Loan Level Mortgage Modeling

Modeling and Data Challenges
Agenda

1. The complexity of loan level modeling
2. Our approach for modeling mortgages
3. Data Challenges
4. Conclusion
The complexity of loan level modeling

» Modeling complexity

- Many (many) scenarios are required to capture the behavior of mortgages in different states of the world
- Different types of loans behave very differently
- Non-monotonic behavior with respect to several factors
- Interaction terms needed to explain borrower behavior
- Single period analysis cannot generally be used for path-dependent instruments like mortgages

» Data complexity

- A lot of data fields needed to fully describe the mortgage
- Mortgages do not amortize quickly, so need to deal with legacy data
- Need to incorporate future loan volume with loan level detail
Loan level modeling in different economies

Many scenarios are required to capture the behavior of mortgages in different states of the world.

Same loan in different economies exhibits different behavior and may be correlated differently.
Different baselines for different types of loans

Different types of loans behave very differently

- **2/28 ARM**
- **5/25 ARM**
- **3/27 ARM**
- **FRM-30y**
Non-monotonic behavior with respect to several factors

Prepayment

Prepayment incentive is different for borrowers in different updated LTV buckets
Interaction terms needed to explain borrower behavior

Default sensitivity is different for borrowers in different FICO buckets
Using Aggregate Pool Statistics

Consider two pools drawn from this population: one homogenous and one barbelled (but both with approximately the same mean CLTV and FICO).

<table>
<thead>
<tr>
<th>FICO SCORE</th>
<th>Low < 710</th>
<th>Medium [710,750)</th>
<th>High [750,775)</th>
<th>Very High >= 775</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low < 710</td>
<td>2.4</td>
<td>4.9</td>
<td>5.5</td>
<td>9.7</td>
</tr>
<tr>
<td>Medium [710,750)</td>
<td>1.0</td>
<td>3.2</td>
<td>3.5</td>
<td>7.0</td>
</tr>
<tr>
<td>High [750,775)</td>
<td>0.5</td>
<td>1.5</td>
<td>1.7</td>
<td>4.0</td>
</tr>
<tr>
<td>Very High >= 775</td>
<td>0.1</td>
<td>0.7</td>
<td>0.9</td>
<td>1.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>FICO</th>
<th>CLTV</th>
<th>Def. rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneous</td>
<td>746</td>
<td>75.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Barbell</td>
<td>737</td>
<td>77.5</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Aggregate pool statistics may mask risk behavior.
Multi-period Simulation and path dependence

- Home prices start at 100 and end, 10 years later, at 134.
 - Scenario 1: home price appreciation of 3% per year for 10 years
 - Scenario 2: home price depreciation of 20% over 3 years followed by a gain over the next 7 years

Multi-period simulation is valuable due to strong path dependency.
Why are Mortgages Complicated to Model?

- A single loan can behave very differently in different economic scenarios.
- Different loan types behave very differently in the same economic scenario.
- Drivers of mortgage performance, including prepayment and default, are strongly path dependent.
- Mortgages have many embedded options, including
 - the option to prepay (call)
 - the option to walk away from the loan (put).
- The terms of these options do not generally average out analytically.

Mortgages are one of the most difficult asset classes to model.
Our Approach

» Our model is an analytic tool for assessing the credit risk of a portfolio of residential mortgages (RMBS & whole loans)

» The model comprises loan-level econometric models for default, prepayment, and severity.

» These models are integrated through common dependence on local macro-economic factors, which are simulated at national and local (MSA) levels.

» This integration produces correlation in loan behaviors across the portfolio.

» Because we use a multi-step Monte Carlo approach, the model can be combined with an external cash flow waterfall tool and used for simulation of RMBS transactions.

» The models also use pool-level performance to update the output in real-time.
Our Approach

» Panel data – monthly observations for each loan through time

» Survival models – Different baselines or nominal hazard rates as a function of loan age for different types of mortgages

» Competing risk framework – Defaults and Prepayments are two types of loan exit.

» Explanatory variables are observable macro-economic variables and loan and borrower characteristics

» Implementation in a multi-period framework.
Applications

» Stress testing of whole loan portfolios
» Surveillance and monitoring of RMBS transactions
» Selecting loans for securitization based on credit risk
» Whole loan pricing and trading
» Risk management of loan portfolios
» Regulatory reporting for CCAR and DFAST submissions
» ALLL and CECL calculation
Mortgage Modeling Overview

FACTORS

» Economic Data (Simulated or Scenario)

» Loan Level Pool Data (User Data)

» Supplemental User data (Loan level Override, Pool Performance etc.)

MODELS

» Default

» Severity

» Prepayment

OUTPUT

Σ

Loan Level E(L)

Pool Level E(L)
Mortgage Modeling Framework – Economic Factors

» The key economic processes that are simulated in the model are:

- **Interest rates** (Yield curve & LIBOR rates)
- **Home Price Change** (national, state, and MSA level)
- **Unemployment rates** (national, state, and MSA level)
- **Loan market rates** (Freddie Mac mortgage rate)
Delinquent loan pipeline makes up a key part of future losses.
Modeling Seasoned Mortgage Pools: Delinquent loans

» We categorize delinquent loans into: 30 DPD and 60 DPD buckets

» Default and prepayment hazard rates differ substantially between delinquent loans and current loans.

» Each delinquency status has different default and prepayment behavior.

» Can determine extra risk in delinquent loans as compared to equivalent current loans.

Delinquent loans behave very differently from current loans.
Modeling Seasoned Loans: Incorporating pool-specific Realized Performance To-date

» Realized performance can, on occasion, be very different than predicted due to unobservable differences in underwriting, servicing, borrower characteristics, etc.

» It is important to incorporate individual components of the realized performance, namely default, prepayments, and severity, separately.

» If past performance is available, it can be very valuable.

» Need to back-test each individual component of the models against pool performance to calibrate the models.

Pool-level idiosyncratic behavior can be useful in future projection.
In addition to generating the full loss distribution, we can estimate losses under *Moody’s* or user-defined scenarios.
TRC is the contribution a loan makes to the tail risk of a portfolio.

<table>
<thead>
<tr>
<th></th>
<th>EL</th>
<th>99.5% VaR Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original portfolio</td>
<td>4.0%</td>
<td>12.6%</td>
</tr>
<tr>
<td>With 100 highest EL loans removed</td>
<td>2.9%</td>
<td>10.2%</td>
</tr>
<tr>
<td>With 100 highest contributors to VaR removed</td>
<td>3.1%</td>
<td>9.7%</td>
</tr>
</tbody>
</table>

Tail risk of a loan is often different than its stand-alone risk.
Custom Scenarios

» Custom scenarios are an integral part of stress testing

» User can provide a view for one or more macro-economic variables such as interest rates, GDP, HPI, and Unemployment rate

» Models can “fill-out” all the missing variables at the national, state, or MSA level and through time in a consistent manner

» Can “anchor” a simulation around a custom scenario. We can then obtain a full loss distribution, Value at Risk, Tail Risk Contribution, and loan level detail.
Validation and Testing

» How do we know that we have done a good job?

- Calendar time plots

 » Segments modeled separately (for example, first liens and second liens)

 » Segments not part of the model (for example, low FICO, high LTV)
Validation and Testing

» Univariate plots
 - Model variables
 - Variables not included in the model

» Avoid over-fitting

» Do not rely on statistical tests alone
Additional Calibration and Testing

Some other things to look for

» Do we need to extrapolate some functions? For example, unemployment rates outside the range of observable data.

» Forecasts under different stress and baseline scenarios. How do projections over time compare with historical losses?

» Sensitivities to key variables. Are the sensitivities in line with expectations?

» Overrides or calibration for things not considered. Have some policies changed?
Analyse portfolios of mortgages (and other asset classes) in a correlated fashion using an intuitive and consistent set of macro-economic variables.

- Generate losses for *Moody’s Analytics*, Fed CCAR, and user defined scenarios.
- Conduct **scenario analysis** using observable macro-economic factors.
- Conduct **validation** using realized economies to-date.
- Use the **same framework** to evaluate **seasoned** portfolios and **new originations**.
- Determine a loss distribution and calculate **VaR**.
- Calculate the **tail risk contribution** for each loan and manage the tail risk of a portfolio of mortgages.
- Provide collateral loss distribution and cash flows that **can be combined with a waterfall engine** to produce tranche-level loss distributions.
The Role of Data

Data correctness and completeness is fundamental to the entire modeling effort.
Data Challenges – Model Building

Lack of good historical training data

» Most banks do not have a long enough data history.
» Post crisis data is usually of better quality, but pre-crisis data can have gaps.
» Acquisitions and mergers create unique data problems.
» Acquisitions and mergers can result in data of different underlying risks.
» Policy decisions can result in unpredictable performance.

Techniques for handling data inadequacies

» Can use proxy data to derive relationships and calibrate to the bank’s data.
» Use segmentation to distinguish between different portfolios. For example, the portfolios of banks before and after an acquisition could be separately calibrated.
» Each policy decision has to be addressed individually and carefully.
Data Challenges – Model Execution

Model Execution

» Determine how a loan amortizes
» Determine interest rate changes for ARM loans
» Determine HELOC utilization
» Delinquency information

What information do we need

» Loan terms
» Underlying index, margin, caps, and floors for ARM loans
» Model for HELOC utilization
» May need to fill-in missing data since we may not be in a position to remove loans with bad data
Data Challenges – Future Volume

Future volume

» Not all portfolios are in a run-off mode
» Loans originated in the future will contribute to losses
» Future volume depends on balance attrition as well as growth policies
» Need to generate future originations with loan level detail
» The loan level data should have the desired average values, distributions, and correlations

How do we generate future volume with loan level detail?

» Generate future volume by segments – for example, first lien mortgages, second lien mortgages, fixed rate loans, ARM loans.
» Examine a reference portfolio for each segment and infer distributions and correlations from it.
» Allow override of any inferred distributions.
» Generate loan level data by sampling from these distributions.
Conclusion

» Modeling at the loan level offers significant detail in estimating losses.

» Modeling each loan behavior (default, prepayment, and severity) separately provides substantial flexibility in calibration and specification.

» The state of the local and national economy significantly impacts the performance of loans.

» A loan level approach can be challenging from a data as well as a modeling point of view.

» With good data collection and careful modeling, this approach can be used in different areas of the business.
To the extent permitted by law, MOODY’S and its directors, officers, employees, agents, representatives, licensors and suppliers disclaim liability for any direct or compensatory losses or damages caused to any person or entity, including but not limited to by any negligence (but excluding fraud, willful misconduct or any other type of liability that, for the avoidance of doubt, by law cannot be excluded) on the part of, or any contingency within or beyond the control of, MOODY’S or any of its directors, officers, employees, agents, representatives, licensors or suppliers, arising from or in connection with the information contained herein or the use of or inability to use any such information.

NO WARRANTY, EXPRESS OR IMPLIED, AS TO THE ACCURACY, TIMELINESS, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OF ANY SUCH RATING OR OTHER INFORMATION IS GIVEN OR MADE BY MOODY’S IN ANY FORM OR MANNER WHATSOEVER.

Moody’s Investors Service, Inc., a wholly-owned credit rating agency subsidiary of Moody’s Corporation (“MCO”), hereby discloses that most issuers of debt securities (including corporate and municipal bonds, debentures, notes and commercial paper) and preferred stock rated by Moody’s Investors Service, Inc. have, prior to assignment of any rating, agreed to pay to Moody’s Investors Service, Inc. for appraisal and rating services rendered by it fees ranging from $1,500 to approximately $2,500,000. MCO and MIS also maintain policies and procedures to address the independence of MIS’s ratings and rating processes. Information regarding certain affiliations that may exist between directors of MCO and rated entities, and between entities who hold ratings from MIS and have also publicly reported to the SEC an ownership interest in MCO of more than 5%, is posted annually at www.moodys.com under the heading “Investor Relations — Corporate Governance — Director and Shareholder Affiliation Policy.”

For Australia only: Any publication into Australia of this document is pursuant to the Australian Financial Services License of MOODY’S affiliate, Moody’s Investors Service Pty Limited ABN 61 003 399 657AFSL 338969 and/or Moody’s Analytics Australia Pty Ltd ABN 94 105 136 972 AFSL 383569 (as applicable). This document is intended to be provided only to “wholesale clients” within the meaning of section 761G of the Corporations Act 2001. By continuing to access this document from within Australia, you represent to MOODY’S that you are, or are accessing the document as a representative of, a “wholesale client” and that neither you nor the entity you represent will directly or indirectly disseminate this document or its contents to “retail clients” within the meaning of section 761G of the Corporations Act 2001. MOODY’S credit rating is an opinion as to the creditworthiness of a debt obligation of the issuer, not on the equity securities of the issuer or any form of security that is available to retail clients. It would be dangerous for “retail clients” to make any investment or decision based on MOODY’S credit rating. If in doubt you should contact your financial or other professional adviser.

For Japan only: Moody’s Japan K.K. ("MJJK") is a wholly-owned credit rating agency subsidiary of Moody’s Group Japan G.K., which is wholly-owned by Moody’s Overseas Holdings Inc., a wholly-owned subsidiary of MCO. Moody’s SF Japan K.K. ("MSFJ") is a wholly-owned credit rating agency subsidiary of MJJK. MSFJ is not a Nationally Recognized Statistical Rating Organization ("NRSRO"). Therefore, credit ratings assigned by MSFJ are Non-NRSRO Credit Ratings. Non-NRSRO Credit Ratings are assigned by an entity that is not a NRSRO and, consequently, the rated obligation will not qualify for certain types of treatment under U.S. laws. MJJK and MSFJ are credit rating agencies registered with the Japan Financial Services Agency and their registration numbers are FSA Commissioner (Ratings) No. 2 and 3 respectively.

MJJK or MSFJ (as applicable) hereby disclose that most issuers of debt securities (including corporate and municipal bonds, debentures, notes and commercial paper) and preferred stock rated by MJJK or MSFJ (as applicable) have, prior to assignment of any rating, agreed to pay to MJJK or MSFJ (as applicable) for appraisal and ratings services rendered by it fees ranging from JPY200,000 to approximately JPY350,000,000. MJJK and MSFJ also maintain policies and procedures to address Japanese regulatory requirements.