</td>
<td>~0</td>
<td>0.05</td>
</tr>
<tr>
<td>medium</td>
<td>~0.7</td>
<td>~0.8</td>
<td>0.05</td>
</tr>
<tr>
<td>high</td>
<td>~1.7</td>
<td>~1.8</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Cu/P Effects : 12 steels

<table>
<thead>
<tr>
<th>Cu</th>
<th>P</th>
<th>Ni</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>very low</td>
<td>~0</td>
<td>~0.010</td>
<td>0.7</td>
</tr>
<tr>
<td>low</td>
<td>~0.05</td>
<td>~0.020</td>
<td>1.50</td>
</tr>
<tr>
<td>medium</td>
<td>~0.14</td>
<td>~0.030</td>
<td>0.7</td>
</tr>
<tr>
<td>high</td>
<td>~0.30</td>
<td>~0.51</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Materials

- Cu/P Effects : 12 steels
- Ni/Mn Effects : 9 steels

- all ‘low’
- all ‘high’
→ Same heat treatments for all steels
Unirradiated μstructure (Ø8.5 mm)

Irradiated tensile (Ø4.5 mm)

n° 6 + 8 + 10: medium low fluence
n° 31 + 33 + 35: low fluence
n° 15 + 17 + 19: medium high fluence
n° 22 + 24 + 26: high fluence
Cu/P Effects
Role of Cu/P in Irradiation Hardening and Embrittlement

Question: how does Cu interact with P?
Combined Cu/P Effect on Irradiation Hardening

The effect of Cu-content significantly larger than P-content effect

\[\Delta \sigma_{y_0} \] before irradiation

13 – 40 MPa
Cu/P-Effects on Irradiation Hardening

Constant slope at all Cu-levels \Rightarrow No synergy between P and Cu (at 290°C PWR-relevant) [! Might not hold for other T_{irrad}]
Ni/Mn Effects
Objective and Motivation

- The role of Mn was reported by many authors to significantly affect irradiation hardening and embrittlement in particular in presence of high Ni-content (e.g. Ringhals welds)
- Modeling supported by microstructural data suggest also that Mn should play some role as it is found in the solute clusters
- Experimental data on model alloys were also suggesting an important effect of Mn (Yabuuchi data)

- Objective: how Ni and Mn interact
 - Individual effect of Ni versus individual effect of Mn-content
 - Interaction Ni/Mn
 - Does the amount of Mn affects directly or indirectly irradiation hardening
Motivation: Mn effect

Model alloys

![Tensile Stress vs Tensile Strain graph](image)

From K. Yabuuchi, JNM 414 (2011) 498–502

Commercial alloys

![Mn-effect graph](image)

![Adjusted yield strength increase graph](image)

From LONGLIFE, R-5089 (2010)

adjusted to account for Cu, P and Ni differences

<table>
<thead>
<tr>
<th>Mn Content (at.%)</th>
<th>Fe-Mn binary alloy (0.09 dpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.69% Mn</td>
<td></td>
</tr>
<tr>
<td>0.82% Mn</td>
<td></td>
</tr>
<tr>
<td>1.40% Mn</td>
<td></td>
</tr>
<tr>
<td>2.10% Mn</td>
<td></td>
</tr>
</tbody>
</table>

0.69%Mn
0.82%Mn
1.40%Mn
2.10%Mn

adjusted yield strength increase $\Delta \sigma_y$ (MPa)

$\Delta \sigma_y$ vs neutron fluence (10^{19} n/cm², E>1MeV)
No Effect of Mn-content on Low Ni Steels

$\Delta \sigma_{y_0}$ before irradiation 17 – 33 MPa
No Effect of Mn-content on Medium Ni Steels

\[\Delta \sigma_y^0 \text{ before irradiation} = 10 - 47 \text{ MPa} \]
Significant Effect of High Mn-content of High Ni Steels

$\Delta \sigma_y$ before irradiation

22 – 41 MPa

yield strength increase, $\Delta \sigma_y$ (MPa)

neutron fluence (10^{19} n/cm2, $E>1$MeV)

0.01%Mn
0.80%Mn
1.78%Mn

Ni/Mn-Synergistic Effects
Cu=0.05%
P=0.010%
Ni=1.70%

±25 MPa

Ni/Mn-Synergistic Effects
Cu=0.05%
P=0.010%
Ni=1.70%

$\pm 25 \text{MPa}$

Copyright © 2016 SCK•CEN
Clear Mn-content Effect at High Mn-content (~1.7%)

Ni/Mn Effects
Cu=0.05% ; P=0.010% ;
irradiated condition
$\Phi_{\text{average}} \approx 5.6 \times 10^{19} \text{ n/cm}^2$, $E>1\text{MeV}$ (± 1)
Effect of Ni– and Mn– Content on the Initial Tensile Properties

<table>
<thead>
<tr>
<th>Ni%</th>
<th>Mn%</th>
<th>Σi(Fe)</th>
<th>σy</th>
<th>σu</th>
<th>σu−σy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.02</td>
<td>1.14</td>
<td>392</td>
<td>513</td>
<td>121</td>
</tr>
<tr>
<td>0.74</td>
<td>0.04</td>
<td>1.93</td>
<td>420</td>
<td>542</td>
<td>122</td>
</tr>
<tr>
<td>1.68</td>
<td>0.01</td>
<td>2.88</td>
<td>476</td>
<td>593</td>
<td>117</td>
</tr>
<tr>
<td>0.00</td>
<td>0.82</td>
<td>1.81</td>
<td>450</td>
<td>592</td>
<td>142</td>
</tr>
<tr>
<td>0.67</td>
<td>0.80</td>
<td>2.52</td>
<td>486</td>
<td>604</td>
<td>118</td>
</tr>
<tr>
<td>1.72</td>
<td>0.80</td>
<td>3.54</td>
<td>537</td>
<td>654</td>
<td>117</td>
</tr>
<tr>
<td>0.06</td>
<td>1.71</td>
<td>2.84</td>
<td>521</td>
<td>647</td>
<td>126</td>
</tr>
<tr>
<td>0.69</td>
<td>1.73</td>
<td>3.63</td>
<td>536</td>
<td>647</td>
<td>111</td>
</tr>
<tr>
<td>1.68</td>
<td>1.78</td>
<td>4.61</td>
<td>492</td>
<td>792</td>
<td>300</td>
</tr>
</tbody>
</table>

*all other alloying (excl. Ni and Mn) and trace elements <~1%

⇒ The high Ni/high Mn steel has definitely another behavior than other steels including RPV materials in both unirradiated and irradiated conditions.
Effect of Ni/Mn on the Flow Curve

- Distinct strain hardening behavior of the high Ni/High Mn steel
Unirradiated Condition TEM Examination

Enriched phase: 3.4 Mn / 2.6 Ni (wt%)
Complex structure (mainly bcc)

Bainite: 1.7 Mn / 1.8 Ni (wt%),
with (Fe,Mn)$_3$C and Mo$_2$C carbides

Before deformation:
Enriched phase is partially twinned
from martensite transformation

After deformation (~12%):
Progressive martensite tranformation
(→ cfr. TRIP steel)

Before deformation :
Before deformation :

1 μm

100 nm

Before deformation :

After deformation (~12%):

Unirradiated Condition TEM Examination

Enriched phase: 3.4 Mn / 2.6 Ni (wt%)
Complex structure (mainly bcc)

Bainite: 1.7 Mn / 1.8 Ni (wt%),
with (Fe,Mn)$_3$C and Mo$_2$C carbides

Before deformation:
Enriched phase is partially twinned
from martensite transformation

After deformation (~12%):
Progressive martensite tranformation
(→ cfr. TRIP steel)

Unirradiated Condition TEM Examination

Enriched phase: 3.4 Mn / 2.6 Ni (wt%)
Complex structure (mainly bcc)

Bainite: 1.7 Mn / 1.8 Ni (wt%),
with (Fe,Mn)$_3$C and Mo$_2$C carbides

Before deformation:
Enriched phase is partially twinned
from martensite transformation

After deformation (~12%):
Progressive martensite tranformation
(→ cfr. TRIP steel)
Irradiated Condition

TEM Examination

Undeformed
- Similar phases as in unirradiated
- No visible radiation damage

Deformed (~11%)
- No progressive martensite transformation

Work in progress …
Pre-straining + Annealing removes deformation-induced martensitic transformation of the high Ni/high Mn steel
Conclusions

Within the limits of the present experimental data (composition variables, irradiation conditions)

- On the Cu/P effects
 - Cu is clearly and by far the most radiation-sensitive element
 - The effect of P is relatively small
 - No synergy between these Cu and P (at this T_{irrad})

- On the Ni/Mn effects
 - Ni and Mn effects are significantly lower in comparison to Cu-effect
 - No synergy between Ni and Mn is observed except for the high Ni/high Mn steel (1.7%Ni/1.8%Mn)
 - TEM examination revealed the presence of a second phase (NiMn-rich phase)
 - 1.7%Ni/1.8%Mn steel significantly higher work hardening capacity
 - Behavior attributed to martensitic transformation during deformation (twins)
Closing Remarks

- The conclusions on Cu/P synergistic effects drawn from this work should be confirmed
 - at lower irradiation temperature (260°C or lower) where P-contribution is expected to significantly increase
 - eventually new batch of steel with higher P-content (>0.05%)
- The conclusions on Ni/Mn synergistic effects drawn from this work should be confirmed
 - at higher fluence levels (> 1×10^{20} n/cm2)
 - at lower irradiation temperature (260°C or lower)
 - Performing experiments on a new batch of 1.7%Ni/1.8%Mn with adapted heat treatment avoiding the formation of the unwanted secondary phase and leading to moderate work hardening (long term)
- TEM examination (in progress) + additional microstructural analysis (APT)