This End-User License Agreement [EULA] represents the contractual conditions between you, the Licensee, and UVI, located 159 rue Amelot, 75011 Paris - France for the use of software, documentation and other materials created by UVI.

You should not register, install or use UVI Products until the following license agreement is understood and accepted.

By using UVI Products, or allowing anyone else to do so, you are accepting this agreement.

A- License Grant
1. UVI grants to you, subject to the following terms and conditions, the non-exclusive right to use each authorized copy of the Product.

2. UVI Product license are granted only to a single user. You may use this product on up to three separate computers or iLok Dongles, which shall be owned and used by you exclusively.

3. Renting or lending the licensed Software to a third party is expressly forbidden.

4. Except as otherwise stated within this EULA, Licensee may resell the software to a third party or transfer the software permanently. Request may be done using the Transfer License feature in your iLok account, subject to a $25 fee per-license ($50 maximum) by Pace. The serial number of the Product will be transferred to the third party by UVI, and Licensee’s original registration will be deleted.

5. Resale or ownership transfer of individual products obtained in a bundle, or those used to upgrade or cross-grade to other products are not allowed.

6. UVI allows you to use any of the sounds and samples in the products you’ve purchased for commercial recordings without paying any additional license fees or providing source attribution to UVI.

7. This license expressly forbids resale or other distribution of the sounds and software included in the Product or their derivatives, either as they exist on disc, reformatted for use in another digital sampler, or mixed, combined, filtered, re-synthesized or otherwise edited, for use as sounds, multi-sounds, samples, multi-samples, wavetables, programs or patches in a sampler, microchip or any hardware or software sample playback device. You cannot sell the product content or give it away for use by others in their sampling or sample playback devices.

8. In the event UVI terminates this agreement due to your breach, you agree to return the original and all other copies of the software and documentation to UVI.

9. UVI reserves all rights not expressly granted to herein.

B- License Activation
1. In order to use UVI Products it is required that you authorize them by registering your Serial Number on uvi.net/register, have a free iLok account (not necessarily a dongle) and install the free iLok License Manager (done automatically by UVI Workstation and Falcon installers). It is impossible to use UVI Products if they are not registered and authorized.

2. During authorization you will need to enter your name, email address and postal address which will be stored in the UVI database. UVI uses a secure SSL connection with 128-bit encryption that meets current security standards to transmit your data over the web. For further information about UVI’s handling of personal data please see: https://www.uvi.net/privacy-policy

3. The UVI Product license allows up to 3 simultaneous activations on any combination of iLok dongles and computers. Activations can be moved between devices at anytime through the iLok License Manager.

C- Protection of Software
You agree to take all reasonable steps to protect the Product and any accompanying documentation from unauthorized copying or use. You agree not to modify the Product to circumvent any method or means adopted or implemented by UVI to protect against or discourage the unlicensed use or copying of the Product.

D- Ownership
Ownership of, and title to, the enclosed digitally recorded sounds (including any copies) held by UVI are copied to you only to enable you to exercise your rights under the license.

E- Term
This agreement is effective from the date you open this package, and will remain in full force until termination. This agreement will terminate if you break any of the terms or conditions of this agreement. Upon termination you agree to return to UVI all copies of this product and accompanying documentation and destroy any other copies made.

F- Restrictions
Except as expressly authorized in this agreement, you may not rent, lease, sub-license, distribute, copy, reproduce, display, modify or timeshare the enclosed Product or documentation.

G- NFR Serials and Free Products
UVI Products serial numbers labeled as “NFR” [Not For Resale] shall only be used for demonstration, testing and evaluation purposes. NFR Products may not be used for commercial purposes, and may not be resold or transferred. They are not eligible for license recovery and are exempt from update, upgrade or crossgrade offers, and cannot be purchased with or exchanged for vouchers. Furthermore, as an owner of an NFR Product, you are not entitled to promotions available for the commercial version of the Product.

H- No Support Obligation
UVI will make its best effort to support you in the event of technical difficulty with a UVI Product. However, UVI is not obligated to furnish or make available to you any additional information, software, technical information, know-how, or support.

I- Specifications and System Requirements
All technical specifications of UVI Products provided are intended to be estimates or approximations. Due to numerous variables no guarantees of compatibility or performance can be made. All such specifications shall be in writing. End-User is solely responsible for prior to purchase, ensuring that End-User’s devices are compatible and meet the system requirements for UVI Products, and that the applicable UVI Products meet End-User’s requirements.

This EULA is governed by the laws of France.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>SYSTEM REQUIREMENTS</td>
<td>6</td>
</tr>
<tr>
<td>1.0-1.5 CHANGE LOG</td>
<td>7</td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>10</td>
</tr>
<tr>
<td>INSTALL FALCON</td>
<td>11</td>
</tr>
<tr>
<td>AUDIO & MIDI DEVICES</td>
<td>12</td>
</tr>
<tr>
<td>LOAD YOUR SOUNDBANK</td>
<td>13</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>14</td>
</tr>
<tr>
<td>COMPONENTS</td>
<td>17</td>
</tr>
<tr>
<td>OSCILLATORS</td>
<td>18</td>
</tr>
<tr>
<td>EFFECTS</td>
<td>19</td>
</tr>
<tr>
<td>MODULATORS</td>
<td>20</td>
</tr>
<tr>
<td>EVENT PROCESSORS</td>
<td>21</td>
</tr>
<tr>
<td>INTERFACE</td>
<td>22</td>
</tr>
<tr>
<td>TOOLBAR</td>
<td>23</td>
</tr>
<tr>
<td>STATUS BAR</td>
<td>25</td>
</tr>
<tr>
<td>MAIN</td>
<td>26</td>
</tr>
<tr>
<td>EDIT</td>
<td>27</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>29</td>
</tr>
<tr>
<td>LAYER</td>
<td>30</td>
</tr>
<tr>
<td>KEYGROUP</td>
<td>31</td>
</tr>
<tr>
<td>OSCILLATOR</td>
<td>32</td>
</tr>
<tr>
<td>MAPPING</td>
<td>33</td>
</tr>
<tr>
<td>MODULATION</td>
<td>34</td>
</tr>
<tr>
<td>SAMPLE EDITOR</td>
<td>43</td>
</tr>
<tr>
<td>EFFECTS</td>
<td>46</td>
</tr>
<tr>
<td>EVENTS</td>
<td>48</td>
</tr>
<tr>
<td>MODS</td>
<td>49</td>
</tr>
<tr>
<td>INFO</td>
<td>51</td>
</tr>
<tr>
<td>PARTS</td>
<td>52</td>
</tr>
<tr>
<td>TREE</td>
<td>54</td>
</tr>
<tr>
<td>LIST</td>
<td>56</td>
</tr>
<tr>
<td>FILE BROWSER</td>
<td>59</td>
</tr>
<tr>
<td>PRESET BROWSERS</td>
<td>65</td>
</tr>
<tr>
<td>MIXER</td>
<td>66</td>
</tr>
<tr>
<td>PERFORMANCE</td>
<td>68</td>
</tr>
<tr>
<td>GENERAL CONVENTIONS</td>
<td>69</td>
</tr>
<tr>
<td>USER PRESETS</td>
<td>70</td>
</tr>
<tr>
<td>PREFERENCES</td>
<td>72</td>
</tr>
<tr>
<td>LEARNING FALCON 100: SYNTHESIS</td>
<td>74</td>
</tr>
<tr>
<td>101 WORKING WITH PRESETS</td>
<td>75</td>
</tr>
<tr>
<td>102 SAVING A USER PROGRAM</td>
<td>76</td>
</tr>
<tr>
<td>103 SAVING A USER MULTI</td>
<td>77</td>
</tr>
<tr>
<td>104 SIMPLE SYNTH</td>
<td>78</td>
</tr>
<tr>
<td>105 ARPEGGIATED SYNTH</td>
<td>79</td>
</tr>
<tr>
<td>106 EVOLVING PAD</td>
<td>81</td>
</tr>
<tr>
<td>107 INTERACTIVE WOBBLE BASS</td>
<td>82</td>
</tr>
<tr>
<td>108 DRUM KIT FROM SAMPLES</td>
<td>85</td>
</tr>
<tr>
<td>109 DRUM KIT FROM A LOOP</td>
<td>86</td>
</tr>
<tr>
<td>110 DRUM KIT FROM SYNTHESIS</td>
<td>87</td>
</tr>
<tr>
<td>LEARNING FALCON 200: EFFECTS AND MODULATION</td>
<td>89</td>
</tr>
<tr>
<td>201 USING DUAL DELAY</td>
<td>90</td>
</tr>
<tr>
<td>202 USING SPARKVERB</td>
<td>91</td>
</tr>
<tr>
<td>203 USING EFFECTS RACKS</td>
<td>92</td>
</tr>
<tr>
<td>204 USING MACROS</td>
<td>93</td>
</tr>
<tr>
<td>205 USING HOST AUTOMATION</td>
<td>95</td>
</tr>
<tr>
<td>206 USING STEP ENVELOPES</td>
<td>96</td>
</tr>
<tr>
<td>207 USING MULTI ENVELOPES</td>
<td>97</td>
</tr>
<tr>
<td>208 USING OSC</td>
<td>98</td>
</tr>
<tr>
<td>LEARNING FALCON 300: EVENTS</td>
<td>99</td>
</tr>
<tr>
<td>301 USING THE ARPEGGIATOR</td>
<td>100</td>
</tr>
<tr>
<td>302 USING THE MICRO TUNER</td>
<td>102</td>
</tr>
<tr>
<td>303 USING THE SCRIPT PROCESSOR</td>
<td>103</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td></td>
</tr>
<tr>
<td>SAMPLING OSCILLATORS</td>
<td>104</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>105</td>
</tr>
<tr>
<td>SLICE</td>
<td>106</td>
</tr>
<tr>
<td>STRETCH</td>
<td>108</td>
</tr>
<tr>
<td>IRCAM GRANULAR</td>
<td>109</td>
</tr>
<tr>
<td>IRCAM MULTI GRANULAR</td>
<td>110</td>
</tr>
<tr>
<td>IRCAM SCRUB</td>
<td>112</td>
</tr>
<tr>
<td>IRCAM STRETCH</td>
<td>113</td>
</tr>
<tr>
<td>SYNTHESIS OSCILLATORS</td>
<td>114</td>
</tr>
<tr>
<td>ANALOG</td>
<td>115</td>
</tr>
<tr>
<td>ANALOG STACK</td>
<td>116</td>
</tr>
<tr>
<td>DRUM</td>
<td>117</td>
</tr>
<tr>
<td>FM</td>
<td>118</td>
</tr>
<tr>
<td>NOISE</td>
<td>119</td>
</tr>
<tr>
<td>ORGAN</td>
<td>120</td>
</tr>
<tr>
<td>PLUCK</td>
<td>121</td>
</tr>
<tr>
<td>WAVETABLE</td>
<td>123</td>
</tr>
<tr>
<td>EFFECTS</td>
<td>124</td>
</tr>
<tr>
<td>ANALOG TAPE DELAY</td>
<td>125</td>
</tr>
<tr>
<td>DUAL DELAY</td>
<td>126</td>
</tr>
<tr>
<td>DIFFUSION</td>
<td>127</td>
</tr>
<tr>
<td>IREVERB</td>
<td>128</td>
</tr>
<tr>
<td>SPARKVERB</td>
<td>129</td>
</tr>
<tr>
<td>ANALOG CHORUS</td>
<td>130</td>
</tr>
<tr>
<td>ANALOG FLANGER</td>
<td>131</td>
</tr>
<tr>
<td>ENSEMBLE 505</td>
<td>132</td>
</tr>
<tr>
<td>FLANGER</td>
<td>133</td>
</tr>
<tr>
<td>FREQ SHIFTER</td>
<td>134</td>
</tr>
<tr>
<td>PHASOR</td>
<td>135</td>
</tr>
<tr>
<td>LEARNING FALCON 300: EVENTS</td>
<td></td>
</tr>
<tr>
<td>GUITAR BOXES</td>
<td>171</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Effect</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overdrive</td>
<td>172</td>
</tr>
<tr>
<td>Wave Shaper</td>
<td>173</td>
</tr>
<tr>
<td>3 Band Compressor</td>
<td>174</td>
</tr>
<tr>
<td>3 Band Limiter</td>
<td>175</td>
</tr>
<tr>
<td>Compressor Expander</td>
<td>176</td>
</tr>
<tr>
<td>Gate</td>
<td>177</td>
</tr>
<tr>
<td>Maximizer</td>
<td>178</td>
</tr>
<tr>
<td>Studio Limiter</td>
<td>179</td>
</tr>
<tr>
<td>Phase Meter</td>
<td>180</td>
</tr>
<tr>
<td>Spectrum Analyzer</td>
<td>181</td>
</tr>
<tr>
<td>Tuner</td>
<td>182</td>
</tr>
<tr>
<td>Effectrack</td>
<td>183</td>
</tr>
<tr>
<td>Redux</td>
<td>184</td>
</tr>
<tr>
<td>UVinyl</td>
<td>185</td>
</tr>
<tr>
<td>Legacy Effects</td>
<td></td>
</tr>
<tr>
<td>FX Delay</td>
<td>187</td>
</tr>
<tr>
<td>Fat Delay</td>
<td>188</td>
</tr>
<tr>
<td>Ping Pong Delay</td>
<td>189</td>
</tr>
<tr>
<td>Simple Delay</td>
<td>190</td>
</tr>
<tr>
<td>Stereo Delay</td>
<td>191</td>
</tr>
<tr>
<td>Gate Reverb</td>
<td>192</td>
</tr>
<tr>
<td>Plain Reverb</td>
<td>193</td>
</tr>
<tr>
<td>Predelay Reverb</td>
<td>194</td>
</tr>
<tr>
<td>Simple Reverb</td>
<td>195</td>
</tr>
<tr>
<td>Chorus</td>
<td>196</td>
</tr>
<tr>
<td>Cross Phaser</td>
<td>197</td>
</tr>
<tr>
<td>Phaser</td>
<td>198</td>
</tr>
<tr>
<td>Auto Wah</td>
<td>199</td>
</tr>
<tr>
<td>FX Filter</td>
<td>200</td>
</tr>
<tr>
<td>Talkbox</td>
<td>201</td>
</tr>
<tr>
<td>2 Band EQ</td>
<td>202</td>
</tr>
<tr>
<td>3 Band EQ</td>
<td>203</td>
</tr>
<tr>
<td>8 Band EQ</td>
<td>204</td>
</tr>
<tr>
<td>Rotary Simple</td>
<td>205</td>
</tr>
<tr>
<td>Rotary Speaker</td>
<td>206</td>
</tr>
<tr>
<td>Double Drive</td>
<td>207</td>
</tr>
<tr>
<td>UVI Drive</td>
<td>208</td>
</tr>
<tr>
<td>Compressor</td>
<td>209</td>
</tr>
<tr>
<td>Limiter</td>
<td>210</td>
</tr>
<tr>
<td>UVI Mastering</td>
<td>211</td>
</tr>
<tr>
<td>Beat Repeat</td>
<td>212</td>
</tr>
<tr>
<td>Ring Modulator</td>
<td>213</td>
</tr>
<tr>
<td>Robotizer</td>
<td>214</td>
</tr>
<tr>
<td>UVI Destructor</td>
<td>215</td>
</tr>
<tr>
<td>Event Processors</td>
<td></td>
</tr>
<tr>
<td>Arpeggiator</td>
<td>217</td>
</tr>
<tr>
<td>MIDI Player</td>
<td>218</td>
</tr>
<tr>
<td>Micro Tuner</td>
<td>219</td>
</tr>
<tr>
<td>Script Processor</td>
<td>220</td>
</tr>
<tr>
<td>Modulators</td>
<td></td>
</tr>
<tr>
<td>AHD</td>
<td>223</td>
</tr>
<tr>
<td>Analog ADSR</td>
<td>224</td>
</tr>
<tr>
<td>Attack Decay</td>
<td>225</td>
</tr>
<tr>
<td>DahDSR</td>
<td>226</td>
</tr>
<tr>
<td>Drunk</td>
<td>227</td>
</tr>
<tr>
<td>LFO</td>
<td>228</td>
</tr>
<tr>
<td>Macro</td>
<td>229</td>
</tr>
<tr>
<td>Multi Envelope</td>
<td>230</td>
</tr>
<tr>
<td>Step Envelope</td>
<td>231</td>
</tr>
<tr>
<td>Appendix B: Scripting In Lua</td>
<td>232</td>
</tr>
<tr>
<td>Appendix C: Falcon Factory Presets</td>
<td>234</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
</tbody>
</table>

Total Pages: 240
FALCON
Falcon is multi-timbral hybrid instrument, bringing together an extensive collection of oscillators, effects, modulators and event processors and delivering them in a workflow-adaptive and highly-scriptable environment.

SYNTHESIS
Falcon offers 15 highly-optimized oscillators covering the spectrum of modern sampling and synthesis techniques. Sample-based oscillators include IRCAM Granular, IRCAM Multi Granular, IRCAM Scrub, IRCAM Stretch, Sample, Slice and Stretch. Synthesis oscillators include Analog, Analog Stack, Drum, FM, Noise, Organ, Pluck and Wavetable.

EFFECTS
Over 80 high-quality effects are at your disposal, categorized for easy navigation: Delays, Reverbs, Modulation, Filters, Equalizers, Amps and Stereo, Drive and Distortions, Dynamics, Analysis and more. UVI’s rich heritage of effect design is in full force with sophisticated delays, versatile reverbs (including the Sparkverb algorithm and a CPU-optimized convolution reverb), compressors, vinyl, reamping effects and more. Add effects at the patch level, as sends or even per note.

MODULATION
Rich sound means motion and Falcon can create it whenever and however you need it. AHD, Analog ADSR, Attack Decay, DAHDSR, Drunk, LFO, Multi Envelope and Step Envelope modulation generators all come standard and cv in the Falcon environment. Create variation over time or on demand, drive your oscillators, effects or even other modulators, then add the most important parameters to the macro panel for clear and intuitive performance control.

EVENTS
Falcon’s Event processors provide control and analysis of the pre-synthesis phase of your sound, from manipulating incoming MIDI data to creating it algorithmically. Utilize factory processors such as an advanced Arpeggiator, Micro Tuner, Chorder, Harmonizer, Strum simulator, MIDI Player, Unison and Shepard effects, or code your own from scratch with the powerful Lua scripting language.

INTERFACE
From editing at the component level to mixing and realtime performance of multiple instruments, Falcon’s interface was designed to be both ergonomic and adaptable. Due to the nature of instrument design and interactive music performance, projects can quickly become large and multifaceted. Falcon’s UI was structured to help mitigate that complexity and allow you to quickly focus regardless of the level of detail.

PERFORMANCE
Falcon was designed with a rich performance toolset including full Open Sound Control (OSC) implementation, host automation, flexible MIDI and audio routing, MIDI learn, key range and velocity range controls, keyswitching and more. Whether you’re working with a single instrument or an ensemble, in a DAW or standalone, Falcon gives you the control you need to create dynamic and captivating performances.

SOUNDS
Falcon comes with an incredible collection of presets created by some of the world’s most recognized sound designers, but there’s much more to discover. Falcon is fully-compatible with all UVI and UVI-Powered soundbanks, opening up a world of over 200 instruments from a growing list of companies like AcousticSamples, GospelMusicians, VI Labs and VirHarmonics.

SCRIPTING
Falcon implements custom scripts throughout its architecture allowing you to create everything from custom Event processors to professional-level skinned instruments with the powerful and lightweight Lua scripting language. Don’t know anything about scripting? Don’t worry, Falcon has a built-in visual editor for creating fully customized macro-driven interfaces.
SYSTEM REQUIREMENTS

MAC OS

COMPATIBILITY
- Audio Unit
- VST
- AAX
- Stand Alone

MINIMUM SYSTEM REQUIREMENTS
- Intel CPU
- 2 GB of RAM+
- 1 GB of Disk Space
- MAC OS X 10.8+
- iLok Account (Free)

WINDOWS

COMPATIBILITY
- VST
- AAX
- Stand Alone

MINIMUM SYSTEM REQUIREMENTS
- Core 2 Duo or faster
- 2 GB of RAM+
- 1 GB of Disk Space
- Windows 8+
- iLok Account (Free)

LICENSE

AUTHORIZATION
Your license allows for unlimited installation and up to 3 concurrent authorizations of Falcon on any combination of computer hard drives or iLok dongles.

MANAGEMENT
License management is a simple drag-and-drop process done through the free iLok License Manager client app. iLok License Manager is installed with Falcon. Visit iLok.com to sign up for a free account.
1.0-1.6 CHANGE LOG

FALCON 1.6.6
- Fix selection issue when using mouse wheel on a mod matrix slider
- Fix Digital EQ UI issue
- Fix possible stability issue in Digital Filter
- Fix UI issue with non ascii directory in preferences panel
- Fix issue with Bandlab Cakewalk

FALCON 1.6.5
- Better error report when a soundbank cannot be mounted at session reload
- Fix LFO speed issue in Phasor and CrossPhaser when changing sample rate
- Fix an issue in Vienna Ensemble Pro
- Better HIDPI support on Windows

FALCON 1.6.4
- Fix issue with ProTools automation
- Fix digital UI issue on OS X
- Fix possible oscillator display order issue

FALCON 1.6.3
- Add a new feature to IRCAM Scrub oscillator allowing to control volume of sine, noise and transients
- Fix possible issue when moving loop point in alternate loop while playing
- Fix issue in Digital EQ when changing sample rate

FALCON 1.6.2
- Fix UI glitch in Digital Filter FX with 18 dB/oct slope
- Fix regression regarding UI scaling on Windows
- Fix possible interaction issue with Micro Tuner and some script
- Fix issue with search rendering when soundbanks are updated

FALCON 1.6.1
- Fix glitch in Digital Filter FX

FALCON 1.6
- Add Digital Filter FX
- Add Digital EQ FX
- Add new presets including 50 exclusive presets from Expressive E, the maker of Touché
- Add 40 new wavetables
- Fix regression regarding UI scaling

FALCON 1.5.6
- Fix Win7 compatibility issue

FALCON 1.5.5
- Fix sync issue with multipoint envelope
- Fix custom DnD issue with lots of samples on Windows

FALCON 1.5.4
- Fix regression in 1.5.2 regarding empty slice oscillator DnD
- Fix issue when playing an empty MIDIPatch
- Fix issue with Multi browser avoiding to close the plugin UI

FALCON 1.5.3
- Fix regression introduced in previous version with Xpander Filter

FALCON 1.5.2
- Add optional oversampling in Exciter, Fuzz, Overdrive and Analog Crunch FX
- Fix oversampling in Wave Shaper
- Fix possible crashes when changing oscillator type
- Serialize slice oscillator markers when they differs from the one in the sample itself
- minor UI mods

FALCON 1.5.1
- Fix crash in Windows with CPU not supporting AVX
- Fix crash with Freq Shifter FX

FALCON 1.5
- Add Freq Shifter FX
- Add FM support in Waveetable oscillator
- Add MIDI delay script
- Add MIDI Controls and velocity remapper script
- Add direct key tracking control in Comb filter
- Add UI scaling in preferences
- Add favorite support in browser
- Add preview support in Search tab
- Add 100 new presets in Falcon Factory
- Fix issue with Mapper selection not being taken into account if one was already selected

FALCON 1.4.1
- Maintain current trigger mode when loading envelope preset
- Add length property for each step in Step line script. Gate can now go up to 1000%, which allows overlap for monophonic glide
- Add “Center Root Note” command in mapping editor
- Fix reload issue introduced in 1.4.0 following an Edition connection fix
- Fix possible issue with loop in Stretch oscillator
- Fix Falcon Factory patch “Prehistory 2 1.4” sequence button
- Fix Falcon Factory patch “Winter 1.4” CPU overload

FALCON 1.4
- Add support for MIDI and sample Drag’n’drop on multi envelope for features extraction
- Add search tab in right panel
- Add Scale script
- Add Polyphonic Seq script
- Add new Chorder script
- Add MIDI CC redirect script
- Add scale support in Step Line script
- Enhance Strum script

FALCON 1.3.2
- Fix reload issue when using VV2 soundbanks with VV1 sessions
- Fix issue with non latin character sets
- Minor UI fixes introduced in previous version

FALCON 1.3.1
- Fix Waveetable SysForm mode when phase distortion is at 0
- Fix possible crash on Windows when Drag’n’dropping samples from internal browser
- Multi point envelope can now have up to 128 steps

FALCON 1.3
- Add new Rotary FX
- Fix first transient handling in IRCAM Stretch
- Fix per voice boost in Xpander Filter
- Fix rise time in LFO with non zero phase
- Fix issue with bipolar multiEnvelope in some cases
- Add basic AnaMark tuning (.tun) support
- Fix possible click when modulating Analog ADSR sustain

FALCON 1.2.1
- Add Phaser: A new phaser effect with up to 12 orders
- Fix regression regarding display of oscillator actually played when using MIDI Select and Round Robin trigger modes
- Add Lofi Portamentos curve (in Inspector)
- Add basic EXS file format support
- Fix possible crash when multi editing some FX
- Fix display of continuous parameters in AU
- Fix oscillator UI height which could be smaller than it should be
- Fix possible UI issue on OS X in plugin mode

FALCON 1.2.0
- Add Phaser: A new phaser effect with up to 12 orders
- Add Phaser Filter: Similar to phaser but with manual frequency control
- Add Doode Clipper: A new distortion effect
- Add removing feature to IRCAM stretch oscillator allowing to control volume of sine, noise and transients
- New Dual Delay parameters
- New Xpander filter parameters
- New Rotary FX parameters
- New UVI Wide parameters
- Fix Legato behavior in Stretch and IRCAM stretch oscillator
- Fix memory leak
- Allow to set start/end markers using the current mouse selection
- Fix regression regarding IRCAM Stretch oscillator offline rendering
1.0-1.6 CHANGE LOG

FALCON 1.1.4
- fix possible unison detune issue with very small value in Analog oscillator
- fix possible crash in Waveable oscillator
- fix issue with Song position Trigger mode in Arpeggiator
- fix possible issue in streaming code
- fix issue with simple multi envelope loop
- fix possible issue when loading serialized mapper
- fix potential crash in Logic with smart controls

FALCON 1.1.3
- allow resizable UI in plugin version (bottom right corner inside the plugin)
- add input and output gain in Exciter FX
- fixes in MPE script with overlapping note on the same midi channel
- improvements in Sparkverb and Dual Delay regarding CPU usage when silent.
- fix possible issue when saving Effect Rack presets

FALCON 1.1.2
- fix issue in streaming with stop marker
- improve kit filter UI
- fix possible issue with some script
- rotary FX improvements
- fix macro connection on iReverb in Falcon Factory patches

FALCON 1.1.1
- fix Effect Rack custom background display when used in Layer/ Keygroup level
- fix regression introduced in 1.1 in IRCAM Stretch with non looped samples
- fix IRCAM Stretch issue with very large stretching in some cases
- support for vst-xm DrDr
- add "Song" (Trigger Mode in LFO stashed with host song position)
- fix regression regarding markers missing reset when changing samples in an oscillator
- fix song trigger mode in Arpeggiator
- better Chord mode behavior in Apeeggiator
- Minor fixes for Falcon Factory

FALCON 1.1.0
- add Thorus: A new chorus FX with up to 8 voices
- add Sample controls (start, detune, key follow), Noise sustain and Sustain control to Pluck oscillator
- add phase and different oscillator tuning controls in FM oscillator
- add M/S Maximizer in Effect Rack presets
- add Randomize in Effect Rack presets
- add script for MPE devices (Linnstrument, Roli Seabord, ...)
- add Copy/paste from clipboard for module preset in preset menu to easily copy FX settings among instances
- CPU improvements in some FXs
- fix regression with Double Drive and UVI Drive introduced in 1.0.7
- fix possible crash when loading 1K in Convolver or IR Reverb
- fixes in Micro Tuner
- fix issue related to sample markers when changing oscillator type
- Effects rack is now featured in its own folder in Modules tree
- fix crash when receiving a very large amount of MIDI events
- allow to disable label or macro value display by right clicking on it in Edit mode
- fix Offset reload in Editon mode matrix of modulation connections
- other minor fixes
- extra MPE presets added to Falcon Factory

FALCON 1.0.7
- fix regression with legato multi point envelope introduced in 1.0.4
- fix issue with Dator Boxes under Reaper
- allow edit of oscillators in multi selection
- fix possible crash when deleting mappers
- fix noise when activating filters in UVI Drive and Double Drive
- fix crash when adding Granular oscillator using Tree view
- fix crash when adding MIDI player in Edit view
- fix sample start handling in Sample oscillator
- allows right click on module tab to change their type (similar to long press behavior)
- fix potential crash in script processor when launching lots of asynchronous commands
- fix possible issue with Mono-Retrigger mode
- rotary FX improvements
- fix for scalar keyboard mapping (json) with 0 size

FALCON 1.0.6
- fix crash in script in case of script errors
- add free running option for each oscillator in Analog Stack (see Impactor)
- fix possible crash with selection and edit all oscillator function
- smooth random LFO do not smooth the first outputted random value
- fix distortion handling on Drums initial value
- fix regression in forward x/td loop introduced in previous build
- fix possible stucked notes with scripted instrument in Digital Performer
- fix possible issue in Analog ADSR with very small attack time

FALCON 1.0.5
- fix regression introduced in 1.0.4 with some scripts
- fix potential crash in xfade + alternate sample loops
- optimize patch encoding

FALCON 1.0.4
- fix speed modulation on multi point envelope
- allow to duplicate Oscillators, FX and EventProcessors by pressing Alt key when Drag’n’dropping their module name
- fix Sam LFO with null speed

FALCON 1.0.3
- allow to set on only one MIDI port
- fix batch oscillator type changes with custom start/stop markers
- fix regression regarding sample loading/surges in scripts
- add Preset insert flag on waves
- fix graphic issue on OSX pre 10.11

FALCON 1.0.2
- fix possible issue with cross-faded alternate looping in Sample oscillator
- WaveEditor sample auditioning now work like a play/stop toggle
- add Reveal in Explorer/Finder in treeview browser
- remember last Audio Config in Standalone app
- allow to change the default VST AudioConfig for VST Hosts that don’t implement setSpeakerArrangement
- allow using return key to go back to parent folder in right-panel browser
- fix potential crash when dragging stuff on the keygroup mapping view when collapsed.
- fix issue with non-Latin character in MIDI panel on OSX
- CPU improvements in some FXs
- fix potential crashes in rare cases when connecting modulation
- allow to duplicate a Part using right click menu on it
- add new Script Event Modulation module which allows polyphonic script driven modulation source
- improve randomness in noise oscillator
- allow to modulate Layer glide time
- add an offset to connection’s oscillator mode (Macro and MIDI learn) as well as support for mappers
- add sorting to key and velocity columns in Keygroups list
- Chaos LFO waveforms now handle Phase parmeter
- add Stereo switch in Noise oscillator
- fix brown noise volume issue
- toggle/shift key while moving loop points will move both points accordingly to the loop length
- fix automation names in AAX when assigning automations
- fix tempo update in Slice oscillator when changing bar/beat settings
1.0-1.6 CHANGE LOG

FALCON 1.0.1
- fix right-column file browser scrollbar visibility when the tree width becomes larger than the available size
- better auto naming behavior when binding macros to host automation slots: the host automation name now uses the macro display name
- allow manual renaming of host automation slots
- add Legato mode in IRCAM Stretch allowing to start new voices at the position of currently playing voices. Similar to Legato in regular stretch.
- fix tie mode in arpeggiator in special case
- added master gain parameter to Big PI Tone
- fix issue with Places
- improved support for different kinds of "wt" file import
- display connected MIDI modulation source in TreeView
- fix potential crash in Multipoint envelope while deleting loop points while the envelope is running and the loop point is being played.
- added selection indicator in XpanderFilter mode menu
- fix potential crash in IRCAM Multi Granular when using reversed grains
- fix parameter automation display names in AU
- fix TreeView browser state serialization
- fix ratio modulation display
- added support for browsing user wavetables folder located in
 $documents/UVI/Falcon/User Data/Wavetable/
- added support for browsing pluck user excitations folder located in
 $documents/UVI/Falcon/User Data/Pluck/
- added support for browsing user Impulse Responses folder located in
 $documents/UVI/Falcon/User Data/IR/
- allow "." as note name separator in automatic sample import
- fix issue when trying to modulate Organ Harmonic parameter
- fix potential errors in script processor when using midi port D
1. **Open UVI Portal and login to your UVI account**

2. **Register your serial number and link it to your iLok account**

3. **Download and install Falcon and the Falcon Factory by clicking on the green install buttons on the right**

4. **Finish by activating your product with iLok license manager**

Please refer to the UVI Portal Manual for more details.
If you plan to use Falcon in stand-alone mode you may need to select which MIDI inputs and Audio outputs you want Falcon to use. This only needs to be done the first time you launch Falcon, or if you make changes to your hardware (such as changing your audio interface or controller keyboard), as these settings will be saved and reloaded the next time you start Falcon.

If you intend to use Falcon primarily as a plugin you can skip this step, as the audio and MIDI settings will be defined by your host DAW.

1. LAUNCH FALCON
2. SELECT ‘AUDIO AND MIDI SETTINGS...’ FROM THE MENU
3. SELECT THE DESIRED AUDIO AND MIDI DEVICES...

AUDIO DEVICES
Select the desired audio interface, sample rate and buffer size from the menus. If you don’t see your device listed, make sure it’s powered on and hit ‘Refresh Audio Devices’.

ROUTING
Falcon can address up to 17 stereo outputs. Use this panel to link Falcon’s outputs with those of your audio interface.

MIDI DEVICES
Falcon can listen to 4 MIDI devices. Use this panel to link Falcon’s inputs with the MIDI sources available on your system.
UVI Powered soundbanks are high-quality sound and instrument libraries available from UVI and third-party developers. Soundbanks and Falcon Expansions are fully supported and seamlessly integrated in Falcon.

To use Falcon Factory (and soundbanks) in Falcon you just need to tell it where to find them.

You can change the soundbanks location including external drive to install.

To manage your soundbank location, open the preferences panel of UVI Portal, or Soundbanks Tab in preferences panel of the UVI Workstation or Falcon.

NOTE: If you commonly use UVI Workstation it is recommended that you place your soundbank files and Falcon Expansions in separate directories.

1. **LAUNCH FALCON**
2. **DOUBLE-CLICK THE WORD ‘EMPTY’ IN THE PARTS LIST TO OPEN THE BROWSER**
3. **OPEN THE SOUND BANKS TAB**
4. **SELECT A SOUND BANK, IN THIS EXAMPLE WE’LL CHOOSE FALCON FACTORY, THEN SELECT AN CATEGORY AND PATCH DOUBLE-CLICK THE PATCH TO LOAD IT**
5. **CLOSE THE BROWSER AND YOU’RE READY TO JAM!**
STRUCTURE
FALCON is a hierarchy of components, structured so that you can focus on the high-level arrangement or drill down to deeper levels as you prefer.

Each instance of Falcon contains:
- one **MULTI**, which contains ...
- one or more **PARTS**

Each of those **PARTS** then contains:
- one **PROGRAM**, which contains ...
- one or more **LAYERs**, each which contains ...
- one or more **KEYGROUPs**, each which contains ...
- one or more **OSCILLATORS**

Each level of this hierarchy has a rich variety of options for crafting your sound, using:
- **MODULATION** control signals, such as LFOs, envelopes, and MIDI controllers
- **AUDIO EFFECTS**, such as filters, delays, and reverb
- **MIDI EVENT PROCESSORS**, such as arpeggiators, micro tuners, and script processors

NOTE: Triggering envelopes only work on KEYGROUPS level, not on LAYER nor PROGRAM level.
For example, a multi might contain two parts: a drum loop and a grand piano. The drum loop could have a single layer with a single keygroup, which contains a single oscillator playing a single audio sample. The grand piano program might contain three layers, each of which contains dozens of keygroups and audio samples, multiple envelopes and a script processor, all passing through reverb, EQ, and a multi-band compressor.

At its simplest, you can launch Falcon, load some instruments or loops, and just begin playing without worrying about how it’s all put together. At the other end, you can craft from scratch your own multi-layered and advanced programs containing dozens or hundreds of oscillators with numerous modulation sources, and then mix many instruments and loops together using multiple parts and effects chains.

The sounds included with Falcon or with third-party libraries contain highly-detailed and richly-varied programs that don’t require any editing at all. However, Falcon also provides the means to modify and extend sounds, which can be peeled back one layer at a time for increasingly detailed adjustments.
The basic components of Falcon are:

- OSCILLATORS
- EFFECTS
- EVENT PROCESSORS
- MODULATIONS

These components, described in the following sections, can be combined in near-infinite variations to produce compelling sounds and instruments.
One of Falcon’s greatest strengths is its ability to freely layer oscillators to create elaborate hybrid instruments that capitalize on the unique features of both sample-based and algorithmic sound creation. There are no preset limits on the quantity or type of oscillators you can use, you’re limited only by your computer’s processing power and imagination.

OSCILLATORS

An oscillator is the basic building block of a Falcon program. Oscillators generate the initial sound, which is then modulated, transformed, and combined with other oscillators into a full program. An oscillator can be one of two types: synthesis or sampling.

SYNTHESIS

Synthesis oscillators produce purely synthesized sounds — no audio sample is triggered. The synthesis oscillators provided are capable of a wide variety of sounds, from classic virtual analog synths to drum modeling to string synthesis.

SAMPLING

Sampling oscillators play back an audio sample. Each of the sampling oscillators is suited for different types of audio samples and different playback needs, from traditional pitch and speed transposition to slicing drum loops to granular pitch adjustments.

For in-depth details on each oscillator type, see: [Appendix A > Oscillators]
Falcon includes over 80 high-quality effects, categorized for easy navigation: Delays, Reverbs, Modulation, Filters, Equalizers, Amps and Stereo, Drive and Distortions, Dynamics, Analysis and more. With effects suited for nearly every need from creative mangling to precise sound sculpting, mixing and analysis, Falcon provides a tremendous sound design facility.

EFFECTS
Effects are audio signal processors. This includes classic effects such as filters, reverb, and delays, to advanced analysis tools such phase meters and spectrum analyzers. Effects can be added independently at every level of the multi, from a single keygroup up to the master output.

MULTIFX
Multiple effects can be saved and recalled as a group with a single Multi FX preset. This provides a way for complex chains of effects to be recalled instantly.

For more information on using effects, see: [Interface > Main > Effects Tab]

For in-depth details on each effect type, see: [Appendix A > Effects]
Falcon includes 8 modulation generators including AHD, Analog ADSR, Attack Decay, DAHDSR, Drunk, LFO, Multi Envelope and Step Envelope. Modulation generators can be instanced at any level in a patch allowing them to control nearly any parameter, be it on an oscillator, effect or even on another modulator. This system allows you to paint motion into your sounds almost effortlessly, from subtle variation over time to complex on-demand sequences.

MODULATORS

Modulators are signal generators that modify a control’s value. Modulators don't affect the audio or MIDI signal directly; rather, they adjust the values of Falcon's controls. There are two main categories of modulation sources: internal and external.

INTERNAL

Internal modulation sources originate from within the Falcon multi or program. This includes a variety of different types of envelopes and LFOs, which can be created at every level of Falcon's hierarchy: master, part, program, layer, and keygroup.

Additionally, macros are a special type of internal modulation. When a control is assigned to a macro, a macro control appears on the Info tab. When the macro control is adjusted, so is the control assigned to it. A control can be assigned one-to-one to a macro, as a shortcut for a commonly used control in the program, or multiple controls can be assigned to a single macro, for complex transformations of multiple controls by adjusting a single knob or button.

EXTERNAL

External modulation sources originate beyond the Falcon instance. External sources include MIDI messages, such as continuous controllers (CCs), pitch bend, velocity, aftertouch, and others. Some pre-defined external sources are also available, such as sources that randomize or alternate values.

Additionally, when using Falcon as a plug-in, you can assign a control to be linked to the host program’s automation controls. Host automation extends Falcon’s available modulation options by tapping into the host’s modulation and automation capabilities as well.

For more information on using modulations, see: [Interface > Main > Modulation Editor]

For in-depth details on each modulation type, see: [Appendix A > Modulators]
Falcon’s Event section provides control over pre-synthesis data, namely the manipulation, analysis or generation of MIDI. Event processors can do anything from arpeggiating incoming notes or strumming them like a guitar to applying micro tunings, playing back MIDI files or creating generative sequences.

EVENT PROCESSORS
Event processors are MIDI signal processors. This includes well-known processors such as arpeggiators and micro-tuners, to complex, customized processing with the script processor.

SCRIPT PROCESSORS
Script Processors are a unique subset of Events Processors which allow Falcon’s functionality to be extended with the Lua language. Factory Script Processors include the Chorder, Harmonizer, Unison, Ensemble and many more. Load any Script Processor and click the ‘Edit Script’ button to take a look at how they work. Experiment with modifying them or write your own. Script Processors provide both an extremely powerful way to interact with existing instruments and a sophisticated code-driven approach to sound design.

For more information on event processors, see: [Interface > Main > Events Tab]

For in-depth details on each event processor type, see: [Appendix A > Events]
The toolbar is displayed at the top of the window and is always visible in Main, Mixer, and Performance views. Most controls in the toolbar apply globally to the entire Falcon instance.

Main Menu
The main toolbar menu contains commands for loading/saving files and configuring Falcon. The menu is divided into four sections; details about the commands in each section can be found on the following:
- [User Presets]
- [Preferences]
- [Toolbar > Window size]

Multi Management
The name of the CURRENT MULTI is displayed in the toolbar. Double-clicking the name will open the multi File Browser. For more information on loading multis, see [User Presets > Multis] and [Interface > Main > File Browser].

The NEXT MULTI / PREVIOUS MULTI buttons load the next or previous multi in the same directory as the current multi. The Next button will also advance into subdirectories and load the next multi there, if any.

Changing the View
The MAIN, MIXER, and PERF buttons change the primary view of the Falcon window. See [Interface > Main], [Interface > Mixer], and [Interface > Performance] for more information.

The left and right sidebars can be individually hidden or shown with the SHOW/HIDE SIDEBAR buttons. The left sidebar displays the PARTS EDITOR, TREE EDITOR, and LIST EDITOR; the right sidebar displays the PRESET BROWSER.

Tempo and Transport Controls
Falcon's current TEMPO is displayed in the toolbar. You can edit the tempo here as well, from 10 to 400 bpm, by double-clicking to enter a value or by clicking and dragging the value up and down. **NOTE:** When Sync To Host is enabled, the Tempo cannot be edited manually.
If you would like to tap to enter the tempo rather than typing in a value, use the **TAP** button. For best results, tap repeatedly at a consistent tempo.

Enabling **SYNC TO HOST** will cause Falcon to follow an external tempo source — the host application’s tempo when using Falcon as a plug-in inside a host application, or MIDI Beat Clock when using Falcon as a standalone application. Additionally, enabling **AUTOPLAY** will cause Falcon to play and stop along with the host application. When using Falcon as a standalone application, the AutoPlay button is not displayed. For details on part auto-play, see also [Interface > Main > Parts > Auto Play](#).

The **PLAY** and **STOP** buttons are used to manually start and stop Falcon’s playback. When AutoPlay is enabled, the Play and Stop buttons also activate to show the current state of the host application’s transport.

GLOBAL TUNE AND VOLUME

GLOBAL TUNE adjusts the tuning for all parts, using the A above Middle C as a reference. Global Tune defaults to 440 Hz, and is adjustable from 420 Hz to 460 Hz.

GLOBAL VOLUME adjusts the output volume for the Main Outs.

WINDOW SIZE

To adjust the size of the Falcon window, open the Toolbar menu and choose Small size, Big Size, or Fit screen size.
The status bar is displayed at the bottom of the window and provides quick, at-a-glance information.

1. **VERSION**
 The installed version of Falcon is displayed on the left side of the status bar.

2. **HOVER HELP**
 As you use Falcon, the center of the status bar displays contextual help, such as "Global Volume" when hovering over the output volume knob in the top toolbar, or "Oscillator tune in semitones" when hovering over the Oscillator module's Coarse Tune knob.

3. **PERFORMANCE SUMMARY**
 The right side of the status bar displays a performance summary for the current multi:
 - memory usage
 - CPU usage
 - number of voices currently playing
The Main view is the primary view for creating and editing parts in Falcon, and the instruments and samples that those parts contain.

The primary areas of the Main view are:

- **The CENTER PANE**, for viewing and editing parts
- **The LEFT SIDEBAR**, for additional part controls
- **The RIGHT SIDEBAR**, for browsing and loading samples and presets
The Edit tab is the primary view for editing a program.

The major sections within the Edit tab are:

1. PROGRAM
2. LAYER
3. KEYGROUP
4. OSCILLATOR
5. MAPPING EDITOR
6. MODULATION EDITOR

Each section may be shown or hidden, using the corresponding buttons in the upper-right toolbar.

When a section is shown, it can also be collapsed or expanded using the arrow to the left of the section name. Double-clicking the section header also collapses or expands the section.

The first four sections — Program, Layer, Keygroup, Oscillator — form a hierarchy. That is, a program contains layers, a layer contains keygroups, and a keygroup contains oscillators. For more information on how these pieces fit together, see [Structure].
Each of these four sections contains a Parameters view which displays its controls. The section parameter view can be shown or hidden by pressing the toggle in the section header.

Other lanes can be shown or hidden for each section, such as effects, event processors, or modulation sources. These lanes can be toggled with the corresponding buttons in the section header.

Each of these lanes is a condensed view of a corresponding tab, displaying only the modules of that type which are saved at that particular level of the program hierarchy.

To add a new module to a lane, press the plus (+) button to display a menu of available modules. Each module displays a tab, and the module’s controls are shown or hidden by selecting the tab’s name. The module can be enabled or disabled with the POWER button on the left of the tab, or deleted with the X button on the right of the tab. Additionally, a press and hold on the module’s name will display a preset browser menu to replace the existing module with a different one.

NOTE: For the Effects and Event lane, the left-to-right order indicates the signal flow. For the Modulations lane, the order isn’t significant. For more information, see: [Main > Modulations Tab].
THE PROGRAM EDITOR

1. **Gain** and **PAN** set the output level and stereo placement for the entire program. These are distinct from the Part gain and pan settings, and are saved with the program.

2. To choose whether samples in the program are streamed from disk or not, set the **STREAMING** toggle. For more details on streaming, see [Preferences > Streaming](#).

3. To transpose incoming MIDI to the program, adjust the **OCTAVE** and **SEMI** settings.

4. **POLYPHONY** sets the default number of simultaneous voices available for each layer in the program. (To override this on individual layers, see [Custom Polyphony in the Layer section](#)).

5. Keeping polyphony as low as you can helps reduce the processing power needed to play back the program, especially if you have per-keygroup effects or modulations. The **NOTE POLYPHONY** value sets the maximum number of simultaneous triggers of the same note. A setting of zero is a special value that indicates **UNLIMITED**.
THE LAYER EDITOR

GAIN and PAN set the output level and stereo placement for the selected layers.

PLAY MODE determines what happens when additional notes are triggered while another note is held. In POLY modes, multiple notes can be played at once, in MONO modes only the last triggered note will be played.

Additionally, with POLY PORTAMENTO or MONO PORTAMENTO there is a glide from the previous note to the current one. The duration of the glide is set by GLIDE TIME. PORTAMENTO MODE chooses whether the time is always the same (Constant Time), or whether the time is proportionally longer based on the spread between the two notes (Proportional Time). In MONO PORTAMENTO SLIDE mode, the next note always starts from the pitch of the previous note and glides to the new pitch, even if the next note is played after the previous note is released.

UNISON VOICES sets the number of voices triggered with each note received. When using multiple voices, the Unison modulation sources (found under External > Other) can be used to modulate parameters per voice, such as Keygroup Pitch or Pan, for a dynamic sound.

CUSTOM POLYPHONY sets the maximum polyphony for the layer. A setting of zero is a special value that indicates that there is no layer-specific limit.

The VELOCITY CURVE sets the mapping of incoming velocity values. The default is NORMAL (1:1 mapping). To change the velocity curve, right-click and choose one of the presets:
- CONSTANT: The same velocity is always triggered, regardless of the incoming velocity. To set the value, double-click and enter a velocity value.
- MAX: A constant velocity of 127
- HARD: Remapped so that higher velocities are triggered
- NORMAL: Default, 1:1 mapping
- SOFT: Remapped so that lower velocities are triggered

The curve displays incoming velocities on the X axis, and triggered velocities on Y. For finer adjustment of the velocity curve, hold the Shift key and drag the curve up or down. You can also double-click and enter a value:
- Values between -1 and zero cover the range between the Hard and Normal presets
- Values between zero and +1 cover the range between the Normal and Soft presets
- Values between +1 and 127 set a constant velocity
THE KEYGROUP EDITOR

GAIN and **PAN** set the output level and stereo placement for the selected keygroups.

TRIGGER MODE determines what event triggers the keygroup to play back:
- **ON**: Keygroup is triggered by note on; this is the default.
- **OFF**: Keygroup is triggered by note off.
- **OFF + E**: Keygroup is triggered by note off, and the current level of the amplitude envelope will be used as the initial amplitude.
- **OFF + V**: Keygroup is triggered by note off, and the note off velocity will be used as the initial amplitude.
- **OFF + VE**: Keygroup is triggered by note off, and both note-off velocity and the amplitude envelope will be applied to determine the initial amplitude.

Off + E, Off + V, and Off + VE modes are helpful for matching the amplitude of a release sample with the samples that preceded it.

TRIGGER SYNC determines how the keygroup is played back once triggered:
- **IMMEDIATE**: The keygroup is triggered immediately
- **NEXT BEAT**: The keygroup is triggered at the beginning of the next full beat
- **NEXT BAR**: The keygroup is triggered at the beginning of the next full bar

The Next Beat/Bar options are useful when triggering keygroups with tempo-synced effects such as arpeggiators, or a keygroup containing a tempo-synced loop.

The **EXCLUSIVE GROUP** is a way of indicating keygroups which should be mutually exclusive. The classic use case is a group of hi-hat sounds, where a closed hi-hat should cutoff any open hi-hat sounds.

There are 32 separate exclusive groups available per layer. A setting of zero is a special value that indicates no exclusive group assignment.

When **LATCH** is enabled, notes are held (or “latched on”) indefinitely when they are triggered, to release the note, play the same note again.
THE OSCILLATOR EDITOR

A keygroup contains one or more oscillators. With EDIT ALL OSCILLATORS enabled, the parameters described below will be edited simultaneously for all oscillators in the keygroup. To edit each oscillator individually, disable Edit All Oscillators and select the desired oscillator tab.

The COARSE TUNE and FINE TUNE controls set the oscillator’s pitch in semitones and cents. These controls are for static adjustments, and cannot be modulated. The PITCH control, however, can be modulated, and is adjustable over a wide range (±4 octaves). Typical usage might be: FINE TUNE to pitch-correct a sample that’s slightly out of tune, COARSE TUNE to shift the pitch a few keys up or down the keyboard, PITCH to modulate the oscillator’s pitch with an LFO or envelope.

GAIN and sets the output level for the selected keygroups.

NOTE TRACKING determines how incoming notes are transposed. At 100%, each note is transposed relative to the root key 1:1. At 200%, transposition is double; for example, if the root key is G4 and a G#4 is played, the note will be transposed as if an A4 was played.

If there are multiple oscillators in the keygroup, the TRIGGER MODE chooses which will be triggered:

• ALL: All oscillators in the keygroup are triggered simultaneously with every note.
• CYCLE: Oscillators are triggered individually, “round robin” style. The first oscillator will be triggered on the first note, the second oscillator with the second note, and so on, always in the same order. With oscillators A, B, and C, the order will always be A-B-C, A-B-C, etc.
• RANDOM CYCLE: Same as Cycle, but the order is randomized within each cycle. Each oscillator will always be triggered once per cycle. Additionally, the first note of a cycle will never be the same as the last note of the previous cycle, so there won’t be any direct repeats. With oscillators A, B, and C, the order might be B-A-C, A-B-C, etc.
• RANDOM: One random oscillator is triggered individually. With oscillators A, B, and C, the order might be A-C-B-A-B-B-C-A.

Negative values invert the transposition; for example, if the root key is G4 and a G#4 is played, at -200% the note will be transposed as if an F4 was played. For a constant pitch regardless of the note triggered, use 0%.

If there are multiple oscillators in the keygroup, the TRIGGER MODE chooses which will be triggered:

• ALL: All oscillators in the keygroup are triggered simultaneously with every note.
• CYCLE: Oscillators are triggered individually, “round robin” style. The first oscillator will be triggered on the first note, the second oscillator with the second note, and so on, always in the same order. With oscillators A, B, and C, the order will always be A-B-C, A-B-C, etc.
• RANDOM CYCLE: Same as Cycle, but the order is randomized within each cycle. Each oscillator will always be triggered once per cycle. Additionally, the first note of a cycle will never be the same as the last note of the previous cycle, so there won’t be any direct repeats. With oscillators A, B, and C, the order might be B-A-C, A-B-C, etc.
• RANDOM: One random oscillator is triggered individually. With oscillators A, B, and C, the order might be A-C-B-A-B-B-C-A.
THE MAPPING EDITOR

The Mapping Editor displays the arrangement of the program’s layers and keygroups. Programs can contain anywhere from a single keygroup in a single layer assigned to the entire key range and velocity range, to many layers each with dozens of keygroups that are assigned to very small ranges.

Above the piano keyboard, the key range is displayed horizontally and the velocity range is displayed vertically. Each keygroup appears as a block covering its key and velocity range. When a program has multiple layers, the layers are stacked on top of each other.

Pressing a key on the piano keyboard will trigger the note; if a keygroup is assigned to that key, it will be played back. Higher velocities are triggered by pressing the key closer to the bottom; lower velocities are triggered by pressing close to the top.

To view the mapping area in greater detail, zoom in or out horizontally using the + and - buttons in the lower right, or resize it vertically by dragging the Mapping Editor toolbar up or down.

To adjust a keygroup’s key range or velocity range, select the keygroup then click and drag any edge.

1. Hold the Command key (Mac) or Control key (Windows) before you start dragging the keygroup edge to fade the key or velocity range. The beginning of the fade will be indicated by a dashed line within the keygroup.

2. The toolbar above the mapping area displays details for the selected keygroup, such as its root key, key range, velocity range, and more. These fields can all be edited in the usual manner: double-clicking to enter text, scrolling, and so on. You can also select and edit multiple keygroups at once.

3. Additional commands are available under the menu, available by pressing the menu button towards the left end of the toolbar. TIP: The same menu is also available by right-clicking in the mapping editor.
There are two additional options for helping navigate the mapping editor: HIGHLIGHT PLAYED KEYGROUPS, and MIDI SELECT. These options can be toggled on or off with the buttons at the right end of the toolbar. When Highlight played keygroups is enabled, keygroups are visually highlighted as they are triggered. With MIDI select enabled, keygroups are selected as they are triggered.

To edit a keygroup, select one or more keygroups then right-click to display a contextual menu of editing commands (described below).

IMPORTING SAMPLES AS KEYGROUPS

Samples can be easily imported as keygroups by drag and drop from the sidebar browser or your desktop. You can drag a single sample, or multiple samples at once. The vertical placement of the sample as you drop it is a quick shortcut for the new keygroup’s key range assignment — the closer you drop the sample to the top of the velocity range, the larger key range the keygroup will span.

Additionally, if you hold the Alt/Option key while dragging in samples, a custom import dialog is displayed. Choose the MAPPING METHOD, such as "NOTE NAME" or "BLACK KEYS", many of which determine details about the sample from its file name or other metadata. The selected mapping method displays a description with details about how it will determine each file’s assignment. The layer for the imported samples is chosen with the DESTINATION LAYER selector. Samples can be imported to one of the existing layers, or to a new layer.
ADDING, MOVING AND DELETING KEYGROUPS

The Mapping Editor’s menu contains all of the edit commands available in the Mapping Editor. To open the menu, right-click anywhere in the Mapping Editor grid or choose the menu button towards the left end of the toolbar.

Standard editing and selection commands are provided:

- CUT
- COPY
- PASTE
- DUPLICATE
- DELETE
- UNDO
- REDO
- SELECT ALL
- DESELECT ALL
- INVERT SELECTION

To move keygroups between specific layers, choose one of the following and select a new or existing layer:

- PASTE KEYGROUP TO
- MOVE KEYGROUP TO

A new keygroup can be created, in the current layer or a new layer. Choose one of the following, then choose Sample or Synth:

- CREATE KEYGROUP
- CREATE KEYGROUP IN NEW LAYER

To copy the settings of one keygroup and apply them to another keygroup, copy a keygroup, then select the keygroup to be updated and choose Apply Keygroup Template. This will re-plicate the same keygroup settings (such as envelopes and other modulation sources) without changing the oscillator type.
EDITING KEYGROUP RANGES
The EXTEND commands extend the keygroup’s range in the chosen direction (right, left, top, or bottom) until another keygroup boundary is encountered, or it reaches the maximum value. The Auto Extend options are similar, but extend in both directions: left and right for AUTO EXTEND KEY RANGES, or top and bottom for AUTO EXTEND VELOCITY RANGES. A keygroup can also be reduced to only its root key, with AUTO REDUCE KEY RANGES.

For keygroups that overlap keys or velocities, choose RESOLVE OVERLAPPING KEY RANGE or Resolve Overlapping Velocity Range to adjust the ranges of the keygroups so they no longer overlap. Alternatively, the ranges of the keygroups can remain the same, but key or velocity fades can be applied with AUTO FADE OVERLAPPED KEYGROUPS.

If you would like to simply change which keygroup is displayed on top of the other, without adjusting their fade or ranges, choose MOVE KEYGROUP TO FRONT or MOVE KEYGROUP TO BACK.

KEYGROUP SAMPLES
For keygroups with sampling oscillators, it can be helpful to use the SET KEYGROUP NAME AS SAMPLE NAME command to give the keygroups more meaningful names.

If a program’s samples can’t be located, the samples will be marked as missing. SELECT MISSING SAMPLES will select any keygroup that contains an oscillator with a missing sample. FIND MISSING SAMPLES checks for missing samples and displays an error window listing any missing files. From there, you can choose to ignore the missing samples, or open the file browser to locate them.

LAYER RULES
Layer Rules provide a way to dynamically change how a program’s layers are triggered. For example, you might want to switch between legato and staccato articulations, or cycle through multiple variations of the same note to provide a more realistic performance. Choose EDIT LAYER RULES from the Mapping Editor’s menu to open the Layer Rules Editor.

The rules are displayed on the left, and a list of layers is displayed on the right. First, right-click and add a ROOT RULE. Next, right-click and add a SUB-RULE, one for each layer or group of layers that you would like to be affected by the rule. Then select each sub-rule, and choose the desired layers from the list of target layers on the right.

Now choose a RULE TYPE for the root rule, such as Key Switch. Each sub-rule can now be assigned to the specific criteria which will trigger that layer. For example, with a Key Switch rule and two sub-rules, the first sub-rule might be assigned to C0 and the second to D0.

The rule types are: Key Switch, Pitch Bend, Speed, Note Duration, Cycle, Random, Legato, Random Cycle, MIDI CC

Sub-rules can be added to sub-rules, to create further branches in the layer triggering logic.

TIP: Falcon’s Script Processor module can also be used to dynamically change playback styles. For more details, see [Appendix B: Scripting in Lua].
THE MODULATION EDITOR
The Modulation Editor displays modulation assignments and sources and is the central location for editing modulation generators.

When you select a parameter, the node and name of the parameter is displayed in the Modulation Editor. For example, when the layer gain knob is selected, the Modulation Editor displays “Layer > Volume”.

The top half of the Modulation Editor displays any MODULATION ASSIGNMENTS for the selected parameter.

The bottom half of the panel displays a MODULATION SOURCE EDITOR for the selected modulation source.

The modulation source editor can be shown or hidden with the button on the right side of the Modulation Editor header.

UNDERSTANDING MODULATION SOURCES
A modulation source generates a control signal that is used to modify other controls — on its own, it doesn’t directly affect Falcon’s output. A modulation source must be assigned to modulate another control to have an effect. The location in Falcon’s hierarchy where you create the modulation source determines its availability as an assignment choice.

Modulation data flows from the top (Master level), down through Part, Program, Layer and Keygroup levels to the bottom (Oscillators). Therefore, a modulation generator instanced at the Master level can target any parameter within a given Falcon instance, and conversely a modulation generator instanced at the Keygroup level can only see target parameters within its own Keygroup.

NOTE Master and part modulation sources aren’t recommended to be assigned to program, layer, or keygroup controls as programs can be saved and recalled separately from the containing multi, and could result in missing modulation sources. If you work with any modules instanced above the Program level make sure that you save your work as a Multi (.uvim) file in order to maintain the integrity of your patch. For more information on signal flow in Falcon see [Structure].
MODULATION ASSIGNMENTS

A parameter can have any number of modulation assignments. Each assignment can be enabled or disabled with the **POWER** button on the left of the tab, or deleted with the **X** button on the right of the tab.

Each assignment displays the node, name, and type of the modulation source. For example, with a keygroup DAHDSR envelope named "Amp. Env," the assignment will display "Keygroup > Amp. Env [DAHDSR]." To choose a different modulation source for the assignment, press and hold on the name and choose a different source from the menu.

The amount that the modulation source will affect the parameter is set by the **RATIO** slider. The range is displayed as +1 to -1 for most parameters, which can also be thought of as +100% and -100%. For pitch-related parameters, the range is +48 to -48 semitones.

To further adjust the range, you can toggle **INVERT** to flip the range, or make detailed, custom shapes with the **MODULATION MAPPER EDITOR**.

Each modulation source also has a **SUB-MODULATION** source that modulates the depth of the primary modulation source signal. The sub-modulation source can be enabled/disabled, removed, replaced, and its ratio edited the same as for the primary modulation source. One example would be an LFO assigned to an oscillator's pitch for vibrato, and the mod wheel assigned as a subsource; the mod wheel would then be used to dynamically set the depth of the vibrato.
MODULATION MAPPING EDITOR

The modulation mapper editor sits between the modulation source and the parameter that it’s modulating, remapping the values of the control signal according to the mapper shape.

When no mapper is chosen, the modulation source is mapped to parameter with a basic 1:1 relationship, visualized as a linear ramp from the lowest value to the highest value.

To enable a mapper, choose an existing mapper from the MAPPER SELECTOR MENU or press the **ADD** button to create a new one. You can also **LOAD** and **SAVE** preset files from disk, as well as **RENAME** or **DELETE** them.

To set the size of the graph, set the horizontal axis with the **SIZE** value and the vertical axis with **RANGE**.

When **INTERPOLATED** is enabled, the mapper transitions smoothly from one value to the next; when disabled, it transitions immediately from one value to the next, which can create a stair-stepped effect.

Enabling **INTEGER OUTPUT** further constrains the values output by the mapper to integer values only.

Create the mapper shape by clicking and dragging in the graph; hold the Alt/Option key to draw a straight line. You can also right-click and choose from a number of preset shapes and functions.
The Modulation source editor displays the parameters of the selected modulation source or sub-source.

The specific parameters shown for each modulation source are described in detail in [Appendix A: Modules > Modulators], and general use of modulation modules is described in [Interface > Main > Modulations Tab].

The modulation source editor displayed here has a few additional controls for helping navigate between different modulation sources.

Directly above the modulation sources controls is a navigation strip displaying the available modulation sources for the selected parameter. The modulation sources are displayed in a scrollable horizontal strip, with icons separating the sections that they belong to. You can also add new modulation sources to each section, using its + button.

For modulation generators that support TEMPO SYNC there is a small metronome icon in the toolbar. To enable tempo sync simply toggle it on.
MAKING MODULATION ASSIGNMENTS
To assign a modulation source, right-click the parameter that you would like to modulate and choose from the menu.

Choose **ADD MODULATION** to create a new assignment, using either an existing modulation source or a new one.

To edit existing modulation connections, choose **EDIT MODULATIONS** to view the parameters current assignments in a pop-up directly next to the parameter.

Choose **CLEAR MODULATIONS** to remove all modulation assignments for that parameter.

Parameters can also be assigned to macros, for quick control from the Info Tab. Choose **ASSIGN TO MACRO** and assign one of the existing macros, or create a new one. To remove the assignment, choose **DELETE MACROS** assignment.

To quickly assign an MIDI CC to a parameter, choose **MIDI LEARN**. You can then choose a MIDI CC from the on-screen menu, or send the desired MIDI CC from your MIDI keyboard controller. To remove the assignment, choose **MIDI UNLEARN** from the modulation context menu.
If you are using Falcon as a plug-in and would like to control a parameter with your host application’s automation tools, choose **ASSIGN TO HOST AUTOMATION** and assign one of Falcon’s 128 host automation controllers. To remove the assignment, choose **UNASSIGN HOST AUTOMATION**.

A limited number of parameters can be automated externally, but not modulated. For those, right-clicking the parameter will open the **MIDI/AUTOMATION CONTROL** dialog, where a MIDI or host automation source can be assigned.

OSC (OPEN SOUND CONTROL)

Finally, if you would like to control a parameter externally with Open Sound Control, the parameter’s OSC path is displayed in the menu. The path can also be copied to the clipboard for easy assignment in another application.
For sample-based oscillator types, the Sample Editor displays a waveform editor and additional controls specific to audio files and loops. (See [Appendix > Oscillators > Synthesis] for details on the editor controls available for each of the synthesis-based oscillator types.)

The Sample Editor's primary display is the waveform of the loaded audio sample. If the oscillator doesn't yet have a sample loaded, you can load one by drag and drop from the sidebar file browser or the Finder (Mac) / File Explorer (Windows).

The time ruler above the waveform displays the duration of the sample. To change the time format between Samples, Beats, or Seconds, right-click the ruler.

By default the sample’s waveform is zoomed to fit the display. To zoom in horizontally, hold the Alt/Option key while scrolling with your mouse scroll wheel or trackpad scroll gesture. Holding the Shift key while scrolling zooms the waveform vertically.

The SAMPLE INFO button displays an overlay on top of the sample waveform with details about the loaded sample: the sample file location, bit depth, sample rate, number of channels, duration, and file size. If the sample is looped, details about the file’s loop are displayed as well.

The PARAMETERS button shows or hides the oscillator parameters that are unique for that oscillator type. See [Appendix > Oscillators > Sampling] for details on each sampling oscillator type.

NOTE Some of the sampling oscillators have a partial subset of the full set of sample editing options described below. The SAMPLE oscillator module has the largest variety of sample editing operations available.

When a sample is loaded, you can adjust the points where sample playback begins and ends within the file by clicking and dragging the “S” and “E” markers.
EDITING
To edit the sample file, click and drag to select a time range for editing, then right-click to display a contextual menu of editing commands.

Standard editing and selection commands are provided: CUT, COPY, PASTE, UNDO, REDO, SELECT ALL, Deselect All

Common sample editing commands are also provided: CROP, DELETE, NORMALIZE, SILENCE, REVERSE, FADE IN, FADE OUT, PLAY SELECTION

APPLYING EFFECTS
You can also permanently apply Falcon’s audio effects to a sample file. Select some audio and choose APPLY FX from the contextual menu, and choose the desired effect. Set the effect parameters, then press OK to apply. If you would like to make the effect permanent, remember to save the sample file. If not, choose Undo.

LOOPING
Sample files can be played back and looped in a number of ways.

Choose CHANGE PLAYING DIRECTION TO REVERSE to simply play the sample in reverse; choose CHANGE PLAYING DIRECTION TO FORWARD to change it back.

Choose SET AS ONE SHOT to play back a sample in its entirety each time it is triggered, regardless of the keygroup’s amplitude envelope. This is a natural fit for drum and percussion samples. Choose DISABLE ONE SHOT to return to standard playback.

To add a loop to the sample, make a selection in the sample. Then choose CREATE LOOP and pick one of the loop types:

- FORWARD LOOP: The looped section is played forward; when playback reaches the end of the loop, playback begins again from the loop start point.
- ALTERNATE LOOP: The looped section is played alternately forward (from the loop start to loop end) and reverse (from loop end to loop start).
Once a loop is created, you can adjust the points where the loop begins and ends within the file by clicking and dragging the L and R markers.

You can also choose to crossfade the looped section. This can sometimes help make a loop sound less looped. Choose **ENABLE XFADE** to enable loop crossfade, or **DISABLE XFADE** to disable it. When the loop crossfade is enabled, you can adjust the loop crossfade point with the X marker.

When a sample has a loop and a note triggering the sample is released, there are two release playback options:

- **ENABLE LOOPED RELEASE**: Sample playback will loop in the looped section until the release phase is over.
- **DISABLE LOOPED RELEASE**: Sample playback will continue past the loop end marker until the release phase is over or the sample end marker is reached, whichever comes first.

Lastly, to remove the loop, choose **DELETE LOOP**.

SAVING

The standard module preset browser controls are also displayed (see [Module Preset Browser]). The Preset File menu also displays these options specific to sampling oscillators:

- **SAVE PRESET**: Saves the oscillator parameters
- **SAVE SAMPLE**: Saves the sample/file in place
- **SAVE SAMPLE AS...**: Saves the sample to a new file
- **SAVE SAMPLE WITH PLAYBACK OPTIONS**: Saves the sample/file in place and writes the sample and loop start/end markers to the file
- **SAVE SAMPLE AS WITH PLAYBACK OPTIONS...**: Saves the current sample to a new file and writes the sample and loop start/end markers to the file

To reveal the sample file’s location, right-click the sample and choose **REVEAL IN FINDER** (Mac) / **REVEAL IN EXPLORER** (Windows) from the contextual menu.

BATCH EDITING

When multiple keygroups are selected, the Batch menu appears. From the Batch menu, you can apply an action to all of the selected keygroups at once, such as normalizing samples or applying FX.
The Effects tab displays all of the audio effects processing paths, from the effects on the master output down to effects on an individual keygroup.

Navigation
To choose which effects path you are viewing, choose a node from the navigation breadcrumbs. Press on a node’s name to show its effects. You can also press on the arrow to the right of a node to view one of its child nodes. For example, you can press the arrow to the right of Program and choose from one of its layers.

You can also select a node in the Tree view sidebar, and the Effects tab will show the selected node’s effects. For more details on the Tree view, see [Interface > Tree].

Adding Effects
To add an effect, press the + button in the upper right and choose an effect from the menu. You can also drag and drop effects from the Preset Browser on the right.

Tempo-Syncing Effects
Some effects, such as delay or tremolo, can sync their time-based parameters to Falcon’s tempo. If an effect supports tempo-syncing, a TEMPO SYNC toggle button will appear next to the Preset File menu.

Tip
Keygroup effects are per voice. The more voices you play back, the more effects processing power your computer will need. Keygroup effects are best suited for effects that you want to be processed distinctly for each voice.

The signal flow is top to bottom. To reorder effects, press and hold on an effect’s header and drag it to the new position. To replace an effect, press on the effect’s name and choose a different effect from the menu.

For details on each of the effects included in Falcon, see [Appendix A > Effects].

Each effect can be enabled or disabled with the POWER button to the left of its name, or deleted with the X button at the far right end.
SAVING FX PRESETS
Each effects module has a preset browser for saving, recalling, and browsing presets for that effect type.

To save an effect preset, press the Preset File menu, choose Save Preset, and name the preset. For more details on the preset browser, see [User Presets > Module Preset Browser].

MULTI FX
Multiple effects can also be saved and recalled as a group with a Multi FX preset. This provides a way for complex chains of effects to be recalled instantly. Multi FX presets are saved and loaded through the Multi FX preset menu. All effects for the current node can be enabled or disabled together with the POWER button to the left of its name. To clear all effects for the node, choose Clear Multi from the Multi FX preset browser.

AUX FX
There are two aux effects sections: master aux FX and program aux FX.

• The master aux FX are fed by sends on each part in the multi. These settings are saved in the multi.

To view and add aux FX in the Effects tab, choose the aux bus from the navigation menu on the Part or Layer nodes. Each aux effects section has four independent aux busses.

To adjust the aux sends to each of the aux busses, show the aux FX nodes in the Tree view. On each node where aux sends are present, you can set the send level, mute/unmute the send, and toggle the send between pre/post fader. For more details on the Tree view, see [Interface > Tree].

You can also view the master aux FX and their sends in the Mixer view. For more details on the Mixer, see [Interface > Mixer].

MODULATION AND KEYBOARD SECTIONS
The Modulation and Keyboard sections can be toggled in the Effects tab, using the buttons in the top right.
EVENTS TAB
The Events tab displays all of the MIDI event processing paths, from master event processors down to event processors on an individual layer. (Event processors are not added to keygroups, as they generally address events that span multiple keygroups.)

NAVIGATION
To choose which event processing path you are viewing, choose a node from the navigation breadcrumbs. Press on a node’s name to show its events. You can also press on the arrow to the right of a node to view one of its child nodes. For example, you can press the arrow to the right of Program and choose from one of its layers.

You can also select a node in the Tree view sidebar, and the Events tab will show the selected node’s events. For more details on the Tree view, see [Interface > Tree].

ADDING EVENTS
To add an event processor, press the + button in the upper right and choose one from the menu. You can also drag and drop them from the Preset Browser on the right.

The signal flow is top to bottom. To reorder event processors, press and hold on an event processor’s header and drag it to the new position. To replace an event processor, press on the event processor’s name and choose a different event processor from the menu. For details on each of the event processors included in Falcon, see [Appendix A > Event Processors].

Event processors can be toggled on/off with the POWER button or deleted with the X button in their toolbar.

SAVING EVENT PRESETS
Each event processor module has a preset browser for saving, recalling, and browsing presets.

To save an event processor preset, press the Preset File menu and choose Save Preset. For more details on the preset browser, see [User Presets > Module Preset Browser].

MODULATION AND KEYBOARD SECTIONS
The Modulation and Keyboard sections can be toggled in the Events tab, using the buttons in the top right.
The Modulations (Mods) tab displays all of the modulation sources, from master modulation sources down to modulation sources for a single keygroup.

Navigation
To choose which modulation sources you are viewing, choose a node from the navigation breadcrumbs. Press on a node’s name to show its modulation sources. You can also press on the arrow to the right of a node to view one of its child nodes.

You can also select a node in the Tree view sidebar, and the Modulations tab will show the selected node’s modulation sources. For more details on the Tree view, see [Interface > Tree](#).

Adding Modulation Sources
To add a modulation source, press the + button in the upper right and choose a modulation sources from the menu. You can also drag and drop modulation sources from the Preset Browser on the right.

Tip
Keygroup modulations are per voice. The more voices you play back, the more processing power your computer will need. Keygroup modulations are best suited for parameters that you want to be modulated distinctly for each voice.

Note
Unlike Effects and Events, the list of modulation sources doesn’t have a top-to-bottom signal flow. Until a modulation source is assigned to modulate other controls, it won’t have an effect on the signal flow. See [Interface > Main > Modulation Editor](#) for more details.

To replace a modulation, press on the modulation’s name and choose a different modulation from the menu.

For details on each of the modulation sources included in Falcon, see [Appendix A > Modulators](#).

Each modulation source can be enabled or disabled with the POWER button to the left of its name, or deleted with the X button at the far right end.
SAVING MODULATION PRESETS
Each modulation module has a preset browser for saving, recalling, and browsing presets for that specific modulation type.

To save a modulation preset, press the Preset File button, choose Save Preset, and name the preset. For more details on the preset browser, see [User Presets > Module Preset Browser].

RENAMING A MODULATION SOURCE
To rename a modulation source, double-click its name. Using a descriptive name can help differentiate between modulation sources of the same type ("Amp. Env." and "Filter Env." for example).

ASSIGNING A MODULATION SOURCE
To assign a modulation source, right-click a control and choose from the Add Modulation menu. Existing modulation sources are listed first, or you can choose to create a new modulation source on the spot.

For more information on modulation assignments, see [Interface > Main > Modulation Editor].

MODULATION AND KEYBOARD SECTIONS
The Modulation and Keyboard sections can be shown or hidden in the Modulations tab, using the buttons in the top right.
INFO TAB
The Info tab provides an overview of the selected program, houses macro controls, and provides a location for custom text and images via the (I) view.

MACROS
If macros have been assigned in the program they will appear here. Macros are useful for placing important controls on the “front panel” of a program.

To change the layout of the macro controls, press the EDIT button in the upper left to switch to Edit Mode. You can press and drag a control to move it, double-click a label to rename it, or right-click and use one of the edit commands from the contextual menu. For more details on macros, see [Appendix A > Modulations > Macros].

PROGRAM INFORMATION
Press the (I) button in the upper right to display program information. Many factory presets will contain details about the program such as modwheel assignments, macro descriptions or tips for playing it. You can add and save descriptions for your own programs as well. Programs in UVI soundbanks also display an image for the program. If multiple images are present, “<” and “>” arrows will be displayed and pressing them will cycle through the images.

KEYBOARD
At the bottom of the Info tab, a keyboard is displayed and can be clicked to play the program. The key range of the program is highlighted, with keys outside the key range darkened. If keyswitch layer rules have been created, those keys are highlighted blue. Additionally, key color can be customized using the Script Processor. For more details on keyswitches, see [Interface > Main > Mapping Editor > Layer Rules].
The Parts List displays a list view for managing and editing all of the parts in Falcon, and for selecting a part to be displayed and edited in the center pane.

The Parts List is displayed in the left sidebar, which can be hidden or shown with its button in the Toolbar.

To resize the Parts List width, click and drag on its right edge. As the Parts List widens, the controls rearrange to allow for greater numbers of parts to be viewed at once.

MANAGING PARTS

When a part is selected in the Parts List, it will be displayed in the Main view’s center pane for editing. Press anywhere on the part to select it.

The Parts List menu at the top left of the Parts List has additional options for the selected part:
- Empty selected part
- Load program in selected part
- New program in selected part

To add or remove parts, use the + and - buttons next to the Parts List menu. To reorder parts, press and hold anywhere on the part and drag it to the new position.

MULTI CONTROLS

This section displays global controls for the Falcon multi. The name of the currently loaded multi is displayed. To load a different multi, double-click the name to open the file browser, or use the next and previous buttons to browse multis in the same directory.

The **GLOBAL VOLUME** and **GLOBAL TUNE** are also displayed; see [Toolbar > Global Volume] and [Toolbar > Global Tune] for details. **OUTPUT METERS** display the audio levels for the Main Out output.
The Parts List displays controls for each of Falcon’s parts. Each of these settings are independent from the settings saved in the program loaded in the part. These part settings are saved and recalled with the multi (or your host session if you’re using Falcon as a plug-in).

The program name of the currently loaded program is displayed. If there are unsaved changes, an asterisk will appear next to the name, for example, “Love 1”.

To load a different program, double-click the name to open the [File Browser], or Shift-double-click to open the right-hand sidebar [Preset Browser]. In either case, the browser will be opened to the location of the currently loaded program.

You can also use the next and previous buttons to browse files in the same directory, or right-click and choose an option from the contextual menu:
- Empty part
- Delete part
- Load program
- Reload program
- New program

The MIDI INPUT and AUDIO OUTPUT assignments are displayed for each part. By default, each new part is assigned to the Main Out, and its MIDI input is incremented (A1, A2, A3, ...). To change the assignment, press and hold and choose from the menu. If the MIDI assignment is set to Omni, it will listen for MIDI input on all ports and all channels, and display an asterisk.

OUTPUT METERS display audio levels for the part’s output. Also, whenever a part receives MIDI on its assigned input channel, the MIDI input indicator flashes.

VOL and PAN controls set the output level and stereo placement for the part. Each part also has MUTE and SOLO buttons to mute or solo the part’s output. Alt/Option-click a mute or solo button to mute or solo only that channel; Command-click (Mac) or Control-click (Windows) to mute or solo all channels except the one you clicked.

The OCTAVE and SEMI controls transpose the part’s incoming MIDI, in octaves and semitones.

If a loop is loaded in the part, two additional controls are displayed:
- AUTO PLAY: When enabled, the loop will be triggered when Falcon’s playback begins.
- PLAY: Highlights when the loop is playing, and can also be used to manually start/stop loop playback.

The part’s color is displayed on the right side. To change its color, click on the color bar and choose a color from the color picker.
The Tree view displays a hierarchical view of a single part, with each branch on the tree displayed as a “node”.

The Tree view contains two major sections: **INSTRUMENT**, which displays the structure of the nodes, and **INSPECTOR**, which displays details about the selected node. The Tree view is displayed in the left sidebar, which can be hidden or shown with its button in the Toolbar.

The Inspector and Instrument sections can be collapsed or expanded with the arrow to the left of the section name. Additionally, the height of the Inspector section can be adjusted by dragging its top edge.

INSTRUMENT

The Instrument section displays the nodes for a single part, as well as a few global nodes. To choose which part is displayed, choose the desired part from the **PART SELECTOR MENU** in the upper right.

To choose which nodes are shown or hidden in the Inspector, use the buttons in the upper right to toggle these node types: Effects, Event Processors, Modulation Sources, Aux FX busses and sends.

Some node types are always displayed and cannot be hidden: Master, Host Automation, Part, Program, Layer, Keygroup, Oscillator.

NAVIGATING WITH TREE VIEW

To navigate the nodes, press a node to select it and view its details in the Inspector. Press the arrow to the left of a node name to expand or collapse it. Holding the Alt/Option key while expanding a node will expand all of its children nodes as well.
The selected node in the Tree view also updates navigation in Falcon’s other views, such as the Edit view, Effects Tab, and so on. Using the Tree view to navigate layers, keygroups, effects, and modulation assignments can be very helpful in a large, complex program.

Double-clicking a node will jump to that node’s primary edit view. For example, double-clicking an effect will reveal it in the Effects Tab, and double-clicking a modulation source will reveal it in the Mods Tab.

NODE OPTIONS
To see a menu of options available for a particular node, select it and choose the menu icon in the upper left, or right-click the node.

INSPECTOR
The Inspector displays details about the node that is selected above in the Instrument section.

For properties that can be edited, double-click the value to type in a new value, or click-drag the value up/down.

TIP: Most properties are also displayed in other views such as the Edit view or Mixer, but there are some “under-the-hood” properties displayed only in the Inspector.
The List view displays a detailed rundown of the settings for a single part and its currently-loaded program. It contains four sections: Part, Program, Layers, and Keygroups.

The List view is displayed in the left sidebar, which can be hidden or shown with its button in the Toolbar. To resize the List view width, click/drag on its right edge.

Each section can be collapsed or expanded with the arrow to the left of the section name.

PART

The Part section displays the part settings for the selected part.

To choose which part is displayed, choose a part from the **PART SELECTOR MENU** in the upper right.

The Part settings displayed in List view are the same as those displayed in [Interface > Parts].

PROGRAM

The Program section displays the settings for the program loaded in the chosen part. The Program settings displayed in List view are the same as those displayed in the Program section in the Edit view.

On the right side of the Program section is the **PROGRAM MENU**, which contains options for creating, loading, saving, and protecting a program. For details on each of these options, see [User Presets].

Additionally, there are **PREVIOUS PROGRAM** and **NEXT PROGRAM** buttons for browsing program files.
The Layers section displays a list of all layers in the program. The selected layer in the List view also updates which layers are displayed in the Edit view. Using the Layers List to view one layer at a time can be very helpful in a large, complex program.

To select a layer, press on its name or ID; hold the Command key (Mac) or Control key (Windows) to select multiple layers at once. To deselect all layers, press in the space beneath the last layer in the list. (When there is no specific layer selected, the Edit view displays a composite of all layers, and edits to Layer settings apply to all layers.)

The Layer settings displayed in List view are the same as those displayed in the Program section in the Edit view (see [Interface > Main > Edit > Program]) or the Tree view inspector (see [Interface > Main > Tree]).

To choose which settings are displayed in the Layers list, right-click a column header and enable or disable the desired columns.

On the right side of the Layers section is the LAYER MENU, which contains options for editing layer rules, and copying, pasting, and duplicating the selected layers. For details on these options, see [Interface > Main > Mapping Editor].

Additionally, there is an ADD LAYER button for quickly adding a new layer, and a REMOVE LAYER button for removing the selected layers.
The Keygroups section displays a list of all keygroups in the selected layers. The selected keygroup in the List view also updates which keygroup is selected in the Edit view. Using the Keygroups List view to select specific keygroups can be very helpful in a large, complex program.

To select a keygroup, press on its name; hold the Command key (Mac) or Control key (Windows) to select multiple keygroups at once. To deselect all keygroups, press in the space beneath the last keygroup in the list. (When there is no specific keygroup selected, the Edit view displays a composite of all keygroups, and edits to Keygroup settings apply to all keygroups.) The Keygroup settings displayed in Keygroup view are the same as those displayed in other Keygroup and Mapping Editor sections.

To choose which settings are displayed in the Keygroups list, right-click a column header and enable or disable the desired columns. Pressing a column name will sort the list by the chosen column; press it again to reverse the sort order.

On the right side of the Keygroups section is the KEYGROUP MENU, which contains options for copying, pasting, and duplicating the selected layers. For details on these options, see [Interface > Main > Mapping Editor].

Additionally, there is an ADD KEYGROUP button for quickly adding a new keygroup, and a REMOVE KEYGROUP button for removing the selected keygroups.

Click/drag the right edge of the column to expand its width to accommodate large parameter sets.
FILE BROWSER

The File Browser is a view for browsing, searching, auditioning, and loading files in Falcon.

There are three types of file browsers:

- **PROGRAM FILE BROWSER**, for loading programs, loops, and samples
- **MULTI FILE BROWSER**, for loading multi files
- **SIDEBAR FILE BROWSER**, for quick drag & drop loading of any file type

PROGRAM FILE BROWSER

To open the program file browser, double-click a program name or an empty part in the Parts List, Mixer, or Performance view, or choose Load Program from the Toolbar menu.

The program file browser has four sections in its left sidebar:

- **SEARCH**
- **DEVICES**
- **PLACES**
- **SOUNDBANKS**

Each available disk or volume is listed in the **DEVICES** section, including network volumes.

The **PLACES** section is a list of favorite folders saved for easy recall. To add a location to Places, drag a folder in the browser over to the Places section in the browser sidebar. To remove a folder from Places, right-click the folder name and choose Remove from Favorite Places.

Each mounted soundbank file is displayed in the **SOUNDBANKS** section. This includes soundbanks that you mount on-demand, and those auto-mounted on startup. For details on auto-mounting soundbanks, see [Preferences > Soundbanks].
Some UVI soundbanks also have an additional **VERIFY SOUND BANK INTEGRITY** option, available by right-clicking the name of the mounted soundbank. This verifies that the soundbank file was not corrupted when it was downloaded or moved between disks.

The **SEARCH** section is an alternative to choosing a specific location and browsing its contents; instead, a search term is entered and matching results are displayed across all searchable locations. For more details on Search, see below.

BROWSING AND LOADING

Choose a location from one of the sections in the sidebar to display its contents. Its files and subfolders are displayed in columns extending to the right.

To load the selected program or audio file, double-click the file name or press the **OK** button. You can also drag and drop a file from the browser to the Parts List, by dragging onto an existing part or by dragging beneath the last part in the list to load it as a new part. To close the browser without loading a file, press the **CLOSE** button or press the Escape key. To unload the program or sample file currently loaded in the selected part, press the **EMPTY** button.

To reveal the location of a file or folder in the browser, right-click its name and choose **REVEAL IN FINDER** (Mac) or **REVEAL IN EXPLORER** (Windows). To delete a file, right-click its name and choose **DELETE FILE**.

BROWSER OPTIONS

The program file browser has a number of options, displayed as toggle buttons along the bottom:

- **AUTO LOAD** will automatically load the audio file selected in the browser into the currently selected part.
- **AUTO PLAY** will automatically play the selected audio file to audition the file without loading it.
If an audio file's tempo doesn't match Falcon's current tempo, enabling ORIGINAL TEMPO will cause the file to be auditioned at its original tempo. When disabled, the audio file auditions at Falcon's current tempo.

The DISPLAY INFO button toggles the information panel displayed in the lower half of the browser. When enabled, it displays information about the selected file.

To load multiple programs into a single part (for example, for multiple articulations of a single instrument, to be switched with layer rules), enable LOAD AS LAYERS. This will load additional programs within the current file as new layers (leaving the current program effects, modulations, etc. untouched). When disabled, each loaded program fully replaces the currently loaded program.

To automatically close the file browser when the OK button is pressed or a file is double-clicked, enable AUTO CLOSE; otherwise, the browser remains open until you press the CLOSE button or press the Escape key.

SEARCH
Rather than navigating to a specific folder and file, you can use search to find files that match your criteria. To set which locations are searched, add the folder in the Soundbank preferences. For more details, see Preferences > Soundbanks.

To search, begin typing in the search field and results will appear as you type. Search results are one of four types of files:
- INSTRUMENTS: program files
- LOOPS: looped audio samples
- SOUNDS: non-looped audio samples
- FAVORITES: favorite tagged patches

To search across all types at once, highlight SEARCH in the sidebar. To show results for one specific file type, highlight the type name instead. You can also enter a search term, then switch between types to view the different results. The search results display information about each file, such as its name and file type. To choose which columns are displayed for the list of search results, right-click a column header and enable or disable the desired columns. Pressing a column name will sort the list by the chosen column; press it again to reverse the sort order.
To clear the search results, highlight the current search term and delete it, or close the browser.

MULTI FILE BROWSER

To open the multi file browser, double-click the multi name in the Parts List or Toolbar, or choose Load Multi from the Toolbar menu.

The multi file browser is similar to the program file browser, but loads only multi files. When a multi is loaded, it clears the current multi and replaces all multi settings with the new one. If **APPEND MULTI** is enabled, additional multis are loaded within the current multi as new parts (leaving the current master effects, modulations, etc. untouched).

SIDEBAR FILE BROWSER

The sidebar file browser is displayed in the right sidebar in Main, Mixer, or Performance views, and can be hidden or shown with its button in the Toolbar. To resize the sidebar width, click and drag on its left edge.

The sidebar browser is similar to the full-size browser, but all navigation happens in a single column. Folders can be expanded or collapsed with the arrow to the left of the folder name. You can also double-click a folder name to drill down one level; to navigate back up to the containing folder, double-click ".. (Parent Folder)".

Pressing on the sidebar menu button opens a navigation menu. The menu displays links to each of your Soundbanks, Places, and Devices, as well as the path from the current folder back up to where you started.

To go back to the top level, choose "/".
FILE BROWSER

SOUNDBANKS
Each mounted soundbank file is displayed in the SOUNDBANKS section. Press on a soundbank name to expand it and display the soundbank’s contents; press again to collapse the soundbank’s contents.

AUDITIONING AND LOADING FILES
The sidebar browser also has some options for quickly auditioning samples and adding them to a program.

AUTO PLAY
will automatically play audio files

The PLAY / STOP button next to it lets you manually start and stop sample playback.

The VOLUME slider sets the playback level.

When AUTO LOAD is enabled, the sample is automatically loaded in the selected keygroup. This is especially useful when you have already mapped the key range and velocity range of a keygroup, but would like to replace the sample file.
FAVORITES TAGGING

Falcon supports ‘Favorite’ tagging of both presets and sounds within UVI Soundbanks (viewable in the Search tab’s ‘fav’ column), and of frequently used directories in your file system (viewable in the Browser/Places list).

UVI PRESETS AND SOUNDS

If you would like to mark a preset or sound in a UVI Soundbank as a Favorite, simply right-click it in one of Falcon’s browsers and select “Add to favorites”. Once done, the preset will display a “★” icon adjacent to its name showing that it has been tagged. To untag it, right-click and select “Remove from favorites”. To view your favorites list click the Search tab in the Falcon’s right-panel and click the ‘fav’ column label to sort by favorites.

USER PRESETS AND SOUNDS

Any preset or sound can be tagged so long as its location has been indexed by Falcon. See [Preferences > Soundbanks] for more information on adding indexed directories to Falcon.

FAVORITE PLACES

If you have directories that you frequently use for saving your own custom patches or accessing user samples they can added to the ‘Places’ list for quick access. To create a Favorite Place, navigate to the desired folder in any of Falcon’s browsers, right-click it and select “Add to Favorite Places”. The directory will now be visible in the ‘Places’ list within any of Falcon’s browsers. To untag a directory, right-click it and select “Remove from Favorite Places.”
Preset Browsers

The Preset Browsers are views for browsing and loading preset files for specific module types, such as effects or event processors.

The Preset Browser is displayed in the right sidebar, which can be hidden or shown with its button in the Toolbar. To resize the Preset Browser width, click and drag on its left edge.

There are six Preset Browsers and a Search window, each displayed as a tab in the sidebar. From left-to-right the tabs represent:

- FILES
- SEARCH
- OSCILLATORS
- EFFECTS
- MULTI FX
- EVENT PROCESSORS
- MODULATION SOURCES

For details on the File Browser, see [Interface > File Browser]; for the rest, see below.

Browsing Presets

Each tab displays all of the factory and user presets for the chosen type. Presets are organized into folders, and can be nested as many levels as needed.

Loading a Preset

To load a preset from the Preset Browser, drag and drop the preset to the desired location. For example, you can drag an oscillator preset to the Mapping Editor, an effects preset to a channel strip in the Mixer, or a modulation source preset onto any control that can be modulated. When a target can accept the preset you are dragging, the target highlights.
The Mixer view is similar to a traditional audio mixing console, with gain, pan, output assignments, and effects assignment and editing. The top half of the Mixer view displays the interface of the currently selected effect; the bottom half shows channel strips for each of the part, aux, and master outputs.

MIXER OPTIONS

To add or remove parts, use the + and - buttons on the right side of the Mixer. To reorder parts, press and hold on the part name and drag it to the new position.

To show/hide sections of the Mixer, use the toggle buttons on the right side. Each section can be independently shown or hidden:
- **PARTS**
- **AUXES**
- **MASTER**
- **FX**
- **AUX SENDS**
PART SETTINGS
The Part settings displayed in the Mixer are the same as in the Parts List, but displayed here in a familiar audio mixer style. For more information on part settings, see [Interface > Main > Parts].

Double-clicking a part name opens the file browser. You can also right-click on a part name for additional options from the contextual menu:
- EMPTY PART
- LOAD PROGRAM

EFFECTS
The Mixer is an intuitive view for managing audio effects. To add an effect, press on the + button on any channel strip and choose an effect from the menu. You can also drag and drop effects presets from the Preset Browser onto the + button.

After the effect is added, it will be selected and its controls will be displayed in the effects editor above. The effects module displayed here is the same as is shown in the Effects Tab view.

To replace an existing effect with a different one, press and hold on the effect's name and choose a replacement from the menu. You can also drag and drop an effects preset onto it from the Preset Browser.

Effects can be bypassed temporarily by pressing the bypass button next to its name. Alternatively, you can bypass by Shift-clicking the effect's name, or with the effect's “power” button when the effect is selected and displayed in the effects editor.

To remove an effect, press and hold on the effects name and choose “Empty” from the menu. You can also use the effect's “X” button to remove it when the effect is selected and displayed in the effects editor.

AUXES
The Mixer also displays the four master aux effect busses. Each part's channel strip has sends for the aux busses. Each send has an enable/bypass switch on the left, and a pre/post-fader switch on the right. The default is post-fader; toggle to switch to pre-fader.

The aux channel strips are similar to the part channel strips, just without the part-specific settings. Note that the output of the aux busses are always routed to the Main Out.

MASTER
Lastly, the Mixer displays the Master channel strip. Effects can be added to the Master output just as with parts and auxes, and the master fader adjusts the Global Volume.
PART SETTINGS
Each part displays the same controls as in the Parts Editor (see [Interface > Main > Parts]). However, if the Parts column is resized to be relatively narrow, some controls will be hidden automatically.

PART KEY AND VELOCITY RANGE
The Keyboard Range and Velocity Range restrict the key and velocity range for the part. These are independent from the key and velocity range mapping of the program's layers and keygroups. Drag to adjust the ends of the range, or click and drag anywhere on the current range to move it. Holding the Option/Alt key while dragging to apply a fade.

NOTE: Changing a part's key or velocity range in Performance view won't extend a part's key or velocity range beyond what the program provides. These key and velocity range settings help stack or split parts by taking their existing ranges and constraining them. For example, a mono bass synth could be mapped to the left hand key range and a synth lead to the right hand key range. For more information on setting key and velocity ranges within a program, see [Mapping Editor].

KEYSWITCH
The Keyswitch sets a keyswitch note for the part. When the chosen note is played, the part will be toggled on. This is useful when toggling between multiple articulations or styles of the same instrument, such as staccato and legato strings. Press the checkbox to enable a keyswitch, then double-click the note name to edit the value and assign a note.

NOTE: Keyswitches assigned to parts in Performance view are independent from keyswitches saved in the program. For more information on keyswitches within a program, see [Mapping Editor > Layer Rules].
GENERAL CONVENTIONS

Throughout Falcon, some common conventions are used for adjusting and interacting with controls.

HOVER
Hovering the cursor over a control will display the control's current value in a pop-up help tag (sometimes also called a "tool tip").

CLICK AND DRAG
Click and drag a control to adjust its value. Hold the Command key (Mac) or Control key (Windows) while dragging a control for finer adjustment. You can also hover over a control and scroll with your mouse scroll wheel or trackpad's scroll gesture.

DOUBLE-CLICK
Double-click a control to enter a numeric value. To confirm a new value, press the Return key or click outside the text field. To dismiss without changing the value, press the Escape key.

RIGHT-CCLICK
Right-click (or Control-click on Mac) to display a contextual menu if one is available. Contextual menus are used for many useful shortcuts, such as assigning modulation sources to a control. The menu items available in the contextual menu vary based on the item that you have right-clicked.

ALT/OPTION-CLICK
Alt/Option-click a control to return it to its default value.

ARROW KEYS
The arrow keys can be used to change the selected item in most lists, menus, and file browsers.
After creating or editing sounds in Falcon, you can save the results as presets for individual modules, programs for a single instrument, and multis for all parts and programs in the entire Falcon instance.

MODULES
Each type of module — Oscillator, Modulation, Effects, and Event Processor — supports saving and loading presets. Numerous factory presets are included for each module, and you can save user presets as well. Module presets allow for easy recall and reuse of specific module settings in different programs.

MODULE PRESET BROWSER
Each module displays a preset browser in the upper right:

The **PRESET MENU** displays the name of the current preset. Pressing the name displays a dropdown menu of factory and user presets for the module.

The **NEXT PRESET** and **PREVIOUS PRESET** buttons load the next or previous preset for the module.

To save a user preset, press the **PRESET FILE MENU** and choose **SAVE PRESET** from the menu. User presets can be organized into subfolders, as many levels deep as you need. **TIP**: The Preset File menu additional options for sample-based oscillators. For more information, see [Interface > Main > Sample Editor].

To load a user preset from any location on disk, press the Preset File menu and choose **LOAD PRESET** from the menu.

SIDEBAR PRESET BROWSER
The Preset Browser is displayed in the right sidebar.

The Preset Browser displays all module presets in one place for easy browsing. For more information, see [Interface > Main > Preset Browsers].

PROGRAMS
A program file saves the state of everything within the program, including all of its layers and keygroups. If it’s displayed in the Info Tab or the Edit Tab, it’s saved with the program.

NOTE: A program does not save any part-specific settings, such as part gain/pan, part effects, and so on. To save part settings, use a multi (see below).

Many views throughout Falcon have options available for managing program files, such as in the Toolbar’s main menu and the Parts List contextual menu. Each command is explained below.

CREATING
• **NEW PROGRAM**. Creates a new, empty program.

LOADING
• **LOAD PROGRAM**. Opens the Program File Browser.
• **RELOAD PROGRAM**. Reloads the most recently saved version of the program; this discards any unsaved changes to the program.
• **RECENT PROGRAMS**. Lists up to ten recently loaded programs for quick access.
SAVING
- **SAVE PROGRAM**: Saves the program file only
- **SAVE PROGRAM AS...**: Saves the program file only, under a new name
- **SAVE PROGRAM AND SAMPLES**: Saves the program file and all sample files
- **SAVE PROGRAM AND SAMPLES AS...**: Saves the program file under a new name, and all of the program’s samples into a subfolder with the program name
- **SAVE PROGRAM SAMPLES**: Saves all samples only; does not save the program file

PROTECTING
- **PROTECT PROGRAM**: Adds a password to the program. This is useful for complex, scripted programs where the topology needs to remain unchanged. Once protected, only the Info tab is available for the program; the Edit view is disabled. In the Tree and List views, the program node displays only limited settings; the layer, keygroup, and oscillator nodes are not displayed.
- **UNPROTECT PROGRAM**: If the program is protected, you must enter the program password to edit the program.

MULTIS
A multi file saves the state of the entire Falcon instance — all parts, programs, effects, and master settings.

LOADING
- **LOAD MULTI**: Opens the Multi File Browser
- **RECENT MULTIS**: Lists up to ten recently loaded multis for quick access.

SAVING
- **SAVE MULTI**: Saves over the current multi
- **SAVE MULTI AS...**: Create a new file for the current multi
- **SAVE MULTI AND SAMPLES AS...**: Saves the multi file under a new name, and all samples into a subfolder with the program name
- **SAVE AS DEFAULT MULTI**: Saves the current multi to be the default multi. The default multi is loaded whenever the Falcon plug-in or standalone application is first launched. This provides a useful method for loading a custom set of sounds, effects, event processors, and so on every time you use Falcon.

CLEARING
- **CLEAR MULTI**: Clears the multi (empties all parts).
When you drag and drop samples into a program, by default the sample will play back for as long as the note is held. Enable the One Shot option for SAMPLE DRAG’N’DROP MODE to instead import all samples as one shot by default. To change an individual sample to One Shot, see [Interface > Main > Sample Editor].

Each part displays a color in multiple places throughout Falcon. Choosing Chromatic for PART COLOURING SCHEME will assign each new part a random color, choosing Grey will assign all parts the same shade of grey.

Falcon’s UI can be rendered with OpenGL, which can help with overall performance by offloading some of the processing needed to draw the UI from the CPU to the GPU. To enable OpenGL rendering, enable the USE OPENGL RENDERER checkbox. For best results when using OpenGL rendering on Windows, make sure to update to the latest drivers for your graphics card. UI SCALING can be used to zoom the interface in intervals between 75 and 150%.

Rather than loading an entire sample into memory, samples may be read (streamed) from disk as they are played. This can improve overall performance by balancing resources between your computer’s RAM and its disk drives. That said, streaming performance is directly affected by the speed of the disk, so the faster the disk, the better.

The default settings are optimized for most use cases. To adjust the settings for your computer, choose the appropriate Hard drive type and Cache size. To confirm your changes, press the Apply button. To revert to the default settings, press the Default button.

For details on enabling or disable streaming for individual parts, see [Interface > Main > Edit > Program].
Each **SEARCH PATH** is a location on your computer that will be scanned for sound libraries. To add or change a search path, press the "..." button and browse for the desired folder. You can also select a path and type to add a new path or edit an existing one. To delete a path, select the path name, press the Delete key, then press the Return key.

Each search path has the following options:

- **INDEXED**: Any supported files found in the search path will be indexed for searching in the File Browser. For details on searching, see [Interface > Main > File Browser].
- **RECURSIVE**: The search path directory itself and any subfolders within it will be searched. (When disabled, only the search path directory itself will be searched.) Note: this can significantly increase Falcon’s startup time.
- **AUTO-MOUNT**: Any UFS soundbanks in the search path will be auto-mounted in the File Browser.

OSC

Open Sound Control (OSC) is a protocol used to communicate between different computers and other audio devices, optimized for use with networked devices. Falcon can be controlled remotely by any app or device that supports OSC.

Enabling the Open Sound Control Server will begin broadcasting Falcon as an OSC destination. **DESIRED NAME** and **DESIRED UDP PORT** set the preferred name and port for the current Falcon instance. Once the OSC server is running, **ZEROCONF NAME** and **UDP PORT** show the actual name and port assigned to the current Falcon instance.

For more details on using OSC in Falcon, see [Interface > Main > Modulation Editor > Automation assignments]. For general information on OSC, see: http://opensoundcontrol.org
The following section will illustrate the basics of using Falcon, from loading and saving patches to creating a number of common sounds and instrument setups from scratch. It's a perfect place to start if you're new to Falcon and need some quick tips to get going.

Falcon’s synthesis engine offers a wide range of tools for playing, editing, and creating instruments and samples. You can freely mix sounds created with pure synthesis and sample playback even in the same program. Each of Falcon's oscillator types has a different speciality; only a few of the possibilities are explored here.

Before continuing, check that you have your audio and MIDI devices connected and working properly. Additionally, some of the following examples use programs and samples from UVI soundbanks. It's recommended to have the “Falcon Factory.ufs” Soundbank available to follow along with most of the examples.

The Falcon factory soundbank is available through UVI Portal and the My Products page on UVI.net
LOADING AND TWEAKING A PRESET

Let’s start by loading a sound from the Falcon Factory. Double-click the part name (“Empty”) in the Parts List to open the File Browser.

The Falcon Factory will appear in the Soundbanks section of the File Browser. Select the FALCON FACTORY soundbank, then RHYTHMIC > OCTAVOTO PLUCK.

Press OK or double-click the program name to load it, so the Main view now displays the parameters of the loaded program. The Info tab shows the “front panel” of the program with macro controls for commonly-used settings, and the Edit tab shows all of the program’s parameters.

Let’s go to the INFO tab first. Here we can see the instrument’s macro controls and an on-screen keyboard. Press the keys on the keyboard to trigger a note, or play a note from your MIDI controller. You should hear the instrument now; if not, check your Audio and MIDI settings.

To see a description of the instrument, press the Info “i” button in the upper right.

Let’s make some changes to the program, by adjusting the CUTOFF and RESONANCE macro controls. Click a knob and drag to adjust it. You can also hover over a control and scroll your mouse scroll wheel, or scroll with your trackpad.

That’s a start, but to dig in a little deeper, let’s switch to the EDIT tab. Here we can see the settings for the major components of the instrument: program, layer, keygroup, and oscillator. Additionally, the Sample Editor, Mapping Editor, and Modulation Editor provides editing of sample files, the mapping of the layers and keygroups, and modulation assignments.

Let’s make some edits to the instrument. To change the program’s output level and panning, go to the PROGRAM section and adjust the GAIN and PAN settings.

Let’s also change the instrument from polyphonic to monophonic. Go to the LAYER section and change Play Mode mode to MONO PORTAMENTO, and adjust GLIDE TIME to change the amount of “slide” between notes.
SAVING A PROGRAM

Now that we've made some changes to the program, let's save our edited version. The main menu in the toolbar is a central location for many of Falcon's save/load options. From the MAIN MENU, choose SAVE PROGRAM AS.

Choose the location where you'd like to save the file, enter a file name, then Save — your edited program is now saved with a new file name. The original program file is unchanged, and your edits are saved under the new program.

If you make some more edits to this program, you can save the same file again with Save Program. That will save the same file in place, and won’t prompt again for a file name.

If you'd rather discard changes you've made since the last time you saved the file, you can instead choose to reload the program file. Right-click the part in the PARTS LIST and choose RELOAD PROGRAM from the context menu to undo all of those changes.
LEARNING FALCON 103: SAVING A MULTI

Now that we have one instrument loaded and edited to our liking, let's load some additional sounds. In the **PARTS LIST**, use the **+ BUTTON** to add a few more parts.

Let's load a few more sounds from the Falcon Factory soundbank, such as the **PADS > STRING ANALOG** instrument and **RHYTHMIC > DR DUBSTEP 140BPM**, or choose a slice drum loop file from other UVI soundbanks or from your own library and start building a multi-timbral multi.

To stack parts 1 and 2, change the **MIDI INPUT CHANNEL** on parts 1 and 2 to A1. Play a few notes from your MIDI controller — you should now hear both parts trigger at the same time.

Now let's adjust the parts relative to each other: reduce the **VOLUME** on part 2 to -12 dB, and transpose part 2 by setting **OCTAVE (Oct)** to -1.

On part 3, just press any note to play the rhythm. If you load your own drum loop, press **PLAY** on Falcon's toolbar and you will hear the drum loop auto-play, synced to Falcon's tempo. Edit Falcon's tempo, and the rhythm automatically stays in sync.

Now with our multi taking shape, let's save it. From the **MAIN MENU** in the toolbar, choose **SAVE MULTI AS**.

All of the details about this instance of Falcon are saved in the multi, and can be recalled with this single file.
MAKE A SIMPLE SYNTH
Now that we’ve looked at editing existing sounds, let’s start creating some new ones from scratch.

In an empty part, go to the Main > Edit view. In the MAPPING EDITOR, right-click and choose CREATE KEYGROUP > SYNTH TEMPLATE.

A new keygroup has been created, mapped to the full key and velocity range.

Play a few notes, and you’ll hear a simple sine wave oscillator. Let’s change that to a sawtooth wave, by clicking the WAVEFORM and choosing SAWTOOTH from the menu.

We can continue building our sound by editing the other synth engine parameters, such as enabling Stereo mode and adding additional voices.

To stack multiple synth sounds, we can add a second synth keygroup. Let’s choose CREATE KEYGROUP > SYNTH TEMPLATE a second time, and another keygroup will be stacked on top of the first. For this keygroup, let’s choose one of the oscillator’s factory presets, such as “ACCORDION.”

Perhaps instead of stacking these sounds, this could be a split program instead, with one sound for the left hand and another for the right hand. To do that, we’ll need to adjust the key ranges of the keygroups so they don’t overlap. Right-click in the Mapping Editor and choose SELECT ALL, then choose RESOLVE OVERLAPPING KEY RANGE.

The keygroups can now be easily edited separately. For example, the key and velocity ranges could be further adjusted by dragging the edge of the keygroup.
LEARNING FALCON 105: MAKE AN ARPEGGIATED SYNTH

Falcon has numerous synthesis options in addition to the classic virtual analog oscillator we’ve already seen. Let’s explore the FM (frequency modulation) synth oscillator, using one of the factory presets as a starting point.

1. Open the right-hand sidebar and choose the OSCILLATORS TAB. Expand the Synthesis folder, and drag the FM oscillator to the MAPPING EDITOR.

2. While playing a few notes, press the next or previous buttons in the oscillator module to browse the presets. Let’s choose the EP HOLLOW preset and build from there.

The FM oscillator has four operators (A, B, C, and D), and each operator’s frequency is a ratio to the base note. For example, a ratio of 2.0 means the frequency is doubled, or one octave up from the base note. Whole integers and simple ratios (3/2, 4/3, etc.) create some of the more obvious harmonic relationships, but the ratios are fully adjustable and small changes can create interesting and unexpected results. Let’s set OPERATOR C TO 2.17 and OPERATOR D TO 1.17 and hear the difference.

3. The operators can also be arranged in a variety of topologies. Using the same ratios, different topologies can change the sound drastically. To change the topology, press on the topology diagram in the lower right and choose a topology from the menu. For example, change the TOPOLOGY from #8 to #7.

4. Now that we’ve customized the sound source, let’s make it more dynamic by adding an arpeggiator.
LEARNING FALCON 105: MAKE AN ARPEGGIATED SYNTH (PART 2)

Switch to the EVENTS tab, press the + button, and choose Arpeggiator.

To load one of the factory presets, press on the PRESET MENU and choose one from the menu. Let’s choose one of the sequenced pitch presets, such as ARPEGGIATOR > LINE > HIGH MUSE.

Press and hold a few keys to hear the arpeggiated sequence. There are actually three layers to the arpeggiator: note velocity, pitch, and MIDI CC. To view the different layers, RIGHT-CLICK THE STEP GRID and choose the layer from the menu.

There are actually three layers to the arpeggiator: note velocity, pitch, and MIDI CC. Let’s use the MIDI CC layer to generate a control source for modulating the FM operators. Switch to the MIDI CC layer, then press and drag across the step grid to enter step values.

Then choose a MIDI CC for the arpeggiator to output; a general purpose MIDI CC such as 16 is a good choice.

Switch back to the EDIT view, right-click the FEEDBACK knob, and choose MIDI LEARN. In the pop-up, choose MIDI CC 16 from the menu.

Press and hold a note, and you’ll see the value automating in sync with the arpeggiator sequence. Let’s also slow the tempo down just a bit. Since the arpeggiator is tempo-synced, it will automatically adjust when Falcon’s tempo changes.
LEARNING FALCON 106: MAKE AN EVOLVING PAD

MAKE AN EVOLVING PAD
Now let’s build a pad sound, one that evolves over time by using modulation to create movement.

1. In an empty part, create a new synth keygroup.

2. This time, let’s use the Analog Stack synth; press on the oscillator name and choose Analog Stack from the menu to change the synth type. The Analog Stack starts with the same basic options as the Analog oscillator type, but offers a unified bank of eight oscillators for quickly created stacked sounds.

3. Press the POWER button on oscillators 2 and 3 to enable them. Each oscillator has independent controls for its waveform shape, gain, pan, pitch offset, and so on.

4. Let’s change the pitch of oscillator 2’s pitch offset to be +7 SEMITONES from oscillator 1, and oscillator 3 to be +1 OCTAVE.

5. We can also modulate each oscillator independently. To add a new modulation source for the oscillator 2 pulse width modulation, right-click its PWM knob and choose ADD MODULATION.

6. We want to modulate this per-voice, so we’ll create a keygroup modulation source by choosing INTERNAL > KEYGROUP > NEW LFO.

7. The new modulation source now appears in the MODULATION EDITOR. If you don’t see the Modulation Editor, make sure that its toggle button is enabled at the top of the Edit view, and that it’s expanded with the arrow next to its name.
Play a note and you'll hear the LFO modulating PWM; this LFO is modulating it too drastically, though, so let's edit it.

Change the **DEPTH TO 0.25**, play a note again, and you'll hear that its intensity has been reduced.

We can also slow down the LFO speed, to **0.15 HZ**.

Let's do the same with oscillator 3 PWM, but with a different LFO.

Create another LFO, and set its frequency to be different than the first LFO. This will create a sound that shifts and evolves over time. In this way, we can continue to build up the sound by adding modulation to each oscillator's parameters, such as pan, phase, or pitch.
LEARNING FALCON 107: MAKE AN INTERACTIVE WOBBLE BASS

MAKE AN INTERACTIVE WOBBLE BASS SOUND
Falcon’s modulation engine provides endless opportunities for customizing and modifying sounds. Let’s create a wobble bass that we can tweak in realtime from our MIDI controller.

1. As with the previous examples start with a clean patch, create a new Synth Template keygroup and change the Analog oscillator to WAVEFORM.

2. We also want this sound to be monophonic, so in the Layers section, change the Play Mode from Poly to MONO RETRIGGER.

3. To change the wavetable, press on the menu above the waveform and choose from the menu. Let’s choose MULTI > BASS > INSECT.

4. Right-click the Wave Index knob and choose ADD MODULATION > MODULATION WHEEL.

5. The new modulation assignment now appears in the Modulation Editor. (If you don’t see the Modulation Editor, make sure that its toggle button is enabled at the top of the Edit view, and that it’s expanded with the arrow next to its name.)

Play and hold a note to audition the wavetable. While holding the note, adjust the WAVE INDEX to change the active waveform within the wavetable. This is a good control to adjust in realtime while playing, so let’s assign the Mod Wheel as a modulator.
Each modulation assignment has a ratio slider that defines how the modulation source maps to its assigned parameter. By default, the full range of the mod wheel will map to the full range of the Wave Index knob, but in this case, we’d like the mod wheel to sweep over only half of the Wave Index range. So, to halve the range, adjust the MIDI CC 1 RATIO SLIDER TO 0.5.

Now let’s add a low-pass filter. To add a filter, go to the KEYGROUP > EFFECTS LANE and press the + button, and choose FILTER > LOWPASS 12.

To create the wobbling effect, we can modulate the cutoff frequency with an LFO. Set the CUTOFF FREQUENCY near the upper end of its range, then right-click, choose ADD MODULATION, and add a new LFO.

On the new LFO, uncheck its Bipolar option, then set its modulation ratio to 0.5. A unipolar LFO will modulate in only one direction, and a negative ratio means that direction will be downward.

Play a note, and you’ll hear the cutoff frequency sweeping downward with the LFO. The LFO is applied as a constant modulation, however. To apply the LFO modulation selectively with the modulation wheel, add the mod wheel as a sub-modulation source. Right-click on the SUB menu and choose MODULATION WHEEL.

Play a note now, and you won’t hear the LFO applied any more. As you raise the mod wheel, the LFO modulation will be increasingly applied, along with the Wave Index modulation we assigned to the mod wheel earlier.
Creating new programs from samples is just as easy as creating a synth-based program. Most of Falcon’s controls are used in the same way whether you’re using synth oscillators or sample files. Let’s create a drum kit from sample files.

Open the right-hand sidebar and use the BROWSER tab to locate a folder containing some drum samples on your system.

Select the drum samples you want to use and drag them onto the MAPPING EDITOR.

Now let’s set the imported samples to be “one shot” samples, so that the entire sample will be played back when the note is triggered.

Choose SELECT ALL from the MAPPING EDITOR MENU, then press the BATCH button and choose SET PLAYBACK TYPE > SET AS ONE SHOT.

We might also want to adjust the settings of individual samples. For example, if a sample needs to be panned or have its pitch adjusted, select the keygroup and then edit the value in the Mapping Editor’s toolbar.

Lastly, let’s set an exclusive group for the hi-hat sounds. This will mimic the natural behavior of hi-hat sounds cutting each other off, such as a hi-hat closing and cutting off a ringing open hi-hat.

Select the hi-hat keygroups, then set EXCLUSIVE GROUP to 1 in the Keygroup section.
MAKE A DRUM KIT FROM A LOOP

Drum loops often provide great source material for building a drum kit, especially if the loop has distinct hits where the different kit elements aren’t overlapped. By slicing and mapping the hits in the loop, we can easily take a single loop and turn it into a full kit.

Let’s start by loading a drum loop into an empty part. In this case we use Falcon’s search engine to find a Loop from our Mayhem of Loops soundbank and double-click to load it. If Mayhem of Loops not available for you, choose a loop from your soundbank, such as BeatBox Anthology 2 or Toy Museum or your own loop libraries.

You’ll see that the sample is loaded within the SLICE oscillator, with slices marked at each transient. Press Play in Falcon, and the slices are played back in sync with Falcon’s tempo.

You can convert these slices to separate keygroups, in order that each slice can be triggered independently. Press the MAP button, and a new layer will be created with the slices mapped to individual keys.

The original keygroup containing the loop will still be present in a muted layer. To hide it, open the TREE view and select only the “MAPPED” layer.

Play a few notes on your keyboard to trigger the new sliced keygroups. You can now easily rearrange the slices to the mapping of your choice, such as a standard drum mapping.

Each slice from the mapped loop is actually referring back to the original sample, with custom start and end markers to define the slice within the larger sample.

To adjust the slice boundaries, select a KEYGROUP to toggle the Sample oscillator view and then grab the “S” (start) or “E” (end) markers and drag them as desired.

DOUBLE-CLICK THE SAMPLE WAVEFORM between the start and end markers to select it, from here you can RIGHT-CLICK to reveal a number of common wave editor commands such as reverse, normalize, fade in/out and silence. Changes made here still reference the original file so they will effect all slices.

Slices can be tweaked and tuned in limitless ways. Try changing the sample oscillator type to Stretch and adjusting the Tempo Factor, or adding effects to a specific keygroup to effect only one slice, or at the layer level to effect them all.
MAKE A DRUM KIT WITH SYNTHESIS

Instead of starting with a looped sample or a collection of sampled drum hits, we can also create entirely new drum sounds from scratch with Falcon’s Drum synth oscillator.

Open the right-hand sidebar and choose the Oscillators tab. Expand the SYNTHESIS > DRUM folders, and you’ll see all of the drum synth oscillator presets.

Before we get started zoom in a bit in the MAPPING EDITOR to see the key range we’re going to focus on in greater detail. Click the + button on the bottom right of the editor to zoom in.

Let’s start by adding the BD preset ‘BD SAVING’ to cover the range B0 to C1. As you drag-and-drop, the vertical position within the Mapping Editor determines the key range of the keygroup, with wider ranges set near the top and narrower ranges near the bottom.

The Drum oscillator consists of two sound generators, a pitched oscillator and a noise generator. The two can be independently edited, then the mix between the two is set through the Mixer. The Master section adjusts the combined signal, with EQ, distortion, and other settings.

To give the kick a little more edge, let’s change the Oscillator waveform from sine to TRIANGLE, and move the OSC/NOISE SLIDER to add a little noise.

Now let’s import the ‘SD MANIAC’ preset from the SD folder to D1, and play a few notes to see how the kick and snare sound. Let’s bump up the DISTORTION, and lower the Q on the noise filter.
For toms, let’s drag over a preset from the Electric Tom folder, ‘LARGE TOM’, to F1.

We can then tune the tom with the oscillator FREQUENCY SLIDER.

To use this customized tom as the starting point for additional toms, right-click the keygroup and choose “DUPLICATE SELECTED KEYGROUP.”

The duplicated keygroup will initially appear stacked on top of the existing one; grab the new keygroup and drag it over to G1, then adjust its frequency to change the tom’s pitch.

To change the length of time the toms ring out let’s tweak their amplitude envelope. If it’s not already displayed, toggle visibility of the Modulation Editor with its button in the upper right of the Edit view.

Then click and drag a selection over each of the tom keygroups, then click on the ‘AMP. ENV’ tab in the MODULATION EDITOR. When you adjust the envelope’s RELEASE knob, you’ll be editing the release time for all of the selected keygroups.

We can also use the Drum oscillator for synth lead or bass sounds. For example, drag in a preset from the Synth folder, such as ‘CLEAN SYNTH’, to cover the range C2 TO C3. Moving this keygroup to a separate layer will give us more flexibility with effects routing and other program settings, so let’s move the keygroup.

Right-click the synth keygroup in the Mapping Editor and choose MOVE KEYGROUP TO > NEW LAYER.
Falcon has an extensive selection of audio effects and modulation sources that can be configured in both simple and extremely complex ways to achieve powerful effects. The majority of these modules all function based on a similar set of principles and interactions.

If you’ve followed the examples in the previous chapter you should already be familiar with the basic concepts and use of effects and modulators in Falcon. Here we’ll build on that experience and explore some ways to further enhance your ability to both design sound and get hands-on with your patches.

For a detailed overview of each effect module and modulation source please consult Appendix: Modules > Effects, and Appendix: Modules > Modulations.
USING DUAL DELAY

Dual Delay is a delay effects module that is capable of a wide range of time-based effects, from classic delays to reverb-like decays to more unusual effects, with an immersive interface to visualize the stereo and phase adjustments being made.

1. Let's start with a LEAD preset from the FALCON FACTORY soundbank, find and double-click 'RETRO LEAD' to load it.

2. Switch to the EFFECTS tab, right-click the Analog Tape Delay effect header and choose the DUAL DELAY > BASIC STEREO preset.

3. First let's increase DELAY > TIME to "1/4" for a more pronounced delay effect. The delay time can be specified in milliseconds, or in bars/beats if tempo-sync is enabled (as it is here).

4. The Stereo and Phase graphs are the centerpiece of the Dual Delay interface. As you adjust the parameters below, the graphs are updated in realtime. Let's turn the DELAY > FEEDBACK knob up to 70%, you will see both the number of delay taps and their magnitude increase.

5. Time and Feedback can be the same for the left and right channels, or one channel can be shifted relative to the other. Turn the TIME L/R knob counter-clockwise to "L X 0.50" and you will see the left channel delay taps are half the duration of the right channel delay taps.

6. Let's add some gentle pitch modulation to our sound to give it a chorusing effect. Change MODULATION > DEPTH to "1.00 CENTS" and MODULATION > RATE to "0.1 HZ".

7. Now let's adjust the filter to clean up the low frequency content, set FILTERS > LOW CUT to "1.6 KHZ".

8. Once you have the effect where you like it you can save it's state as a preset. In the upper right of the effect module, press the Preset File menu and choose SAVE PRESET, and enter a name for the preset, here we'll title it "MY PRESET".

9. You'll now see your custom presets in the Browser, within a User Presets folder alongside the factory presets for the module.
USING SPARKVERB

SparkVerb is a unique and versatile reverb with an extraordinarily light CPU footprint. A single Size parameter emulates room reflections from 4m to 50m while Decay can be shaped globally and with independent low and high frequency multipliers, each with adjustable crossovers.

Let's create a quick set of loops. In this case we use Falcon’s search engine to find the loops from our soundbanks such as Mayhem of Loops. Navigate to it and create new parts for loop files by dragging them over to the parts list. If the loops aren’t playing automatically hit Play in Falcon’s header or in your DAWs transport if you’re using Falcon as a plugin.

Now that we have some loops let’s put SparkVerb on an Aux channel. This will allow us to use one instance of SparkVerb for as many parts as we like. Click the MIXER button in Falcon’s header to change the current view. Now we can see our 3 instrument parts on the left and 4 aux channels and the master on the right.

Click the + button at the top of the AUX1 channel and select REVERB > SPARKVERB > 05 - ROOM > AMBIENCE ROOM, you should now see the SparkVerb interface at the top.

At the center of the SparkVerb interface is the spectral display. Frequency is mapped across the X axis (low to high) and decay time along the Y axis.

Since we’ve instanced SparkVerb on an effect bus let’s turn the MIX amount up to “100%”, as we’ll control the wet amount with individual track sends.

Let’s send some signal from our 3 loops over to SparkVerb. Set the Aux1 sends for them as “-16DB”, “-30DB” and “-60DB”, respectively. We can now hear all three tracks effected by the reverb.

Now, finally, let’s toggle SparkVerb’s POWER button on/off to A/B the results. From here, we can continue exploring SparkVerb’s settings and if we find one that works well that we want to save, we can make a preset to recall later.

You can also create interesting textures from SparkVerb’s decay with its Freeze function. For example, while a drum loop is playing, press the Freeze button just after a snare hit — the decay will hold indefinitely, even if the drum loop stops. That decay will be held until Freeze is disabled.
USING EFFECT RACKS

The Effect Rack is a special kind of effect module that creates a new effects path inline where the Effect Rack module is added, similar to patching in an external rack of effects from a mixing console. Macros can then be added for “front-panel” control of the effects in the Effect Rack’s FX chain.

To see it in action load a program, then switch the EFFECTS Tab and add an EFFECT RACK.

When the Effect Rack is added, it doesn’t add any audio processing on its own; instead, it creates a new FX chain. Navigate to the TREE tab and toggle open the our new Effect Rack. Inside we see ‘Chain 1’, can right-click this chain to add as many effects as we like.

Let’s add a delay and a filter to chain 1, ANALOG TAPE DELAY and LOWPASS 24.

Enable the Modulation Editor by clicking the VISIBILITY TOGGLE in the EDIT TOOLBAR.

Now right-click the DELAY knob in the Analog Tape Delay effect and select ‘ASSIGN EFFECT RACK MACRO > ADD NEW MACRO’. In the Editor below you will see the Macro modulator we just created along with all of its editable parameters. Locate a field titled ‘DISPLAYNAME’, double-click and rename it to ‘Delay’. Do the same for the filter cutoff, renaming it ‘CUTOFF’.

Now let’s head back to the Effect Rack “front panel” by selecting the Effect Rack in the Tree view. Now we see our two macros and the names we set for them.

If you want to change the layout of the Macro panel hit ctrl+E on Windows or command+E on Mac to enter EDIT MODE. Select both macro knobs and right-click over the background for helpful layout options. You can also add a custom background by dragging an image onto the panel. Hit ctrl+E or command+E again to exit Edit mode when your changes are complete.

To set the overall level of the FX chain, adjust the FX Chain’s VOLUME SLIDER in the Tree view.

We can even add whole additional FX chains to a single Effect Rack for parallel processing. To do this right-click the Effect Rack in Tree view and select ‘ADD FX CHAIN’.

If you save an Effect Rack preset, the settings for all of its loaded effects will also be saved along with all macro assignments and customizations.
USING MACROS

Macros are intermediary modulation sources which modulate other controls, useful for placing a small number of important controls on the “front panel” of a patch. Any parameter that can be modulated can be assigned to a macro, and single macros can drive any number of parameters.

Let’s start with a program that already has some macros assigned, such as the OCTAVOTO PLUCK program from the FALCON FACTORY soundbank. Load the program, then switch to the INFO tab in the Main view.

There are two types of macros: continuously-adjustable knobs and on/off toggle buttons. You can adjust these controls just like any other knobs or buttons, and even modulate the macros with other mod sources. For example, you might want to make MIDI or Host Automation assignments so you can control the macros from your MIDI keyboard or host application.

To see which parameters the macros are assigned to, switch the left sidebar to the TREE view. Press the ARROW next to the macro name to expand it and display its assignments.

Let’s create a new macro. To create an adjustable vibrato, we can modulate keygroup pitch with an LFO and assign a macro to control the depth of the LFO.

Switch to the EDIT view, right-click the Keygroup PITCH knob, and choose ADD MODULATION > KEYGROUP > NEW LFO
On the new LFO, set the FREQUENCY to 5.8 HZ and turn the DEPTH knob down to ZERO, then right-click it and choose ASSIGN TO MACRO > ADD NEW MACRO.

Switch back to the INFO tab, and you’ll see the new macro knob. Adjust the KNOB, and you can hear the depth of the LFO modulation increasing.

To help remember what the macro is modulating, we can give the knob a more meaningful label and move the position to handy of use as well. Press the EDIT button in the top left, then move the macro to align existing macros and double-click the label and enter a new name, such as "VIBRATO."

You can assign macros one-to-one, for remote control of a single parameter as above, or you can assign one macro to multiple parameters for simple control over complex transformations. For example, you could assign one macro to both filter cutoff and resonance, but with different ratios: 1.0 for cutoff, and -0.5 for resonance. As you turn up the macro knob, it would raise the cutoff frequency but lower the resonance, with the resonance value adjusted by half of the amount that the cutoff value was adjusted.
In addition to Falcon’s extensive internal modulation sources, when using Falcon as a plug-in you can take advantage of your host application’s automation capabilities. Each Falcon instance has 128 automation connections that can be assigned to individual controls.

To make a host automation assignment, right-click a parameter, choose Assign to Host Automation, and choose one of the available items.

For example, right-click Part 1’s VOLUME slider and choose ASSIGN TO HOST AUTOMATION > HOST AUTOMATION 1.

The name of the assigned parameter will be displayed in the TREE view.

If your host application supports it, the name of the assigned parameter may be displayed in the host application. Otherwise, the numbered parameter name (such as “Host Automation 1”) will be displayed.

Each host automation connection can be assigned to one parameter at a time. If you assign a host automation connection that’s already assigned to a different control, the original assignment will be removed when the new assignment is created. If you want to create a one-to-many connection try first setting up a macro and then assigning the macro control to host automation.
USING STEP ENVELOPES

The Step Envelope is a programmable envelope for creating time-based effects, and makes a great programmable pattern sequencer.

A good way to understand the Step Envelope is to use it to modulate keygroup gain. Load the STRING ANALOG from the FALCON FACTORY soundbank.

Right-click the KEYGROUP GAIN knob and choose ADD MODULATION > KEYGROUP > STEP ENVELOPE. Play a few notes, and you’ll hear the signal gated on the empty steps, and full volume on the steps with full bars.

Each step doesn’t have to be fully on or fully off, however — you can continuously adjust the value of each step between the two.

Adjust the value of a few steps to be HALF or QUARTER, and you’ll hear an effect similar to delay feedback taps. You can also apply smoothing between steps to avoid transitions that are too abrupt, pop/click, and so on.

You can also configure the number of steps, as well as the length (in Hertz, or in bars/beats when the module is tempo-synced). When the Step Envelope is tempo-synced, the number of steps is often set to a multiple of the number of beats in the current time signature. However, non-multiples can result in interesting, shifting patterns that don’t obviously loop.

To enable TEMP-SYNC for the Step Envelope click the sync icon in the MODULATION HEADER.

Tempo-syncing can be especially helpful if the envelope is modulating pitch, as can be the Bipolar option. Enabling Bipolar mode puts zero in the center and values can step above to +1 or below to -1. To set the pitch range for the envelope, adjust the modulation ratio. For example, with a ratio of +12 and the Bipolar option enabled, the envelope with modulate ±1 octave (12 semitones).

You can also create LFO-like patterns that glide smoothly from step to step. With Interpolation Mode set to SPLINE, a continuous line is interpolated from the individual bars, creating a continuously variable modulation source that’s suited for pitch sweeps, wobbles, and so on.

Be sure to explore the Step Envelope preset folders, as they contain over 1,000 ready-to-use patterns.
USING MULTI ENVELOPES

The Multi Envelope is an envelope with a user-defined shape, consisting of any number of points. This allows for truly customized envelopes beyond classic DAHDSR envelopes, such as sweeps that evolve over a long period of time or looped LFO-like shapes.

A good way to understand the Multi Envelope is to use it to modulate keygroup gain. Load the HYBRID PIANO from the FALCON FACTORY soundbank.

Go to the MAIN > EDIT view, right-click the KEYGROUP GAIN knob and select EDIT MODULATIONS.

A pop-up editor will appear showing all of the modulation sources linked to the control. Right-click the AMP. ENV. name and replace it with a MULTI ENVELOPE.

Now let’s load a Multi Envelope preset, use the PRESET MENU to select ENVELOPES ONE SHOT > ENVELOPE SWELL, and play a few notes.

To change the envelope shape, grab an existing point and drag it, double-click to insert a new point, or Shift–right-click to remove a point. You can also drag the lines between the points to adjust the curvature of the line.

If you’d like a bigger canvas to work on, press the “EYE” button next to the Preset File menu.
USING OSC (OPEN SOUND CONTROL)

Open Sound Control is a protocol used to communicate between different computers and other audio devices. OSC is commonly used as a way for remote software control, such as from a central sequencer that’s driving Falcon installations on multiple networked computers, or for touchscreen control from a wireless mobile device.

To start using OSC in Falcon the OSC server needs to be enabled. Go to Falcon’s PREFERENCES window, select the OSC tab, and enable OPEN SOUND CONTROL SERVER. This will make Falcon discoverable on the network by other OSC-enabled applications. Falcon will automatically negotiate a unique name and port number.

Once enabled, Falcon can be controlled remotely by any application or device that supports OSC.

Each one of Falcon’s parameters that can be controlled externally has an OSC Path that uniquely identifies it, such as “/uvi/Part 3/Program/Layer 1/Gain”. When a parameter is right-clicked, the contextual menu displays the parameter’s OSC path.

There is also a convenient shortcut provided for copying the parameter’s OSC path to the clipboard. You can then use that OSC path in any OSC-equipped application to control that parameter.
We've looked at ways to create and apply effects to sounds and we've looked at ways to modulate them, now let's take a look at Event processors.

Event modules can generally be thought of as MIDI effects, processing incoming MIDI signals or generating them, though with the Script Processor it's possible to extend that paradigm to include extremely sophisticated creative devices and interface customization.

The most commonly used Event processors are the Arpeggiator, Micro Tuner and MIDI filters like the Chorder, Harmonizer and Strum. These are easily mastered devices providing great performance utility.

In the following chapter we'll take a look at a few of these devices and some of the ways that we can effectively implement them in our own projects.
USING THE ARPEGGIATOR

The Arpeggiator is a classic synthesizer effect which modifies the incoming notes and plays them in a programmable pattern to create a dynamic sequence.

Let’s start by loading the HYBRID PIANO program from the FALCON FACTORY soundbank.

In EDIT mode change the play mode to POLY PORTAMENTO.

Switch over to the EVENTS tab, hit the + button and select the ARPEGGIATOR > ARP BASIC > 2 OCTAVE UP preset.

Since the Arpeggiator is always tempo-synced, the number of steps is often set to a multiple of the number of beats in the current time signature.

However, especially when layered, non-multiples can result in interesting patterns without obvious loop points.

Let’s slow the SPEED down to 1/8 and add a few more steps to this pattern. Change NUMSTEPS to 9 and enable step 9 by clicking the STEP STATE box underneath it, so that steps 1, 2, 3, 4, 6, 8, and 9 are On and steps 5 and 7 are Off.

Now let’s customize the value of these steps, adjust the VELOCITY amount by click-dragging in the graph, and modify the GATE by shift-click-dragging.

To give the pattern a more defined groove let’s change NUM STRIKE to 2 and shift-click the STEP STATE button on step 7 to merge it with the step before it.
The number of notes played is a combination of the Octave, Repeat Top, Repeat Bottom, and Num Strike parameters. The Octave parameter takes each triggered note and adds octaves of the same note above or below it. Repeat Top and Repeat Bottom will repeat the lowest or highest played note an additional time. Num Strike sets the number of consecutive strikes for every note.

The play mode determines how the arpeggiator cycles through the played notes (and any repeated notes and octaves). For example, if the play mode is “Up & Down”, the lowest note will be played first and cycle up to the highest, then cycle down to the lowest. So if C2, F2, and G2 are held, they will be played as C2, F2, G2, F2, C2, F2, and so on. The “Chord” play mode is notable because all held notes are played at once, rather than cycled; the on/off state, velocity, and pitch values are still applied.

The Arpeggiator has three layers: Velocity and Pitch for notes, and MIDI CC for generating a MIDI CC as an additional control signal. Right-click the step grid to change which layer is displayed. The step state (on, off, or merged) is shared between the three layers, but the velocity, pitch, and MIDI CC value for the step is independent.

The Pitch layer has a range of ±48 semitones (4 octaves), with zero in the center. The pitch value of each step is also displayed above the step grid, as is always visible regardless of the layer you're currently viewing.

The MIDI CC layer is useful for generating an additional modulation source, especially one that is also cyclical. For example, you could modulate the cutoff frequency of a filter in sync with the note pattern of the arpeggiator; in this way, the MIDI CC layer can be thought of as a kind of user-defined LFO. To choose which MIDI CC is generated by the Arpeggiator, set the MIDI CC menu.
USING THE MICRO TUNER

The Micro Tuner allows the exploration of many unique and interesting temperaments, both modern and classical. It also allows ethnic instruments to be played in their natural tuning.

For this example we’re going to create an instance of Falcon in 12-tone Pythagorean temperament with C4 at 256Hz. Pythagorean tuning is based on a stack of intervals called perfect fifths, each tuned in the ratio 3:2, and creates exceptional harmonics.

Navigate to the TREE tab, right-click the MASTER node and select ADD EVENT PROCESSOR > MICRO TUNER. Placing the Micro Tuner at the Master level means that all parts in Falcon will be effected, this is a great way to ensure that any and all instruments loaded or created from here on out will be in tune.

Double-click the new Micro Tuner to reveal it in the EVENTS editor to the right. In its default state the Micro Tuner doesn’t do anything. From here we could load an existing preset, but for this example we’re going to use a custom Scala file.

Let’s create a new Scala file to describe 12-tone Pythagorean temperament. Create a new text document and paste in the following:

```
! pyth_12.scl
12-tone Pythagorean scale
12:
2187/2048
9/8
32/27
81/64
729/512
3/2
6561/4096
27/16
10/9
243/128
2/1
```

Save this document as "pyth_12.scl" (UTF-8 encoding) and drag the resulting file onto your Micro Tuner. You can save this as a Micro Tuner preset and it will be available for future projects.

Now change the GLOBAL TUNE in Falcon’s header to 430.5 HZ. With A4 tuned to 430.5 Hz, C4 will be at 256 Hz. This would be a good time to save out the Multi if you wanted to create a template or even ‘Save as Default Multi’ if you consistently use a particular tuning.

Now let’s load a patch to hear the results, something with a long release, try PADS > BEAUTY IS SIMPLE 2 from the FALCON FACTORY soundbank.

There are many Micro Tuner presets that come with Falcon, and that can be expanded easily with custom Scala files.
LEARNING FALCON 303: USING THE SCRIPT PROCESSOR

USING THE SCRIPT PROCESSOR
The Script Processor module provides custom event processing capabilities, using the Lua-based scripting language UVIscript.

The Script Processor module has two primary sets of controls: the standard controls for interacting with the script itself, and the controls defined by the loaded script (knobs, buttons, menus, and so on).

Let's load the Nylon Guitar Model program from the Falcon Factory soundbank. Then go to the MAIN > EVENTS tab, add the Script Processor module, then load the PERFORMANCE > STRUM preset.

This script has one parameter, Lag, with a value range of 1 to 200 ms. Adjust LAG and play a chord, and you'll hear the notes played in succession as if strummed rather than triggered all at once.

Falcon includes numerous factory preset scripts for a variety of purposes, such as automatic harmonization, unison voice generation, MIDI CC filtering, and more. You can also write your own scripts to further customize Falcon.

Let's start with a simple script that prints some information about each note to the Script Processor console. Enter the following code into a text editor and save the file as "printer.lua":

```lua
printer = OnOffButton("Print", true)

function onNote(e)
    if printer.value == true then
        print("On : ", e)
    end
    postEvent(e)
end

function onRelease(e)
    if printer.value == true then
        print("Off: ", e)
    end
    postEvent(e)
end
```

In the Script Processor module, press the LOAD SCRIPT button on the left and choose the "printer.lua" file.

Then enable the "SHOW CONSOLE OUTPUT" option, which is generally used for displaying debug messages, and play a few notes—you will see that as each note is triggered and released, a line of information about the note is printed to the console so long as the script’s PRINT button is enabled.

If you disable the Print button, the messages no longer print to the console.
Falcon includes 7 sampling oscillators each equipped with a unique feature set suited for a variety of tasks from basic playback, loop slicing, to advanced time stretching and granular processes.

APPENDIX A: SAMPLING OSCILLATORS
The Sample oscillator uses the traditional method of audio sample playback. When a sample is triggered at a pitch higher than its base note, the sample is played back more quickly; when below its base note, the sample is played back more slowly.

SAMPLE START sets the starting point for playback when the sample is triggered, as a percentage of the time between the Sample Start and Sample End markers in the sample file (see: [Interface > Main > Sample Editor]).

The **INTERPOLATION MODE** sets the quality of the transposition. Choosing Lo-fi will reduce the amount of processing needed to transpose the file compared to Standard mode, and likewise choosing Best will increase the processing overhead. (For other styles of transposition, try the other sampling oscillators as well.)

When **ALLOW STREAMING** is enabled, the sample will be streamed from disk if the program has Streaming enabled. When disabled, the sample will always be played from memory and not streamed from disk, even if Streaming is enabled for the program.
The Slice oscillator is ideal for percussive or strongly rhythmic samples which can be sliced into discrete sections. Slices of the sample can be played back in the original order, or rearranged to create new sounds.

TEMPO
To set the loop’s tempo, choose its TIME SIGNATURE and enter the loop’s duration in BARS and BEATS. The BPM field will update as you change the other tempo parameters.

If you’d like to playback the loop at a multiple of its original tempo, use the TEMPO FACTOR parameter for coarse speed adjustments (up to 4x faster or slower).

DETECTION
The MARKERS setting determines whether to use slices already saved in the file (imported) or the slices you’ve defined (user markers). Loops in UVI soundbanks will have imported slices, as will common loop formats such as REX and Apple Loop files.

If you choose to create your own slices, use the SENSITIVITY slider to automatically detect and create slices. At the far left, slices will be created only by very prominent beats and there will be a small number of slices; at the far right, slices will be created by more subtle variations in the sample and there will be a larger number of slices.

To add a slice manually, double-click in the space between the sample’s waveform and the time ruler. You can also add multiple slices at once on divisions of the musical grid by right-clicking, choosing ADD MARKERS WITH GRID SETTING, and choosing a beat division such as eighth note.

Existing slices can be moved by clicking and dragging anywhere along the slice. To protect a slice from being edited, right-click the slice and choose LOCK. The slice can be ignored by right-clicking it and choosing MUTE, or it can be removed entirely with DELETE.

PLAYBACK
A single slice can be auditioned by clicking anywhere on its waveform. When a slice is selected, you can also use the forward/back AUDITION buttons to audition the next/previous slice. The Audition play and stop buttons can be used to playback the entire file. When
AUTOPLAY

When AUTOPLAY is enabled, the loop will be triggered when Falcon’s playback begins. (This button is the same as the AutoPlay button in the Parts List.)

SYNC

SYNC determines how the loop interacts with Falcon’s tempo and playback position. When set to “position,” the sample is played back at Falcon’s tempo and also locks to its playback position; in “tempo” mode, only the tempo is matched. When set to “off,” Falcon’s tempo and playback position are ignored and the sample is played back at its original tempo.

In all Sync modes, the START control sets the slice where playback begins when the loop is triggered, with zero being the first slice in the loop. The SPEED parameter adjusts the loop’s playback tempo, up to 50% faster or slower.

For MAP, see: Exporting and converting the loop.

EXTENSION

When the loop’s playback tempo is slower than its original tempo, you can choose to extend the slices so that the loop is still continuous. With SLICE EXTENSION set to AUTO, extension of the slices will be configured automatically. When disabled, use the AMOUNT and TIME parameters to fine-tune how the slices are extended.

ENVELOPE

You can also optionally enable a slice envelope. When enabled with the ENVELOPE button, the ATTACK, HOLD, DECAY, SUSTAIN parameters adjust an amplitude envelope that is applied to each slice as it is triggered.

EXPORTING AND CONVERTING THE LOOP

The entire loop can be exported as a new audio file with the WAV button. When you press on it and drag, it creates a new audio file that can be dragged to your host application or desktop. The new audio file is created with all of the current settings applied: tempo, envelope, etc.

Or, to export the slices with each as an individual audio file, choose EXPORT and specify the folder where the samples will be saved. To save a program with the slices mapped to individual keys, press on the PART button and drag it to the Parts List or to the desktop or other folder.

If you would prefer to create a new layer in the current program rather than a separate program, press the MAP button in the Playback section. This will Mute and MIDI Mute the original layer, and create a new layer with the slices mapped to individual keys.

This will also change the audio drag & drop button to a MIDI button. When you press on it and drag, it creates a MIDI file that can be dragged to your host application or desktop. The MIDI file triggers the slices in their original order and timing, which you can then edit for new arrangements of the slices.
The Stretch oscillator will pitch-shift the sample ±2 octaves from its root key. Beyond that range the pitch will be constant, even if the keygroup's key range extends further.

PLAYBACK

SAMPLE START sets the starting point for playback when the sample is triggered, as a percentage of the time between the Sample Start and Sample End markers in the sample file (see: [Interface > Main > Sample Editor]).

Additionally, when **LEGATO MODE** is enabled, if a new note re-triggers the sample, playback will continue from the current sample position but at the new pitch. With Legato mode disabled, playback will always begin from the sample’s start position.

SAMPLE TEMPO

Although the speed of sample playback is constant across its key range, setting the **SYNC** mode to **TEMPO** will sync the sample’s playback speed to Falcon’s tempo. Set the sample’s base tempo with the **TEMPO** field, which can be modified with the **TEMPO FACTOR** (± 400%) and **TEMPO FINE** (± 50%) controls.

ANALYSIS

To fine-tune the pitch-shifting, adjust the **GRAIN SIZE** and **SENSITIVITY** parameters. For highly rhythmic or percussive material, try increasing Sensitivity for better transient preservation. Additionally, if a sample contains a solo instrument, try enabling **SOLO MODE** for the best pitch-shifting; for polyphonic samples, turn off Solo Mode.
The IRCAM Granular oscillator uses granular synthesis to create a wide range of sounds. The audio sample is divided into small grains which are then re-combined and played back in new ways to create realistic pitch shifting or as the basis for a textured soundscape.

GRAIN

The **GRAIN** section configures the shape of the grains. **SIZE** sets the duration of the grains. **DENSITY** determines how many grains will be played at once, with 100 representing standard playback. With values less than 100, there will be silence between the grains with a rhythmic result similar to tremolo; with values over 100, there is increasingly more overlap of grains with a harmonic result similar to a chorus or sometimes a ring modulator. **JITTER** varies the consistency of grain playback timing.

FADE sets the amount of the grain affected by the fades of the grain envelope’s attack and decay, as a percentage of the full grain size. At the default 100%, the full grain can be faded, which results in a triangle-shaped envelope. At less than 100%, there is a plateau in the middle, resulting in a more trapezoidal envelope.

SYMMETRY changes the skew of the grain window by balancing the grain envelope attack and decay, as percentages of the grain size:
- **0%** sets an attack of 0% and decay of 100%; this results in more percussive grains
- **50%** sets an attack of 50% and decay of 50%; this is the standard, balanced window
- **100%** sets an attack of 100% and decay of 0% means; this results in reversed grains

WINDOW sets the shape of the window (an envelope applied to the signal when creating grains); choose from Triangle, Hanning or Welch curves, or Square.

PITCH VARIATION adds randomization to the pitch of each grain, from minor variations of a few cents to an entire octave.

PITCH CORRECTION sets how grains will be transposed. The Grain Size option keeps grain size constant, while the Period option adjusts the size of the grain.
POSITION
The POSITION section controls determine the playback position in the sample file.

POSITION determines the starting point for playback, as a percentage of the duration between the sample start and end markers. With Speed set at or near zero, this can be used to manually scrub to any location within the file. POSITION VARIATION adds randomization to the current position, with a range of zero to 500 ms from the current position.

SPEED sets the scrubbing speed factor, with 1.00 as normal speed, zero as staying in place on the current grain, and 10.00 as 10x faster. DIRECTION sets the direction of scrubbing, from +1.0 for fully forward to -1.0 for fully reverse.

If there is a loop in the audio file, the Loop Mode sets how it will be handled:
- **NONE**: The loop will be ignored
- **FORWARD**: The looped section is played forward; when playback reaches the end of the loop, playback begins again from the loop start point
- **FORWARD-BACKWARD**: The looped section is played alternately forward (from the loop start to loop end) and reverse (from loop end to loop start)
The IRCAM Multi Granular oscillator is a multi-voice variant of the IRCAM Granular oscillator. Each voice can be varied in multiple ways to achieve a range of unison effects.

VOICES
The VOICES section sets the voice-specific settings. VOICES sets the number of unison voices. With a single voice, the result will be similar to the standard IRCAM Granular oscillator.

The other Voice controls set relative variations for each voice; TIME SPREAD adjusts the timing of each voice’s trigger, and POSITION SPREAD sets the position within the sample file.

GRAIN
The GRAIN section shapes the grains themselves. Most of the GRAIN parameters are the same for the IRCAM Multi Granular oscillator as the IRCAM Granular oscillator; for details, see: [Appendix A: Modules > Oscillators > IRCAM Granular].

- SIZE
- DENSITY
- JITTER
- WINDOW
- FADE

This module also has additional Grain settings not found in IRCAM Granular:

- SYMMETRY
- PITCH VARIATION
- PITCH CORRECTION

POSITION
The POSITION parameters are the same for the IRCAM Multi Granular oscillator as the IRCAM Granular oscillator; for details, see: [Appendix A: Modules > Oscillators > IRCAM Granular].

- POSITION
- VARIATION
- SPEED
- DIRECTION
- LOOP MODE
IRCAM SCRUB

The IRCAM Scrub oscillator is similar in usage to IRCAM Granular, with random-access scrubbing and speed/direction control, but uses the same top-quality algorithm as the IRCAM Stretch oscillator. As with IRCAM Stretch, this requires more processing power than the standard granular oscillator.

PLAYBACK
The Playback parameters are the same for the IRCAM Scrub oscillator as the IRCAM Granular oscillator; for details, see: [Appendix A: Modules > Oscillators > IRCAM Granular > Position].
- SPEED
- POSITION
- DIRECTION

ANALYSIS
The Analysis parameters are the same for the IRCAM Scrub oscillator as the IRCAM Stretch oscillator; for details, see: [Appendix A: Modules > Oscillators > IRCAM Stretch > Analysis].
- WINDOW
- PADDING
- OVERLAP

REMUX
Remix mode separates the signal into 3 discrete components and allows you to mix and automate their levels. The 3 signal components are SINE (harmonics), NOISE and TRANSIENTS.

OPTIONS
The Options parameters are the same for the IRCAM Scrub oscillator as the IRCAM Stretch oscillator; for details, see: [Appendix A: Modules > Oscillators > IRCAM Stretch > Options].
- TRANSIENTS
- SHAPE
- ENVELOPE
- STEREO
The IRCAM Stretch oscillator is similar to the standard Stretch oscillator, but uses very high-quality PhaseVocoder time-stretch and pitch-shifting with transient and envelope preservation. This requires more processing power than the standard pitch-shifting used in other oscillators, so it is best used when the source material requires the highest quality pitch shifting.

PLAYBACK
SPEED sets the scrubbing speed factor, with 1.00 as normal speed, zero as staying in place on the current grain, and 10.00 as 10x faster. SAMPLE START sets the starting point for playback when the sample is triggered, as a percentage of the time between the Sample Start and Sample End markers.

SAMPLE TEMPO
The tempo parameters are the same for the IRCAM Stretch oscillator as the standard Stretch oscillator; for details, see [Appendix A: Modules > Oscillators > Stretch > Sample Tempo].

ANALYSIS
WINDOW sets the size of the sampling window for grain size. Grain size is optimally set to a size proportional to the fundamental note of the sample, with grain size twice the duration of the fundamental. PADDING sets the amount of oversampling, to x1 (no oversampling), x2, or x4. As oversampling is processor intensive, it’s recommended to apply oversampling as little as is necessary to reduce unwanted artifacts. Often, no oversampling will be needed. OVERLAP sets the relative amount of grain overlap. As with oversampling, higher values are more processor intensive.

REMUX
Remix mode separates the signal into 3 discrete components and allows you to mix and automate their levels. The 3 signal components are SINE (harmonics), NOISE and TRANSIENTS.

OPTIONS
- TRANSIENTS: Transient preservation; helpful for highly rhythmic or percussive samples
- ENVELOPE: Envelope preservation; helpful for avoiding unwanted pitch artifacts with some samples
- STEREO: Phase locks between stereo channels
- SHAPE: Shape preservation; helpful for preserving the character of voices and other monophonic sounds
- LEGATO: New voice playback position will start where currently playing voices are located
Falcon includes 8 synthesis-oriented oscillators including featured VA, analog stack, percussion, noise, organ, FM, wavetable and a physical string modeling oscillator.
The Analog oscillator is a classic virtual analog synthesizer. The Analog section contains the primary oscillator controls. **WAVEFORM** sets the shape of the waveform; choose from saw, square, triangle, sine, noise, or pulse. **PWM** (pulse width modulation) modifies the shape of the waveform, and is often modulated with an LFO. **START PHASE** adjusts the point in the waveform at which playback will begin, and **POLARITY** reverses the polarity of the waveform.

The Hard Sync section determines the phase sync between voices. When **SYNC** is enabled, voices are phase-synced to a control oscillator that is not displayed or heard; **SHIFT** sets the amount of drift from the control oscillator.

The Unison section sets the number of voices and how they will be modified. **VOICES** sets the number of simultaneous voices, and **STEREO** toggles between mono and stereo. **PHASE SPREAD** sets the style of phase spread for the voices. When stereo is enabled, the **STEREO SPREAD** knob controls the amount of stereo spread and the menu chooses the style of stereo spread.

The **DETUNE** knob and menu adjust the amount and style of pitch adjustment to each voice.
The Analog Stack module is similar to the Analog oscillator, but designed specifically for easily layering multiple oscillators. Each Analog Stack module contains eight oscillators.

Each oscillator has a subset of the controls available on the full Analog oscillator: ENABLE/DISABLE, WAVEFORM SHAPE, PWM, START PHASE, and POLARITY. For details on those parameters, see [Appendix A > Oscillators > Analog].

Additionally, oscillators 2-8 have an SYNC TO OSC 1 option to sync their phase to oscillator 1.

The Mixer section adds GAIN and PAN controls for balancing the level and stereo placement of each oscillator.

The Transposition section has four controls for adjusting each oscillator’s pitch: OCT and SEMI for MIDI transposition, and CENTS and PITCH for audio transposition.
Drum oscillator is designed for creating percussive sounds. There are two sound sources: a pitched oscillator and a noise generator.

Oscillator
The pitched oscillator begins with a waveform shape, choose from sine, triangle, saw, or pulse. Set the base pitch of the oscillator with frequency, and then use the pitch modulation controls to further adjust it. Depth sets the amount of modulation in semitones, and rate determines how quickly that pitch range is modulated. The shape of the modulation can be exponential (a rapidly decaying envelope), sine (traditional up and down LFO), or noise (semi-random walk).

The amplitude envelope is a simple AD envelope, with attack and decay parameters.

Noise
The noise generator provides a filter. The filter type can be set to low-pass, band-pass, or high-pass, and both cutoff frequency and Q can be adjusted.

The amplitude envelope offers attack and decay, same as the pitched oscillator. Additionally, you can choose a decay style of exponential or linear; exponential decay is more rapid at first, while linear decay is a constant rate.

Mixer
The mixer sets the relative levels for the oscillator and noise generators. When centered, the two are mixed together in equal amounts; drag the slider up or down for relatively more or less of each sound source.

Master
The master section provides overall adjustment and effects for the oscillator: eq gain, eq frequency, distortion, and volume.

Velocity sensitivity levels can also be set independently for oscillator volume, oscillator pitch modulation, and noise volume.
The FM oscillator is an FM (frequency modulation) synth. FM synthesis uses multiple signals with frequencies in the audible range to modulate each other and create unique and complex sounds.

OPERATORS

There are four operators. Each operator has a RATIO which defines its frequency relative to the base frequency. At 1.0, the frequencies are the same; at 2.0, the frequency of the operator is double the base frequency, and so on.

The HZ toggle changes the operator from a relative ratio frequency to an explicit frequency set in Hz.

The FINE control provides fine tune adjustment of +/- 1200 cents. In HZ mode is enabled the functionality changes to a FREQUENCY MULTIPLIER, allowing oscillator frequencies from 0.001 Hz to 20 kHz.

The PHASE control sets the start phase for the operator.

The SNAP toggle locks RATIO to harmonic intervals (e.g. x1, x2, x3 etc.). In HZ mode this control is disabled.

The LEVEL control sets the output level for each operator. Depending on the topology chosen, this control will instead adjust the modulation index for operators, B, C, and D.

MASTER

The relationship between the operators and how they modulate each other is chosen with the TOPOLOGY menu. Additionally, operator D can be fed back into itself, with the FEEDBACK knob setting the amount.
The Noise oscillator generates a variety of different pre-defined noise types. The **Noise Types** are laid out on a grid; select a name to choose the noise type. Depending on the selected noise type, a **Value** control may be available to change a characteristic of the noise, such as Rate, Density, Chaos, and so on. (Some noise types, however, don't have any parameters.)
The Organ oscillator emulates an electric organ.

There are eight drawbars, each representing a different harmonic, labeled with the traditional pipe sizes originally used on pipe organs. The 8' drawbar is the base note, and each doubling or halving of the pipe size represents an octave upward or downward. For example, when a C3 is triggered, 8' plays C3, 16' plays C2, and 2' plays C5.

Each drawbar has Gain and Pan controls. The Gain slider is used in the traditional drawbar style, where pulling it towards you (in this case, downward) increases the gain for that harmonic.

The Percussion section adds a percussive harmonic, when enabled with the On button. This harmonic is chosen with the Harmonic knob, and the Fast mode toggle determines its decay speed. This additional harmonic decays quickly, even when notes are otherwise sustained.
APPENDIX A: SYNTHESIS OSCILLATORS » PLUCK

Pluck

Pluck is a physically inspired string synthesis module, aimed toward synthetic sounds with a natural decay. A short excitation waveform is triggered and fed through a filtered delay line; the characteristics of the decay are determined by the waveform, filter style, and other adjustments.

MIXER

There are three sources for the initial excitation: a pitched oscillator, a noise oscillator, and an audio sample. You can blend the levels of each sound source with the MIXER section's SAMPLE, SYNTH, and NOISE sliders.

SAMPLE

To load an AUDIO SAMPLE, press on the menu above the waveform image and choose from the menu of factory preset samples. Alternatively, you can load your own audio file by dragging and dropping it onto the sample area. NEXT and PREVIOUS buttons are also present, for browsing samples. START sets the sample start time. DETUNE provides sample pitch control of +/− 48 cents. KEYFOLLOW sets the amount of influence of key position over filtering. INTERPOLATION MODE chooses the quality of sample playback. Standard is ideal for most scenarios.

SYNTH

EXCITATION BRIGHTNESS adjusts the brightness of the excitation sources by changing the duty cycle of the source, similar to pulse width modulation.

PICK

The Pick parameters adjust the character of the plucking point. Enable the PICK FILTER to add a picked simulation to the string excitation; set the position on the string with PICK POSITION and the intensity of the picking with PICK DEPTH.

CONTOUR

SHAPE adjusts the relative roundness or thinness of the excitation sources; negative values are rounder, and positive values are thinner. ROLLOFF is a lowpass filter of the excitation sources.

DYNAMICS

sets the range of high frequency attenuation (in dB) between the minimum and maximum note-on velocity. At lower velocities, more high frequency attenuation is applied.

FINGER

With a HARMONIC RATIO of 1.00, the fundamental of the triggered note is played; above 1.00, a harmonic note above the base note is played. The value is a ratio relative to the base note: 2.00 is one octave higher than the fundamental, and so on. Just as with a physical
string, not all ratios will produce a clear harmonic tone. Some more commonly used ratios include whole integer values (1.0, 2.0, etc.) and simple integer ratios such as 1.5 (3/2), 1.33 (4/3), and 1.25 (5/4). Additionally, a ratio of 1.01 is useful for simulating a palm-muted string. To dampen the harmonic, increase HARMONIC DAMP.

When STRETCH is enabled, each sample is either processed through the delay and filter or passed through unprocessed. Increasing the Stretch value will increase the likelihood of samples passing through unprocessed. With more unprocessed samples, there result is a slight buzzing sound which is useful for noise or drum sounds.

TUNING & COUPLING
By default, one plucked string is simulated; for two strings, change the STRINGS value. When there are two strings, the COUPLING MODE determines how they interact and the COUPLING amount sets the amount of interaction.
- SERIAL: The two strings are in series, with the first feeding the second. With Coupling at zero, only the first string is heard; at 1.00, the first string is not directly heard, and only the second string (excited by the first) is heard. A Coupling of 1.00 results in a slower attack time, similar to a cello.
- BRIDGE: A small amount of the first string’s energy is fed to the bridge and excites the other string through cross feedback.
- BEATING: Strings are coupled through a rotation matrix, causing the sound to beat at a few Hz. As Coupling increases, the beating will be faster. Detuning the second string also has an impact on the depth and complexity of this beating.
- INHARMONIC: Similar to Beating, but the beating frequency is in the audible range. This can result in bell-like or plate-like sounds, similar to a ring modulator.

To tune the second string relative to the first, set COARSE TUNE to the interval in semitones (up to +2 octaves) and FINE TUNE in cents (up to 20 cents).

Some string materials, such as steel piano strings, are more inharmonic than others, such as nylon guitar strings. INHARMONICITY controls the amount of stretch of the string partials from the harmonic series.

DECAY
DECAY and RELEASE set the durations for the amplitude envelope decay time. BRIGHTNESS highlights or attenuates a high frequency shelf for the decay, and DECAY CUTOFF sets the cutoff for a lowpass filter.

BRIDGE LOSS sets an amount of additional high frequency dampening applied. On physical strings, high frequencies dampen more quickly than lower frequencies; applying some additional dampening can help make the decay sound more natural.

DECAY TYPE chooses the filter type used to dampen the decay:
- MA: The classic damping mode as used in the pioneering Karplus-Strong paper on plucked-string synthesis.
- MA2: A linear phase damping filter that is more controllable than the MA filter.
- LP1: The MA and MA2 have a gentle dampening and may be too bright for some uses. LP1 is a more progressive filter that dampens high frequencies more than MA or MA2. Conversely, LP1 may dampen too much for some sources, but is a good fit for sounds like muted basses.
- SHELF: Compromises between MA and LP1, high frequencies are not dampened as much as with LP1, but the filter curve is more progressive than the MA or MA2 filters.
The WaveTable oscillator uses a table containing multiple waveform shapes. While a single waveform is played at any given time, modulation between the different waveforms produces distinct and unique sounds.

First, a wave is chosen. Press on the waveform menu to choose from one of the many factory preset waves or use the next/previous buttons to browse. Additionally, you can load your own audio files (or even image files) by dragging and dropping them onto the waveform area.

Audio files are imported with one slice per channel. Slices will also be imported if slices are arranged one after the other within an audio file, and the number of samples per slice is specified the end of the file name following an underscore (e.g. "MySweep_128.wav"). Image files are imported with each row of pixels as the wave cycle, with one slice per row. (Very large image files may be resampled or cropped.)

If the wave has multiple slices, the WAVE INDEX determines which slice in the wavetable will be played. Commonly, this is modulated to sweep through slices while playing. Depending on the wavetable, transitioning from slice to slice has the potential to be abrupt. There are therefore two smoothing options: SMOOTH WAVE INDEX and SMOOTH OCTAVES.

PHASE DISTORTION MODE chooses the style of the phase distortion, and PHASE DISTORTION AMOUNT sets the amount.

To set the point within the waveform cycle where it will begin when triggered, change the START PHASE control. For simple waveforms, the image of the waveform will update to show the result of the phase change.

FM provides frequency modulation of the wavetable by introducing a sine wave modulator. ENABLE turns FM on or off. DEPTH controls the amount of modulation applied. RATIO, by default, sets the frequency of the sine wave modulator relative to note pitch. Adjacent to the Ratio knob is a SNAPPING menu, which allows Ratio to be set relative to harmonic intervals (Harmonic) or in semitones (Chromatic, Octaves, Oct + 5th, Fourths, Fifths). FINE adjusts the Ratio in cents (for best results try holding the command/alt key while sweeping values). HZ changes Ratio from note-relative to absolute frequency.

The majority of the UNISON controls for the WaveTable module are the same as found on the Analog module; for details, see "[Appendix A > Oscillators > Analog > Unison]." There is one additional Unison parameter for the WaveTable oscillator, WAVE SPREAD, which sets the range of Wave Index values for each voice.
Falcon includes over 80 high-quality effects, categorized for easy navigation: Delays, Reverbs, Modulation, Filters, Equalizers, Amps and Stereo, Drive and Distortions, Dynamics, Analysis and more. With effects suited for nearly every need from creative mangling to precise sound sculpting, mixing and analysis, Falcon provides a tremendous sound design facility.
ANALOG TAPE DELAY

Analog Tape Delay is inspired by classic analog delays using reel-to-reel tape loops.

DELAY
- **DELAY** sets the length of delay, in ms or bars/beats (if tempo-synced), and **FEEDBACK** chooses the percentage of signal fed back into the module.
- **SPREAD** sets the amount of stereo spread, from zero percent (mono) or 100 percent (full stereo).

DISTORTION
- **DISTORTION MODE** set the style of distortion (Tape, Tape/Tube, and Analog), and **TRASH** set the amount of distortion.

MIX
- **DRY** and **WET** knobs set the balance between the dry (unaffected) and wet (affected) signal sent to the module’s output.
Dual Delay is a delay module with multiple controls for modifying one or both channels to produce a rich array of time-based effects, with an immersive interface to help visualize the stereo and phase adjustments being made.

DELAY
- **TIME** sets the length of delay, in ms or bars/beat (if tempo-synced). **FEEDBACK** chooses the percentage of signal fed back into the module. Both Time and Feedback have L/R controls to adjust the value for one channel or the other as a percentage of the main value.

PEAK EQ
A peak EQ located in the feedback loop. **FREQ** sets the EQ frequency. **GAIN** sets the EQ gain amount (+/-). **Q** sets the filters bandwidth.

MODULATION
- **DEPTH** chooses a detune amount for the delay taps, and **RATE** sets the speed of modulation. **OFFSET** adjusts the phase offset of the delay line LFO.

FILTERS
The filters affect only the wet signal; the dry signal is not filtered. **LOW CUT** rolls off lower frequencies, and **HIGH CUT** rolls off higher frequencies.

ROTATION
The Rotation section adjusts the phase of the **INPUT**, **OUTPUT**, and **FEEDBACK** signals.

WIDTH
- **INPUT** adjusts the stereo spread of the signal input to the effect, and **OUTPUT** adjust the spread of the output signal.

MIX
DRY/WET knob sets the balance between the dry (unaffected) and wet (affected) signal sent to the module’s output.

DISPLAY
The display shows a visual representation of how the controls will affect the **STEREO** and **PHASE** output of the module.
Diffusion spreads the signal over time, creating a simple yet versatile decay with reverb-like results.

The **DIFFUSION** control sets the amount of diffusion applied. **DIFFUSION START** chooses the time delay until diffusion begins to be applied.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
IReverb is a convolution reverb. Given an impulse response for a physical space or a piece of gear, IReverb can accurately reproduce what the input source would sound like if it were actually in that space or played through that piece of hardware.

Impulse
To load an impulse response, drag and drop an audio file to the sample area, or load one of the factory presets.

Reverb
- **Time**: sets the duration of the wet signal, specified as a percentage of the impulse response’s duration.
- **Pre Delay**: sets the amount of delay before the wet signal is heard.
- **Width**: adjusts the stereo width of the impulse response. At negative values, the left and right channels are swapped.

If there is audio passing through the IReverb while parameters are being adjusted, the dry signal will be heard momentarily. This is because convolution is a processor-intensive effect and briefly muting the processing signal is necessary to avoid pops/clicks or other artifacts.

DAMP
To filter the output, use **Low Damp** and **High Damp** to dampen the low or high frequencies, respectively.

Mix
Dry and **Wet** knobs set the balance between the dry (unaffected) and wet (affected) signal sent to the module’s output.

Impulse Files
To save the currently loaded impulse, choose **Save Impulse** to save the current file or **Save Impulse As** to save as a new file.
SparkVerb is a unique and versatile algorithmic reverb, centered around a frequency-based spectral display. The sound can be shaped with separate frequency bands, or adjusted globally.

DECAY
The central DECAY parameter controls the duration of the reverb decay. Low and Hi frequency bands can further tailor the decay response across frequencies. Choose frequency for each band with LO XOVER and HI XOVER, and set the decay ratio (relative to the main Decay time) with LO DECAY and HI DECAY. If you would rather cut the Low or Hi bands instead, use DECAY LOW-CUT and DECAY HI-CUT.

ROOM
ROOM SIZE sets the size of the simulated space, from small rooms (4 meters) to very large rooms (50 meters).
SHAPE sets the delay distribution and distortion of the room, from zero (highest echo density) to 100 (highest spectral mode density). PRE DELAY sets the amount of delay before the wet signal is heard. DENSITY changes how dense the reflections will be; lower values will be more like distinct echoes.

MODULATION
DEPTH chooses the depth of the decay modulation, in cents. RATE chooses a relative ratio, from 1/4 to 4x, for each delay line. MODE sets the modulation interpolation style; choose from Dark (default; some high-frequency decay damping), Lo-Fi (more high frequency diffusion), or Bright (more precise high-frequency response, but more processor intensive).

DIFFUSION
DIFFUSION ON/OFF toggles the short-term diffusion option. When enabled, DIFFUSION START sets the delay time until the diffusion is heard, and DIFFUSION AMOUNT sets how much diffusion will be applied.

OUTPUT
MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module’s output. WIDTH adjusts the stereo spread of the module’s output. ROLLOFF sets the cutoff frequency of an overall lowpass filter to adjust the brightness of the wet signal. Enabling FREEZE will hold the current decay infinitely, until Freeze is disabled.
Analog Chorus is a chorus module that is inspired by a popular analog effects pedal.

SPEED sets the speed of the modulation, **WIDTH** adjusts the width of the stereo spread, and **INTENSITY** sets the depth of the effect.

TRANSIENT ENHANCEMENT adjusts how much transients are affected by the module. Higher values allow for more prominent, unmodulated transients.
ANALOG FLANGER

APPENDIX A: EFFECTS » MODULATION » ANALOG FLANGER

Analog Flanger is a flanger module that is inspired by a popular analog effects pedal.

fx \ ANALOG FLANGER

SPEED sets the speed of the modulation, and **INTENSITY** sets the depth of the effect. **WIDTH** adjusts the delay times and modulation depth to increase the stereo width of the effect.

TRANSIENT ENHANCEMENT adjusts how much transients are affected by the module. Higher values allow for more prominent, unmodulated transients.
Ensemble 505 is an ensemble chorus effect, inspired by the ensemble effect section of a popular synth.

MODE chooses the style of ensemble, with mode I being a less pronounced effect and mode III being the most. A lowpass filter is applied after the ensemble, **TONE** adjusts the cutoff frequency.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
Flanger is a classic flanger effect, where the input signal is delayed with a variable time delay and fed back onto itself.

SPEED sets the speed of the modulation (in Hz, or bars/beats if tempo-synced), **DELAY TIME** adjusts the amount of delay applied, and **DEPTH** sets the depth of the effect.

FEEDBACK sets the percentage of signal fed back into the module, and **MIX** sets the balance between the dry (unaffected) and wet (affected) signal sent to the module’s output.
FREQ SHIFTER

Freq Shifter is a frequency linear shifter effect. Shifts all frequencies in the spectrum by a set amount (Hz) for interesting morphing effects, widening, sound thickening and repitching inharmonic sounds like drums.

PRE HP
- **CUTOFF** sets the cutoff frequency of the pre-highpass -24 dB/oct butterworth filter, gets rid of the low end when the shift is too high.

SHIFT
- **MIRROR** adds extra content in the low end when enabled. When the shift is positive, it creates negative frequencies. When the shift is negative, it creates mirrored low positive frequencies.
- **NOTE**: disabling MIRROR will produce aliasing for extreme frequency shifting.

COARSE / FINE shifts the spectrum up or down by a constant frequency in Hz such that harmonic sounds becomes inharmonic.

SPREAD adds a shift difference between the channels. Even a slight difference can be used to get a full, wide stereo effect.

X-OVER
- **FREQ** sets the split frequency of a -24 dB/oct crossover filter to allow preservation of the original low-frequency content.

MIX
- **WET GAIN** sets the gain of the wet signal.
- **MIX** sets the dry/wet amount.
APPENDIX A: EFFECTS » MODULATION » PHASOR

Phasor is a variable 12-order automatic phaser effect.

ORDER
- NOTCHES changes the number of filters in sequence which correlates to the number of peaks and valleys you see displayed in the visualizer.

CONTOUR
- In Phasor an LFO sweeps between two variable frequencies, these are controlled with MIN FREQ and MAX FREQ. FEEDBACK controls the amount of the effected signal reinjected.

LFO
- SPEED sets the speed of the LFO, which defaults to a free-running frequency between 0.01 Hz and 10.00 Hz. Toggling the TEMPO SYNC icon in the header allows the LFO to sync'd to the host clock and set between 1/64 tri and 32x. LFO SHAPE controls the shape of the LFO which can be set to TRIANGLE, SINE, S&H or RANDOM.

MIX
- SPREAD emphasizes the stereo effect. DEPTH sets the wet/dry mix amount.
Rotary is a highly-customizable speaker emulation effect modeled after the classic two-way rotating designs created for electric organs in the 1940s.

CABINET
- **MODEL** changes the cabinet type.
- **DRIVE** sets the amount of overdrive in the cabinet circuit.
- **GAIN** controls amount of output gain.
- **SPEED** sets the rotary style:
 - **BRAKE** = none
 - **CHORALE** = slow speeds
 - **TREMOLO** = fast speeds

 Chorale and Tremolo speeds are controllable with the **CHORALE** and **TREMOLO** knobs below.

- **HORN VOLUME** adjusts the rotating horn level.
- **DRUM VOLUME** adjusts the rotating drum level.

MICS
- **DISTANCE** sets the distance of the mics to the cabinet.
- **ANGLE** sets the angle between the mics relative to the cabinet.
- **WIDTH** sets the angular separation of the two mics.
- **SKEW** sets the disparity in distance between mics and cabinet. If set high, one mic will be close and the other will be far from the speaker.

BACKPANEL (COGWHEEL ICON) open the settings to access the back panel controls.
APPENDIX A: EFFECTS » MODULATION » ROTARY (BACK PANEL)

Directivity Type
- Horn: standard directivity with deflector
- Omni: No AM
- Cardio: Classic polar pattern (sound cancellation when horn is off-axis)
- SoftCardio: Softer version of cardioid (with no off-axis cancellation)
- Unipolar: heavy pulsating tone (pronounced AM)
- Drum: directivity with less side lobes - less wide sound (usable on horn)
- Drum Cardio: standard drum directivity (usable on horn)
- Drum Cardio 2: More pronounced off-phasesidelobes (drum exclusive)
- Drum Cardio 3: Most pronounced off-phasesidelobes (drum exclusive)

SETTINGS
DELAY COMPENSATION removes latency caused by mic distance.
SPHERICAL DAMPING controls the amount of attenuation that is applied to reflections with propagation distance
DRIVE PREEMPHASIS controls the amount of preemphasis that is applied before amplifier drive
REFLECTION controls the absorption of reflections within the cabinet
ORDER controls the order of ray traced early reflections.
RADIUS changes the length of horn and drum speakers

BOX REVERB
POWER enables diffusion
LEVEL sets the amount of diffusion
TYPE sets the Cabinet type

HORN
ACCELERATION TIME sets the horn acceleration time
DECELERATION TIME sets the horn deceleration time
FILTER sets the horn frequency response
DIRECTIVITY choose horn directivity type

DRUM
ACCELERATION TIME sets the drum acceleration time
DECELERATION TIME sets the drum deceleration time
FILTER sets the drum frequency response
DIRECTIVITY choose drum directivity type
THORUS is a variable 8-voice chorus that provides an exceptionally clear effect and a number of useful color controls.

CHORUS
- **VOICES** set the number of chorus voices utilized from 2-8.
- **SPEED** sets the chorus frequency from 0.1 Hz to 1.0 Hz.
- **DEPTH** sets the pitch modulation depth from 1 to 40 cents.
- **MODE** influences the perceived stereo effect and can set to either Standard or Wide.

COLOR
- **CROSSOVER** sets the crossover frequency between the Low (pass-through) signal and the High (chorused) signal.
- **LOW GAIN** controls the level of the low (pass-through) signal.
- **EDGE** controls the feedback amount of the High (chorused) signal.
- **TONE** controls the frequency of the low-pass filter.

OUTPUT
- **MIX** controls the wet/dry mix amount of the effect.
Analog Filter is a multimode filter inspired by the filter section found on a popular American analog synth.

MODE chooses the type of filter: low pass (LP), high pass (HP), or band pass (BP).

CUTOFF sets the frequency for the filter; the note name corresponding to the frequency is also displayed, for example, **2.00 KHZ (B5)**. **RESONANCE** adjusts how much the cutoff frequency is emphasized.
BIQUAD FILTER

The classic swiss-army knife multimode filter.

MODE chooses the type of filter: low pass (LP), high pass (HP), band pass (BP), or notch.

CUTOFF sets the frequency for the filter; the note name corresponding to the frequency is also displayed, for example, **2.00 KHZ (B5)**. **RESONANCE** adjusts how much the cutoff frequency is emphasized.
Brickwall Filter is a filter with a steep slope, for "brickwall" filtering beyond the cutoff frequency.

CUTOFF sets the frequency for the filter; the note name corresponding to the frequency is also displayed, for example, **2.00 KHZ (B5)**.

TYPE chooses the type of filter: low pass (LP) or high pass (HP). **SLOPE** sets how sharply the filter slopes downward at the cutoff frequency.

SOFT BYPASS lets the signal continue to pass through the module, but the output signal is unaffected. This is an ideal way to bypass the effect while playing, as the regular bypass can potentially pop/click if enabled/disabled during playback.
A classic comb filter, where a time delayed version of the signal is fed back into itself and added or subtracted. This results in a unique frequency peaks and valleys where the phase of the signals combine or cancel each other out.

MODE chooses the type of comb filter applied: Plus (frequencies are added) or Minus (frequencies are subtracted).

CUTOFF sets the frequency for the filter, the note name corresponding to the frequency is also displayed, for example, **2.00 KHZ (B5)**. **RESONANCE** adjusts how much the cutoff frequency is emphasized.
Crossover Filter has a selectable filter type and variable crossover frequencies for the affected band.

TYPE chooses the type of filter: low pass (LP), high pass (HP), or band pass (BP).

LOW-MID FREQ and **MID-HIGH FREQ** set the frequency boundaries for the crossover. When Low Pass is chosen, only the Low-Mid knob can be adjusted; the Mid-High Freq knob is disabled. Likewise, when High Pass is chosen, only the Mid-High knob can be adjusted. Both knobs can be adjusted when Band Pass is chosen.
Digital Filter is a multi-mode filter with variable slope ranging from 6 to 96 dB/oct, spread and keytracking.

Mode sets the filter mode and filter slope. Click the upper button to switch the filter mode: low-pass, high-pass, band-pass, notch, low-shelf, high-shelf and peak.

Frequency sets the frequency for the filter.

Key tracking adjusts how the cutoff frequency is adjusted relative to the note played.

Spread emphasizes the stereo effect.

Q adjusts the filter resonance.

Gain adjusts the filter level in dB.

Bandwidth changes the frequency width.
LowPass 12 is a 12 dB/octave low pass filter. **CUTOFF** sets the frequency for the filter; the note name corresponding to the frequency is also displayed, for example, 2.00 KHZ (B5). **RESONANCE** adjusts how much the cutoff frequency is emphasized.
LowPass 24 is a 24 dB/octave low pass filter.

CUTOFF sets the frequency for the filter; the note name corresponding to the frequency is also displayed, for example, **2.00 KHZ** (B5). **RESONANCE** adjusts how much the cutoff frequency is emphasized.
A gentle and very efficient 6dB/ octave lowpass or highpass filter. The most efficient of all filters by far.

MODE chooses the type of filter: low pass or high pass.

CUTOFF sets the frequency for the filter; the note name corresponding to the frequency is also displayed, for example, **2.00 KHZ (B5)**. **KEY TRACKING** adjusts how the cutoff frequency is adjusted relative to the note played.
A manual version of the Phasor effect

ORDER
NOTCHES changes the number of filters in sequence which correlates to the number of peaks and valleys you see displayed in the visualizer.

CONTOUR
FREQ sets the filter frequency. **FEEDBACK** controls the amount of the effected signal reinjected.

MIX
SPREAD emphasizes the stereo effect. **DEPTH** controls the wet/dry mix amount.
Rez Filter is inspired by the filter section found on a popular Japanese synth.

MODE chooses the type of filter: low pass (LP), high pass (HP), or band pass (BP).

CUTOFF sets the frequency for the filter; the note name corresponding to the frequency is also displayed, for example, **2.00 KHZ (B5)**. **RESONANCE** adjusts how much the cutoff frequency is emphasized.
SVF is a state variable multimode filter.

CUTOFF sets the frequency for the filter; the note name corresponding to the frequency is also displayed, for example, **2.00 KHZ (B5)**. **RESONANCE** adjusts how much the cutoff frequency is emphasized.

KEY TRACKING adjusts how the cutoff frequency is adjusted relative to the note played.

FILTER MODE chooses the type of filter: low pass (LP), high pass (HP), band pass (BP), peak, or notch. **Drive Mode** chooses the style of overdrive, linear or soft.
UVI Filter is a filter that is continuously adjustable between low pass and high pass modes.

CUTOFF sets the type and amount of filter. At the center position, no filter is applied. To the right of center, a high-pass filter is applied, and further to the right raises the cutoff frequency. Likewise, further left of center applies a low-pass filter and drops the cutoff frequency. The **Q** control sets the filter's shape.

If you load presets saved in older versions of MachFive or UVI Workstation, **MAPPING MODE** will be set to Legacy; otherwise, use Standard.
Vowel Filter is a dual filter version of the classic talkbox effect.

MODE chooses the style of filter: low pass (LP2), band pass (BP2), or high pass (HP2). Two vowel sounds can be chosen for the filter, set with **FILTER A** and **FILTER B**, and the blend of the two is controlled with **MORPH**. The **Q** control sets the filter’s shape.

Set the number of formants with **NUM FORMANTS**, the formant frequencies are shifted higher or lower with the **FORMANT** control.
WahWah is a wah filter effect with full manual control over the wah amount, same as with an effect pedal.

Wah sets the filter frequency, which is commonly modulated or controlled with a pedal or other MIDI controller. **Drive** sets the amount of overdrive applied, and **Model** sets the style to a variety of common wah pedal models.

Master sets the output gain level.
APPENDIX A: EFFECTS » FILTER » XPANDER FILTER

XPANDER FILTER

A highly-customizable multi-mode filter with 37 shapes, vintage and modern algorithms, built-in saturation and oversampling.

MODE

- **MODE** sets the filter shape. Click the image to choose between 37 different options or use the left/right arrows to scroll through them.

 - Filter types include:
 - **LP** - low pass
 - **HP** - high pass
 - **BP** - band pass
 - **AP** - all pass
 - **PK** - peak filter
 - **T** - twin filter

 - The number indicates the order of the filter (e.g. LP1 is a low pass filter with a 6 dB/octave slope).

FILTER

- **CUTOFF** sets the frequency for the filter; the note name of the corresponding frequency is also displayed (e.g. 2.00 kHz (B5)).
- **RESONANCE** adjusts how much emphasis is given to the cutoff frequency.
- **THICKNESS** overdrives the filter at lower frequencies to compensate for DC gain drop (e.g. crank it when you want more OOMPH than SIZZLE).
- **KEY TRACKING** adjusts how the cutoff frequency is adjusted relative to the note played.
- **ALGORITHM** allows you to choose between two modes:
 - **MODE I** emulates a classic constant-Q filter solver,
 - **MODE II** is a modern zero-delay filter solver. **2X** enables oversampling for the filter and provides the cleanest results when active.

OVERDRIVE

- **TYPE** sets the style of overdrive used: Soft Saturation, Hard Clip, or Linear.
- **AMOUNT** sets the amount of overdrive used.
The 3 Band Shelf has Low, Mid, and High bands. The Mid band is a bell curve, while the Low and High bands are shelves.

The crossover points between the bands are set with the LOW/MID FREQ and MID/HIGH FREQ controls.

Each of the three bands have a GAIN control for boosting or cutting its frequency.
APPENDIX A: EFFECTS » EQUALIZER » BIG PI TONE

An emulation of the tone circuit in a popular fuzzbox guitar pedal.

TONE adjusts the amount and type of filter applied. At zero a lowpass filter is applied, at 10.00 a highpass filter is applied, and the interim values are a blend of the two. The blended result is similar to a shelving filter with a notch in the middle.
CONVOLVER

Convolver is a simple convolution processor, ideally suited for emulating EQs, cabinets, and so on. For reverb, the IReverb effect is recommended; see: [APPENDIX A > Effects > Reverb > IReverb]

IMPULSE
To load an IMPULSE RESPONSE, drag and drop an audio file to the sample area.

MIX
DRY and WET knobs set the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.

IMPULSE FILES
To save the currently loaded impulse, use the Preset File menu and choose SAVE IMPULSE to save the current file or SAVE IMPULSE AS to save as a new file.
Digitak EQ is a parametric EQ with up to 16 bands, variable filter shapes, L/R and M/S modes, interactive graphic display, transpose and keytracking.

MODE sets the stereo mode L/R or M/S.

The 16 bands have each control of:
- Bypass (power) button
- Band selector
- Link switch to control left or right channel independently or stereo link of the band.
- EQ mode to choose the shape of the band: low-pass, high-pass, band-pass, notch, low-shelf, high-shelf and peak
- Frequency sets the frequency of the band.
- Q adjusts the filter resonance
- Gain adjusts the band level in dB
- Bandwidth changes the frequency width

TRANSPOSE shifts all band frequency.

GAIN adjusts overall output level.

SCALE is scaling the all band’s gain.

In addition to the knobs and toggle switches, the bands can also be edited graphically in the frequency graph:
- Press and drag a point to adjust its frequency by dragging right/left, or its gain by dragging up/down.
- Press and drag a band’s color bars to adjust Q.
- Right-click a point to enable/disable the band.
- Double-click a point to return it to its default value.
- When a band is selected, an information box is displayed in the upper left. As the band is adjusted, its Gain, Frequency, and Q values update in realtime.

To view a larger graph, drag the bottom edge of the module to resize it.
The Tilt module has two shelf bands, a low shelf and a high shelf, which are applied inversely. The **TILT** control sets the amount of gain applied each to band. With negative values, the low shelf is boosted and the high shelf is cut; the opposite occurs with positive values.

CUTOFF sets the frequency for the EQ; the note name corresponding to the frequency is also displayed, for example, **2.00 KHZ (B5)**.
TONE STACK

Tone Stack emulates the tone controls found on many common amplifier heads.

MODEL chooses the style of amplifier head, and the BASS, MID, and TREBLE controls set the relative levels for each tone band. GAIN sets the module's output gain, as a percentage of its input.
Autopan varies stereo panning with an LFO.

SPEED sets how quickly one auto-pan cycle is completed, in Hz or bars/beats (if tempo-synced).

DEPTH sets how far across the stereo field the auto-pan will cover, with 100 percent covering the full distance from hard left to hard right.

MODE chooses the pan law for the auto-pan cycle.
Gain is a simple level adjustment module, used to boost or cut the signal level.

VOLUME sets the amount of boost or cut, from +12 dB to -∞.
Gain Matrix sets the gain level and phase of each channel. This allows for simple per-channel gain adjustments, or for specialized gain/phase transformations. Factory presets provide some common transformations, such as decoding mid-side to stereo.

Gain Matrix also supports multi-channel configurations, such as quad, 5.1, 7.1, and others.

The **INPUT** channels are listed down the side, and the **OUTPUT** channels are listed across the top. Each in/out relationship can be edited by typing in a new value or clicking and dragging the value:

- At 1.00, the signal is passed through at full strength and its original phase
- At 0.00, output is silenced for that channel
- At -1.00, the output is passed through at full strength but with the opposite phase

Gain Matrix also supports multi-channel configurations, such as quad, 5.1, 7.1, and others.
Tremolo varies amplitude with an LFO.

FREQUENCY sets how quickly the LFO cycle is completed, in Hz or bars/beats (if tempo-synced). **DEPTH** sets how far across the gain range the cycle will cover, with 100 percent covering the full distance from \rightarrow to 0 dBFS.
UVI Wide is a stereo width enhancer with a high-shelf filter.

WIDTH adjusts the stereo spread of the module's output. At zero, the stereo image of the input signal is unaffected. Positive values increase the stereo spread and negative values reduce it, down to a mono signal at -100%.

DELAY sets the amount of delay applied to one channel to help create a wider stereo image.

EXTRA WIDTH provides additional frequency control by way of a high-shelf EQ. **EXTRA WIDTH FREQ** sets the EQ frequency, **EXTRA WIDTH GAIN** controls the EQ gain adjustment (+/-).
Analog Crunch is inspired by overdrive/distortion effect pedals commonly used with electric guitars.

INPUT GAIN sets the gain adjustment into the module, before any distortion is applied.

OVERDRIVE and **TRASH** set the amount and character of the distortion, and **MIX** sets the balance between the clean and overdriven signals.

OUTPUT GAIN sets the final, post-distortion gain adjustment.
Diode Clipper is a circuit-modelled diode clipping stage similar to those found in many overdrive stomp boxes.

CLIPPER
- **DRIVE** controls the overall effect intensity.
- **ASYMMETRY** shifts the saturation symmetry between the two diodes, effecting the even/odd harmonic ratio.

CONTOUR
- The circuit of Diode Clipper includes a passive non-linear, dynamic-driven HP/LP filter that exhibits effects like hysteresis when saturated. **TONE** sets the frequency of the LP filter, while **HIGH PASS** controls the HP filter frequency.
Drive offers a straight-ahead drive/distortion, with three different flavors of distortion.

MODE set the style of drive (Analog, Mild, or Strong), and **AMOUNT** sets the amount of drive.

Use **OVERSAMPLING** to set the amount of oversampling applied (if any), from 2x to 16x. As oversampling is processor intensive, it's recommended to apply oversampling as little as is necessary to reduce unwanted aliasing. Often, no oversampling will be needed.
Exciter is a classic exciter effect, adding brightness and saturation.

AMOUNT chooses the amount of excitation applied. **MIX** sets the balance between the clean and excited signals. **MODE** sets the style of exciter, using common characteristics of Tape or Tube exciters.
Fuzz is inspired by classic fuzz guitar and bass effect pedals.

INPUT GAIN sets the gain adjustment into the module, before any fuzz is applied.

OVERDRIVE and **TRASH** set the amount and character of the fuzz, and **MIX** sets the balance between the clean and fuzzed signals.

OUTPUT GAIN sets the final, post-fuzz gain adjustment.
Guitar Boxes emulates a guitar cabinet, with multiple cabinet models and mic types.

MIX sets the balance between the original and amplified signals.

SEPARATION sets the amount of delay, in ms, from amplifier to the microphone. **SPREAD** sets the amount of stereo spread, from zero percent (mono) or 100 percent (full stereo).

MODEL chooses the style of amplifier, from well-known amp models to general device types to unusual FX simulations. **MIC TYPE** adjusts the characteristic of the microphone capturing the amplified signal, as a Dynamic, Condenser, or Ribbon mic.
OVERDRIVE

Overdrive emulates overdrive distortion commonly used on guitars.

INPUT GAIN sets the gain adjustment into the module, before any distortion is applied.

OVERDRIVE and **TRASH** set the amount and character of the distortion, and **MIX** sets the balance between the clean and overdriven signals.

OUTPUT GAIN sets the final, post-distortion gain adjustment.
Wave Shaper distorts the input signal by transforming the shape of the waveform, which often results in heavily distorted sounds.

Field descriptions:

INPUT GAIN sets the gain adjustment into the module, and **PRE FREQ** sets the frequency of lowpass filter applied before any waveshaping.

Choose the **WAVE SHAPE** by clicking the waveform selecting a wave from the menu, then use **AMOUNT** and **KNEE** to adjust characteristics of the wave shape.

Use **OVERSAMPLING** to set the amount of oversampling applied (if any), from 2x to 16x. As oversampling is processor intensive, it’s recommended to apply oversampling as little as is necessary to reduce unwanted aliasing. Often, no oversampling will be needed.

POST FREQ sets the frequency of a highpass filter applied after waveshaping. **OUTPUT GAIN** sets the gain adjustment, after waveshaping is applied.

MIX sets the balance between the clean and overdriven signals.
The 3 Band Compressor is a multi-band version of the compressor, with adjustable crossover frequencies.

The 3 Band Compressor has Low, Mid, and High bands. The crossover points between the bands are set with the LOW/MID FREQ and MID/HIGH FREQ controls.

Each of the three bands have standard compressor controls: THRESHOLD, RATIO, ATTACK, RELEASE, MAKEUP. For more information on compressor settings, see: [Appendix A: Modules > Effects > Dynamic > Compressor Expander]
The 3 Band Limiter is a multi-band version of the Studio Limiter, with adjustable crossover frequencies.

Each of the three bands have standard limiter controls: THRESHOLD, MARGIN, and RELEASE. For more information on limiter settings, see:

[Appendix A: Modules > Effects > Dynamic > Studio Limiter]
COMPRESSOR EXPANDER

Compressor Expander is a dual dynamics processor — the compressor tames signal peaks over a chosen threshold, and the expander gates the signal below a second, independent threshold.

Both the compressor and gate have Threshold, Ratio, Attack, and Release controls. **THRESHOLD** sets the level at which the compressor or gate will be applied. **RATIO** sets the ratio between input gain and output gain. **ATTACK** and **RELEASE** set the speed at which the compressor or gate begins or stops processing the signal after it has crossed the threshold.

MAKEUP GAIN applies a manual gain adjustment to compensate for the gain reduction of the compressor. Or, to have makeup gain applied dynamically, enable **AUTO MAKEUP**.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module’s output.

Lastly, the **INPUT METER** on the left side of the module displays the level of the input signal, and the **GAIN REDUCTION METER** on the right side of the module displays the amount of gain reduction applied. Note that the righthand meter is not an output meter.
Gate is a traditional gate, silencing signals below a chosen threshold.

THRESHOLD sets the level at which the gate will be applied. **ATTACK** and **RELEASE** set the speed at which the gate begins or stops processing the signal after it has crossed the threshold.
Maximizer is a look-ahead limiter with a graphical timeline to visualize the dynamic range of the input and output.

THRESHOLD sets the level at which limiting will be applied, and **CEILING** sets the maximum output level.

LOOKAHEAD sets the amount of time the module will lookahead at the input signal; longer lookahead times can achieve a better response for transients and other sudden changes in amplitude.

RELEASE sets the speed at which the limiter stops processing the signal after it has fallen below the threshold.

The **INPUT METER** on the left side of the module displays the level of the input signal, and the **GAIN REDUCTION METER** on the right side of the module displays the amount of gain reduction applied. Note that the righthand meter is not an output meter.

The **TIMELINE** displays the input signal and gain reduction over time. The blue graph rises from the bottom of the timeline and indicates the amplitude of the input signal; the red graph grows downward from the top of the timeline and indicates gain reduction.
The Studio Limiter is a high-quality limiter, suited for individual parts or for full stereo mixes.

THRESHOLD sets the level at which limiting will be applied. **MARGIN** sets the maximum output level, which can also be thought of as the margin between the maximum signal output by the limiter and zero dBFS. **RELEASE** sets the speed at which the limiter stops processing the signal after it has fallen below the threshold.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
The Phase Meter displays the phase correlation of the signal. When the signal is fully mono, a vertical bar is displayed; with stereo channels that are fully out of phase, a horizontal bar is displayed.

REFRESH sets how quickly the audio signal is measured, and **DECAY** sets how quickly the measurement fades from the display.

AMP MODE chooses a scale for the amplitude of the input signal, Linear or dB.

To view a larger meter, drag the bottom edge of the module to resize it.

Press the **EXTERNAL WINDOW** button in the module title bar to open the meter in a separate window to view it even larger.
SPECTRUM ANALYZER

APPENDIX A: EFFECTS » ANALYSIS » SPECTRUM ANALYZER

The Spectrum Analyzer displays the frequency content of the signal. Frequencies are displayed on the X-axis, increasing from left to right, and amplitude is displayed on the Y-axis, increasing from bottom to top.

- **FFT SIZE** defines the length of the frequency sampling window; larger sizes are more precise, but require more processing power. WINDOW TYPE chooses the function used for sampling.
- **MAX DB** sets the maximum value that can be displayed in the analyzer (the very top of the graph), and DB RANGE sets the range below the maximum value that will be displayed. X SCALE chooses the scale used for the horizontal axis: Linear, Log, Semitones, or 3rd Octave. The labels on the left and top sides of the graph update as you adjust the Max dB, dB range, and X scale settings.
- **DRAW TYPE** chooses how the frequency response will be drawn on the graph: as a single continuous line (Line), as multiple thin lines (Bin), or thick bars (Bands).
- **REFRESH** sets how quickly the graph is re-drawn.

To view a larger graph, drag the bottom edge of the module to resize it.

Press the EXTERNAL WINDOW button in the module title bar to open the graph in a separate window to view it even larger.
The Tuner is a chromatic tuner with a needle-style meter, accurate to 1 cent increments. The Tuner is a helpful tool when adjusting a sample’s pitch with its keygroup Fine Tune parameter.

REFRESH sets how quickly the tuner reacts as the audio signal changes.

FREQ MIN and **FREQ MAX** set boundaries for the lowest and highest frequencies that the tuner will detect.

To view a larger tuner, drag the bottom edge of the module to resize it.

Press the **EXTERNAL WINDOW** button in the module title bar to open the tuner in a separate window to view it even larger.
The Effect Rack creates a new effects path inline where the Effect Rack module is added. Macros are added for front-panel control of the effects that are added to the Effect Rack’s FX chain.

When the Effect Rack is added, it creates eight MACROS and one FX CHAIN. To view the FX chain, choose the FX chain in the Tree view or via the Effects Tab’s navigation nodes. You can then add the desired effects to the FX chain.

The Effect Rack macros can be used as FRONT PANEL controls for parameters on effects in the FX chain. To assign a macro, right-click a parameter on an effect in the FX Chain and choose ASSIGN TO EFFECT RACK MACRO. To change a macro’s name, double-click the macro’s name on the Effect Rack and enter a new name.

The overall level of the FX chain can be adjusted in the Tree view, or the chain can be disabled with the POWER button. You can also create additional FX chains under the same Effect Rack module, by right-clicking its node in the Tree view and choosing ADD FX CHAIN.
Redux is a resampler for creating lo-fi effects such as extreme bit reduction.

<table>
<thead>
<tr>
<th>RESAMPLING</th>
<th>FILTER</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQUENCY</td>
<td>sets the resampling frequency, with JITTER introducing time variations to the resampling.</td>
<td>Filter Position</td>
</tr>
<tr>
<td>Bits</td>
<td>sets the bit depth, and DITHER sets the amount of dither (a type of low-level randomized noise).</td>
<td>Filter Freq</td>
</tr>
<tr>
<td>Type</td>
<td>chooses the style of resampling: DECIMATE inserts zeroes in between sampled values, and BLOCKER holds a sampled value until the next sampled value.</td>
<td>Filter Mode</td>
</tr>
<tr>
<td>Quantize Law</td>
<td>sets the type of quantization to one of two common algorithms: linear or mu-law (also known as μ-law).</td>
<td>Filter Res</td>
</tr>
<tr>
<td>Antialiasing</td>
<td>The ANTIALIASING toggle sets whether an anti-aliasing filter is enabled. When disabled, frequencies over the sampling rate may WRAP AROUND when resampled and cause unusual harmonics.</td>
<td>Mix</td>
</tr>
</tbody>
</table>

FILTER
- **FILTER POSITION** chooses whether the filter is off, before resampling (pre), or after (post).
- **FILTER MODE** chooses the type of filter: low pass (LP), high pass (HP), or band pass (BP).
- **FILTER FREQUENCY** sets the frequency for the filter, and **FILTER RESONANCE** adjusts how much the cutoff frequency is emphasized.

OUTPUT
- **MIX** sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
UVinyl is a vinyl simulation effect.

VINYL
Choose the general vinyl characteristics with **YEAR**, **RPM TYPE**, and amount of **WEAR**.

NOISE
To add noise to the record, add **ELECTRICAL NOISE** or **MECHANICAL NOISE** with their Gain controls.

DUST AND SCRATCH
To add **DAMAGE** to the record, add **DUST** or **SCRATCH** with their Gain controls. The relative frequency of dust and scratches can be adjusted with the **DUST AMOUNT** and **SCRATCH AMOUNT** controls.

OUTPUT
The signal can be folded down to mono with the **MONO** toggle.
The Legacy FX modules were included in past versions of MachFive and UVI Workstation. When older program and multi files are loaded, Legacy FX modules may be recalled.

For new programs and multis, it's recommended to use the standard effects modules.
FX Delay is a stereo delay with auto-panned stereo modulation.

Delay Time sets the length of delay, in ms or bars/beats (if tempo-synced), and **Feedback** chooses the percentage of signal fed back into the module.

Cutoff sets the type and amount of filter. At the center position, no filter is applied. To the right of center, a high-pass filter is applied, and further to the right raises the cutoff frequency. Likewise, further left of center applies a low-pass filter and drops the cutoff frequency.

The delay is also auto-panned, **Speed** controls the auto-pan rate, in Hz or bars/beats (if tempo-synced).

Mix sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
Fat Delay uses multiple delay lines and diffusion to produce a dense delay tail.

- **Delay Time** sets the length of delay, in ms or bars/beats (if tempo-synced), and **Feedback** chooses the percentage of signal fed back into the module.
- **Diffusion** sets the density of the delay taps.
- **Cutoff** sets the type and amount of filter. At the center position, no filter is applied. To the right of center, a high-pass filter is applied, and further to the right raises the cutoff frequency. Likewise, further left of center applies a low-pass filter and drops the cutoff frequency.
- **Mix** sets the balance between the dry (unaffected) and wet (affected) signal sent to the module’s output.
Ping Pong Delay is a standard delay with additional stereo processing.

DELAY TIME sets the length of delay, in ms or bars/beats (if tempo-synced), and **FEEDBACK** chooses the percentage of signal fed back into the module.

CUTOFF sets the type and amount of filter. At the center position, no filter is applied. To the right of center, a high-pass filter is applied, and further to the right raises the cutoff frequency. Likewise, further left of center applies a low-pass filter and drops the cutoff frequency.

SPREAD controls the stereo spread of the module's output. At zero, the output is mono; negative values feed the input to the left channel first, and positive values to the right channel first.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
SIMPLE DELAY

Delay is a general-purpose delay. **DELAY TIME** sets the length of delay, in ms or bars/beats (if tempo-synced), and **FEEDBACK** chooses the percentage of signal fed back into the module.

CUTOFF sets the type and amount of filter. At the center position, no filter is applied. To the right of center, a high-pass filter is applied, and further to the right raises the cutoff frequency. Likewise, further left of center applies a low-pass filter and drops the cutoff frequency.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.

Simple Delay is a general-purpose delay.
Stereo Delay offers a configurable stereo delay with separate delay paths for the left and right channels. The left and right channels have independent delay time assignments; **Left Delay Time** and **Right Delay Time** set the length of each channel's delay, in ms or bars/beats (if tempo-synced). **Feedback** chooses the percentage of signal fed back into the module. **Cutoff** sets the type and amount of filter. At the center position, no filter is applied. To the right of center, a high-pass filter is applied, and further to the right raises the cutoff frequency. Likewise, further left of center applies a low-pass filter and drops the cutoff frequency. **Mix** sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
Gate Reverb provides a gate for cutting off the reverb decay abruptly.

- **Pre Delay** sets the amount of delay before the wet signal is heard, in ms or bars/beats (if tempo-synced), and **Decay Time** sets the duration of the reverb decay.
- **Gate Time** sets the time duration, in ms or bars/beats (if tempo-synced), until the gate is applied to the decaying signal.
- **High Damp** sets the amount of dampening applied to high frequencies.
- **Mix** sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
PLAIN REVERB

Plain Reverb is a general-purpose reverb.

DECAY TIME sets the duration of the reverb decay, and **HIGH DAMP** chooses the amount of dampening applied to high frequencies.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
PREDELAY VERB

Predelay Verb is a standard reverb fed through a delay line.

PRE DELAY sets the amount of delay before the wet signal is heard, in ms or bars/beats (if tempo-synced), and **DECAY TIME** sets the duration of the reverb decay. **HIGH DAMP** chooses the amount of dampening applied to high frequencies.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
Simple Reverb provides an optional lowpass or highpass filter before the signal is fed into the reverb.

Cutoff sets the type and amount of filter. At the center position, no filter is applied. To the right of center, a high-pass filter is applied, and further to the right raises the cutoff frequency. Likewise, further left of center applies a low-pass filter and drops the cutoff frequency.

Decay Time sets the duration of the reverb decay, and **High Damp** chooses the amount of dampening applied to high frequencies.

Mix sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
Chorus is a classic chorus, where the input signal is combined with multiple time- and pitch-modulated variations of the input signal for a shimmering unison effect.

SPEED sets the speed of the modulation (in Hz, or bars/beats if tempo-synced). **DELAY TIME** adjusts the amount of delay applied, and **DEPTH** sets the depth of the effect.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
Cross Phaser is a phaser that also applies auto-panning to produce a wider and more varied effect.

SPEED sets the speed of the modulation (in Hz, or bars/beats if tempo-synced), and **MIN FREQ** and **MAX FREQ** set the minimum and maximum frequencies of the frequency sweep.

DEPTH sets the depth of the effect, and **FEEDBACK** sets the percentage of signal fed back into the module.
Phaser is a classic phaser effect, where the input signal is phase modulated and fed back onto itself.

SPEED sets the speed of the modulation (in Hz, or bars/beats if tempo-synced), and MIN FREQ and MAX FREQ set the minimum and maximum frequencies of the frequency sweep.

DEPTH sets the depth of the effect, and FEEDBACK sets the percentage of signal fed back into the module.
Auto Wah is a wah pedal effect, with its filter frequency set automatically from the module's input level.

Gain sets the input level to the module. **Sensitivity** sets the intensity of the auto wah filter, and the **Q** control sets the filter's shape. **Drive** applies post-filter overdrive.
The FX Filter module has two filters, lowpass and highpass, applied in series.

LOW FREQ enables and sets the cutoff frequency for the lowpass filter; likewise, **HIGH FREQ** enables and applies the highpass filter. The **LOW Q** and **HIGH Q** controls set the shape of each filter band.
Talkbox simulates the vowel shaping and filtering of a classic talkbox effect pedal.

FILTER MODE chooses the type of filter: low pass (LP), high pass (HP), or band pass (BP). **VOWEL MODE** chooses the vowel sound for the filter.

CUTOFF sets the frequency for the filter, the note name corresponding to the frequency is also displayed, for example, 2.00 KHZ (B5). **RESONANCE** adjusts how much the cutoff frequency is emphasized.
The 2 Band EQ has Low and High bands.

Both bands have a **Frequency** control for setting its central frequency and a **Gain** control for boosting or cutting around that frequency.
APPENDIX A: LEGACY EFFECTS » EQUALIZER » 3 BAND EQ

The 3 Band EQ has Low, Mid, and High bands. The Low and High bands have fixed frequency assignments, while the Mid band is adjustable.

The Mid band has a FREQUENCY control for setting the band’s central frequency and a Q control for the band’s shape. Each of the three bands have a GAIN control for boosting or cutting its frequency.
The 8 Band EQ is a parametric EQ with multiple types of bands, all laid out on a large, graphical display.

The eight bands are:
- two rolloffs: high-pass (HP) and low-pass (LP)
- two shelves: low-shelf (L SHELF) and high-shelf (H SHELF)
- four peaks: PEAK1, PEAK2, PEAK3, PEAK4

Each band can be enabled or bypassed by pressing its name. When enabled, the button is colored in.

All bands have a fully variable FREQUENCY. The high-pass and low-pass bands have a fixed slope, while the remaining shelf and peak bands have adjustable GAIN and Q.

In addition to the knobs and toggle switches, the bands can also be edited graphically in the frequency graph:
- Press and drag a point to adjust its frequency by dragging right/left, or its gain by dragging up/down.
- Press and drag a band's color bars to adjust Q.
- Right-click a point to enable/disable the band.
- Double-click a point to return it to its default value.

When a band is selected, an information box is displayed in the upper left. As the band is adjusted, its Gain, Frequency, and Q values update in realtime.

To view a larger graph, drag the bottom edge of the module to resize it.

Press the EXTERNAL WINDOW button in the module title bar to open the graph in a separate window to view it even larger.
Rotary Simple is a single-speaker emulation of a rotary speaker.

SPEED sets the rate of the speaker rotation, and **DEPTH** sets the intensity of the effect; at higher Depth values, the pitch is also markedly affected.

Mixing the speaker is also simulated, with **MIC DISTANCE** setting the distance of the mic from the speaker.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module’s output.
Rotary Speaker is a dual-speaker emulation of a rotary speaker, with an adjustable crossover.

CROSS FREQUENCY sets the crossover point for the Low and High frequency bands. **LOW SPEED** and **HIGH SPEED** set the rate of the speaker rotation for each band, and **DEPTH** sets the intensity of the effect; at higher Depth values, the pitch is also markedly affected.

Miking the speaker is also simulated, with **MIC DISTANCE** setting the distance of the mic from the speaker.
Double Drive is a filter sandwiched by two drive stages.

- **PRE DRIVE** sets the initial amount of overdrive, followed by the filters. **HIGH FREQ** and **LOW FREQ** controls set the amount of high pass and low pass filter applied (if any). Post-filter drive is applied with **POST DRIVE**, with **GAIN** providing the final output level adjustment.
UVI Drive is a drive module with a post-drive UVI Filter included.

DRIVE sets the initial amount of drive applied, followed by the filter.

CUTOFF sets the type and amount of filter. At the center position, no filter is applied. To the right of center, a high-pass filter is applied, and further to the right raises the cutoff frequency. Likewise, further left of center applies a low-pass filter and drops the cutoff frequency. The **Q** control sets the filter's shape.

GAIN provides the final output level adjustment.
COMPRESSOR provides standard dynamics compression.

THRESHOLD sets the level at which the compressor will be applied; when applied, **RATIO** sets the amount of compression applied. **ATTACK** and **RELEASE** set the speed at which the compressor begins or stops processing the signal after it has crossed the threshold.

MAKEUP applies a manual gain adjustment to compensate for the gain reduction of the compressor.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
Limiter is a standard limiter, compressing the signal with a fixed ratio that is higher than the ratios available with the Compressor.

Gain sets the input level to the module. **Threshold** sets the level at which limiting will be applied, and **Ceiling** sets the maximum output level. **Release** sets the speed at which the limiter stops processing the signal after it has fallen below the threshold.

Mix sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
UVI Mastering is a mastering processor for stereo mixes, such as Falcon's main outs. It provides multiband compression, a limiter, and tube saturation.

Each band has a **VOLUME** control, which sets the gain of the band before the combined signal is fed to the compressor, limiter, and tube saturator. **COMP ATTACK** and **COMP THRESHOLD** set the compressor attack time and threshold, followed by the **LIMITER THRESHOLD**, and finally, **TUBE AMOUNT**.
Beat Repeat slices the incoming audio on the grid that you specify, and when activated will repeat the most recent slice. This enables glitch effects and variations in a live performance or looped samples.

ACTIVE enables beat repeating: the most recent beat will be repeated until beat repeating is disabled. Once disabled, playback continues from where it left off.

TIME sets the length of time that will be repeated, in ms or bars/beats (if tempo-synced).

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
Ring Modulator combines the input signal with a modulation frequency, and both subtracts and adds the modulation frequency to the input frequency. For example, with an input of 600 Hz and a modulation frequency of 250 Hz, the output will include both 350 Hz (600 minus 250) and 850 Hz (600 plus 250).

FREQUENCY sets the frequency of the modulation signal.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module’s output.
Robotizer starts with a ring modulator, with some additional modulations.

- **Frequency** sets the frequency of the ring modulation, and **Depth** adjusts the intensity of the modulation. **FM** controls a modulation signal that modifies the ring modulation frequency.

- **Cutoff** sets the type and amount of filter. At the center position, no filter is applied. To the right of center, a high-pass filter is applied, and further to the right raises the cutoff frequency. Likewise, further left of center applies a low-pass filter and drops the cutoff frequency.

- **Mix** sets the balance between the dry (unaffected) and wet (affected) signal sent to the module's output.
UVI Destructor is a resampler and bit reducer, with optional overdrive and filter following the bit depth and sample rate reduction.

BIT SIZE sets the bit depth, and **SAMPLE RATE** sets the resampling frequency.

DRIVE sets the amount of pre-filter overdrive applied.

CUTOFF sets the type and amount of filter. At the center position, no filter is applied. To the right of center, a high-pass filter is applied, and further to the right raises the cutoff frequency. Likewise, further left of center applies a low-pass filter and drops the cutoff frequency.

MIX sets the balance between the dry (unaffected) and wet (affected) signal sent to the module’s output.
Falcon’s Event section provides control over pre-synthesis data, namely the manipulation, analysis or generation of MIDI. Event processors can do anything from arpeggiating incoming notes or strumming them like a guitar to applying micro tunings, playing back MIDI files or creating generative sequences.
The Arpeggiator is a classic synthesizer effect which modifies incoming notes and plays them in programmable pattern to create a dynamic sequence. Falcon’s arpeggiator provides many advanced controls such as per step length, gate, pitch and velocity as well as 27 different performance modes.

TRIGGER MODE determines how the arpeggiator is triggered:
- **NOTE**: Each note resets the arpeggiator position to the first step
- **LEGATO**: When multiple notes are played simultaneously, each new note continues from the current step
- **SONG POSITION**: The arpeggiator continually cycles, and any notes played are triggered at the current step

MODE chooses the pattern of how notes will be triggered, from a simple upward progression to zig zags, spirals, and more. **OCTAVE** chooses the number of octaves triggered in addition to the actual notes that were played. When Octave is not zero, **OCTAVE MODE** sets whether the pattern of notes will be repeated individually within each octave (Repeat Pattern) or whether the pattern will be completed once in total across all notes in all octaves (Repeat Keys).

NUM STEPS sets the number of steps in the grid, and **RESOLUTION** sets the beat value of each step, from 32 bars down to 64th note triplet. **STEP LENGTH** sets the duration of the trigger within the step duration; the lower the Step Length value, the more staccato each step will be. A Step Length Value >100% will result in each note slightly overlapping the next note. **GROOVE AMOUNT** chooses the amount of swing applied to the grid.

NUM STRIKE chooses how many times each note will be triggered before moving to the next note in the pattern. **REPEAT BOTTOM** and **REPEAT TOP** selectively repeat the bottom-most or top-most note in the pattern.

Enabling **HOLD** will latch all notes as they are played as if they were being held down; to release the notes, disable Hold.

ARP/VEL. BLEND sets the blend of the arpeggiator velocity value and the original note-on velocity values. At zero percent, the resulting velocity is fully controlled by the arpeggiator; at 100%, the resulting velocity is fully controlled by the note velocity and the arpeggiator velocity values are ignored.
MIDI CC sets which MIDI CC is output by the MIDI CC layer of the arpeggiator, if any (see below). Choose off to disable, or 0-127 to set the desired MIDI CC.

STEP GRID
The STEP GRID sets and displays the values for each step. There are three independent layers to the step grid: VELOCITY, PITCH, and MIDI CC.

To change which layer is displayed, right-click and choose a layer from the contextual menu.

• STEP VALUE
The size of the vertical bar within the step determines the step's value. The larger the bar, the higher the value. Note that when viewing the Pitch layer, the bar is bipolar, with zero displayed in the vertical center of the step. To change the duration of the step, hold the Shift key while dragging the bar horizontally within its step.

• STEP STATE
Beneath each step is a toggle that can be pressed to set the step's state. When enabled, the step outputs the value displayed in the bar above; when disabled, the step does not output any value. Additionally, you can merge a step with the one before it to create steps that are longer than one step of the grid. To merge a step, hold the Shift key when pressing the step's state button. The step state button for merged states is red. Alternatively, you can tie a step to the one before it; the second step will still have a unique value, but it will be triggered in a legato style. To tie a step, hold the Alt/Option key when pressing the step's state button. The step state button for merged states is blue.

• PITCH OFFSET
The values of the Pitch Layer are displayed as text above each step. You can also edit these values directly for more precise control.
The MIDI Player module plays back a Standard MIDI File, tempo-synced with Falcon.

To load a MIDI file, press the **BROWSE** button and choose a Standard MIDI File using the standard file browser. When a MIDI file is loaded, its name is displayed next to **SEQUENCE NAME**.

The **BASE NOTE** chooses which note will trigger playback of the MIDI sequence. Other notes will play back as usual. When **TRANSPOSE** is enabled, every note will trigger playback of the MIDI sequence, transposed relative to the Base Note. When disabled, only the Base Note will trigger playback.

When the MIDI file is triggered, it will play back once. If **LOOP** is enabled, the MIDI file will be looped continuously. Additionally, **AUTOPLAY** can be enabled to automatically begin MIDI file playback when Falcon begins playing.

By default, the MIDI Player will play back all sixteen channels saved in the MIDI file. Press a channel's **BYPASS** button to bypass it.
The Micro Tuner provides alternate tunings to the standard twelve-tone equal temperament tuning.

The **NOTE GRID** displays the mapping of each note in each octave. In standard tuning, each note is mapped to a whole number: C-2 = 0.00, C#-2 = 1.00, D-2 = 2.00, and so on. The note grid is display only; to edit the tuning assignments, import Scala files as described below.

The Micro Tuner module's preset browser has two additional items in its Preset File menu:

- **IMPORT SCALA TUNING**: Import a .scl file
- **IMPORT SCALA MAPPING**: Import a .kbm file
- **IMPORT ANAMARK TUNING**: Import a .tun file

For more information on Scala, see:

http://www.huygens-fokker.org/scala
The Script Processor module provides general event processing capabilities beyond the specific event processors described earlier.

STANDARD CONTROLS

To load a script, press the **LOAD A SCRIPT** button and choose a UVIScript file from the standard file browser. When a script file is loaded, the **SCRIPT NAME** is displayed in the center of the script module title bar, and its script-defined controls will be displayed below.

To edit the script file, press the **EDIT SCRIPT IN EXTERNAL EDITOR** button and the script file will be opened in your default text editor application.

If you would like to add a password to the current script, press the **PROTECT SCRIPT** button and enter a password. After a script is protected, you must enter the script password to open the script for editing.

Press the **RELOAD CURRENT SCRIPT** button to reload the current script from disk, and reset its parameters to their default values. Hold the Alt/Option key while reloading to keep the current state of the script parameters. The **WATCH FOR SCRIPT CHANGES** option will automatically reload the script whenever the script file is modified; this can be useful while developing a script and making repeated changes.

The script console displays debug and print messages and is useful for debugging scripts. Toggle the **SHOW/HIDE CONSOLE OUTPUT** button to show or hide the script console. Press the **CLEAR CONSOLE OUTPUT** button to clear the current console messages.

SCRIPT-DEFINED CONTROLS

The script itself defines what sort of controls will be displayed. This includes knobs, buttons, menus, and other controls similar to those seen in other Falcon modules.

MORE INFORMATION

For more information on UVIScript, see: [Appendix B: Scripting]
Modulation generators can be instanced at any level in a patch allowing them to control nearly any parameter, be it on an oscillator, effect or even on another modulator. This system allows you to paint motion into your sounds almost effortlessly, from subtle variation over time to complex on-demand sequences.
The AHD envelope (attack, hold, and decay) is a simpler envelope than a full DAHDSR envelope, similar to envelopes found on some classic synths.

The **ATTACK**, **HOLD**, and **DECAY** values can be set by the sliders, or by adjusting the points in the envelope editor. Additionally, the curve of the Attack and Decay ramps can be changed by dragging the line itself. For more details on editing the envelope graphically in the envelope editor, see: [DAHDSR > Envelope Editor]

To choose if and how velocity will affect the envelope, use the **VELOCITY AMOUNT** and **VELOCITY SENSITIVITY** controls, as described in: [DAHDSR > Velocity Amount and Sensitivity]
The Analog ADSR envelope (attack, decay, sustain, and release) is an envelope with decay characteristics similar to classic analog envelopes, providing a more vintage feel than a precise digital ADSR.

The **ATTACK**, **DECAY**, **SUSTAIN**, and **RELEASE** controls set the basic envelope shape, and **DYNAMIC RANGE** controls the amount of the output range controlled by the trigger velocity.

Two modes alter how the envelope is triggered and processed. If the **ATTACK/DECAY** mode is set to **AD**, only the attack and decay phases of the envelope are used; sustain and release will have no effect. When set to **ADSR**, all phases of the envelope can be configured.

The Analog ADSR’s **TRIGGER MODES** are the same as for the LFO module; for details, see: [LFO>Trigger mode].

You can choose how velocity affects the envelope’s attack and decay with the **VEL > ATTACK** and **VEL > DECAY** controls. Additionally, you can **INVERT VELOCITY** to invert the velocity values as they affect the envelope from the actual played velocity.

Likewise, you can choose how key follow affects the envelope’s attack and decay with the **KEY > ATTACK** and **KEY > DECAY** controls.

The manual **TRIGGER** button allows for the envelope to be triggered on-demand, and can be controlled remotely via automation or modulation.
The Attack Decay envelope is the simplest modulation envelope provided. An Attack Decay envelope is often used for percussive sounds that don't need a sustain or release.

ATTACK DECAY

DECAY is set to a time value, and **ATTACK** is set as a percentage of the Decay time.
The DAHDSR envelope (delay, attack, hold, decay, sustain, and release) is a classic synthesis envelope style. It is an extension of the common ADSR envelope, with an additional delay phase at the beginning and a hold phase between attack and decay.

The **DELAY**, **ATTACK**, **HOLD**, **DECAY**, **SUSTAIN**, and **RELEASE** values can be set by the sliders, or edited graphically by using the envelope editor.

To choose if velocity will affect the envelope, use the **VELOCITY AMOUNT** control. At zero percent, velocity will have no effect.

VELOCITY SENSITIVITY remaps the velocity input curve; values between zero and 100% use a progressively more exponential curve, and values between -100% and zero use an increasingly logarithmic curve.

The **ENVELOPE EDITOR** is a graphical, interactive display of the envelope shape. Each point represents a phase of the envelope. Points can be adjusted by dragging or double-clicking, and the curve of ramps can be changed by dragging the line itself.

When dragging points, you can hold different modifier keys to adjust the result:
- **Shift**: fine control
- **Command (Mac) → Control (Windows)**: constrain to vertical movement only
- **Alt/Option**: constrain to horizontal movement only
- **Shift+Command (Mac) → Shift+Control (Windows)**: temporarily change absolute/relative mode (see below)

When a point is adjusted, it will affect the values on both sides of the point while keeping the shape of the overall envelope constant. For example, when the Hold point is moved, both the Hold time before the point and the Decay time after the point will be adjusted, but the total envelope time will remain the same. If you would like to adjust the value of only one envelope segment at a time, enable **RELATIVE MODE** under the Envelope Editor’s menu. The menu can be opened by right-clicking anywhere in the envelope display.

While a note is held, the envelope loops on the sustain phase by default. However, you can change the looped portion of the envelope by right-clicking a point and choosing **SET AS LOOP END**.

Scrolling up and down with your mouse or trackpad will zoom the editor’s display in and out, and the Auto Zoom to Fit option snaps the display to the current size of the envelope.
The Drunk module generates a random walk signal which simulates the natural randomness that occurs in cases such as the drift in pitch or amplitude of a sustained note.

The INITIAL VALUE sets the starting point for the signal. From there, the signal varies semi-randomly around that value, fluctuating with the BANDWIDTH speed. The signal varies up or down, weighted according to the BIAS. The SMOOTH speed determines the rate of smoothing applied as the value varies.

The default range of the Drunk module is bidirectional from the starting value (bipolar). For a range that moves in a single direction relative to the starting value (unipolar), disable BIPOLAR mode.

The Drunk module’s TRIGGER MODE determines how the module is triggered. The trigger modes are the same as for the LFO module, for details, see: [LFO > Trigger mode].
APPENDIX A: MODULATORS » LFO

The LFO, or low frequency oscillator, is an oscillator that generates a cyclical modulation signal below the audible threshold.

The LFO WAVEFORM can be one of the classic LFO shapes (Sine, Square, Triangle, Ramp Up, Ramp Down), or one of these additional shapes:
- ANALOG SQUARE
- RANDOM SAMPLE & HOLD
- CHAOS LORENZ
- CHAOS ROSSIER
- USER

The FREQUENCY control sets the duration of one cycle of the LFO. When TEMPO SYNC is enabled, the cycle duration ranges from 32 bars down to 64th-note triplet, synced to Falcon’s tempo. When TEMPO SYNC is disabled, the cycle duration is in Hz (cycles per second).

To set the point within the LFO cycle where it will begin when triggered, change the PHASE control. The image of the waveform will update to show the result of the phase change (except for random/chaos waveforms, as the images are approximations of randomly-generated waveforms). The User waveform is a custom, editable waveform shape. To edit the waveform, right-click to open it in a large overlay view. Click and drag to draw a waveform shape, or right-click and choose RESET TO DEFAULT to start over. Press anywhere outside the overlay to close it.

DELAY TIME is a time delay between when the LFO is triggered and when LFO playback begins. DEPTH controls the vertical value range of the LFO’s cycle, and RISE TIME is a time period during which the Depth ramps up to its full range. SMOOTH sets a time value that smooths out transitions between values in the LFO’s cycles. These adjustments can be used to create more varied and nuanced modulations, such as a subtle vibrato that occurs only while a note is sustaining after its initial attack and decay.

The default range of the LFO cycle is from -1 to +1 (bipolar). For a range of zero to +1 (unipolar), disable BIPOLAR mode.

TRIGGER MODE determines how the LFO is triggered:
- RETRIGGER: Each trigger of the LFO starts from the beginning of the LFO’s cycle.
- LEGATO: Any simultaneous triggers of the LFO will not trigger the LFO again, and will start at the same place as any other triggers currently. All triggers will be released together when the last one is released.
- NO RETRIGGER: The LFO runs continuously, triggering from the beginning when Falcon’s playback starts or stops.

TEMPO SYNC

POP-OUT EDITOR
Macros are a special type of internal modulation. When a macro is added, a corresponding control appears on the Info tab. When this macro control is adjusted, so is the control assigned to it.

NOTE: Although macros can be assigned to any control in a program that can be modulated, the macros themselves are only added to the Program node.

The default range of a macro is from zero to 100% (unipolar). For a range of -100% to +100%, enable Bipolar mode.

VALUE is the actual value sent when the macro is adjusted, either directly via this knob or via the macro's control on the Info tab.

STYLE chooses the style of control that will appear on the Info tab for the macro. CONTINUOUS displays a continuously-variable knob, and ON/OFF displays a toggle button with only two states.

To change a macro's name, double-click the macro's DISPLAY NAME and enter a new name. This will change the macro's displayed name on the Info tab and in the modulation assignment menu.
APPENDIX A: MODULATORS » MULTI ENVELOPE

A user-definable envelope that can be created with any number of points and interactive curve shapes by manually drawing or drag'n'dropping MIDI or audio files. Allows for long and highly expressive modulation sequences and can be looped for LFO-like behavior.

The Multi Envelope can be tempo-synced or set to discrete time values.

Because there can be any number of points in the Multi Envelope, unlike the other envelope modules in Falcon, there are no knobs or sliders for setting the values of each envelope phase. All editing is done in the graphical Envelope Editor. In addition to the Envelope Editor’s basic usage described in [DAHDSR > Envelope Editor], the Envelope Editor for the Multi Envelope has a number of additional features:

- Shift-click or double-click: Add a new point
- Shift-right-click an existing point: Remove the point
- Right-click an existing point: Contextual menu, with options to remove the point or set it as the loop start/end
- Alt/Option-click-drag: Draw line to create two new points
- Alt/Option-click-drag. Draw line to create two new points
- Alt/Option-click-drag. Draw line to create two new points

The Multi Envelope has two loop options. By default, the envelope is looped, but the loop can be removed via the REMOVE LOOP option in envelope editor’s contextual menu. If you wish to add the loop back, choose Add Loop. The envelope release is not looped by default, but you can change this via the SET RELEASE LOOped option in the menu. To change it back, choose SET RELEASE NOT LOOped.

When TEMPO SYNC is enabled for the Multi Envelope, the GRID option in the Envelope Editor menu becomes available and sets the metric division of the grid.

SPEED sets the time factor for the envelope. At 1.0, the time is as shown on the grid. At larger values, the speed is multiplied and the envelope plays back more quickly; at smaller values, the opposite. For an example value of 200 ms between points, with Speed = 1.0 the transition will be 200 ms, Speed = 0.10 will be 2000 ms, and Speed = 10 will be 20 ms.

SMOOTH sets the amount of smoothing applied to each step.

The Multi Envelope's TRIGGER MODE determines how the envelope is triggered. The trigger modes are the same as for the LFO module; for details, see [LFO > Trigger mode].

To choose if and how velocity will affect the envelope, use the VELOCITY AMOUNT and VELOCITY SENSITIVITY controls, as described in [DAHDSR > Velocity Amount and Sensitivity].

DRAG-n-DROP AUDIO to create envelope points, then choose an extraction method from the following:

- RMS: extract the average level of the audio file
- PEAK: extract the peak level of the audio file
- BRIGHTNESS: extract the brightness envelope (i.e. spectral centroid / center of mass evolution over time) of the audio file
- TRANSIENTS: extract the transients of the audio file
The Step Envelope is a programmable pattern sequencer. The Step Envelope can be tempo-synced for steps of musical divisions, or set to discrete time values.

The value of each step can be set by clicking and dragging vertically. You can also click and drag horizontally to draw a shape over multiple steps. To clear all steps, right-click and choose \textit{RESET TO DEFAULT}. To view the step editor in finer detail, choose edit button in the module header to open it in a large overlay view. Press anywhere outside the overlay to dismiss it.

The number of steps in the grid is set with \textit{STEPS} control, from 1 step up to 128 steps. The \textit{FREQUENCY} control sets the duration of each step. When \textit{TEMPO SYNC} is enabled, step duration ranges from 32 bars down to 64th-note triplet, synced to Falcon’s tempo. When tempo sync is disabled, step durations are in Hz (steps per second).

The default range of each step is from zero to $+1$ (unipolar). For a range of -1 to $+1$, enable \textit{BIPOLAR} mode, which is useful for LFO-like patterns.

The Step Envelope’s \textit{INTERPOLATION MODE} determines how each step’s value transitions to the next. With the default Hold mode, each value is held for the duration of the step, then immediately jumps to the next step’s value; with the alternate Spline mode, each value transitions to the next with a continuous spline curve.

The Step Envelope’s \textit{TRIGGER MODE} determines how the envelope is triggered. The trigger modes are the same as for the LFO module; for details, see [LFO > Trigger mode].

\textit{SMOOTH} sets the amount of smoothing for each step.
APPENDIX B: SCRIPTING IN Lua
Scripting in Falcon uses UVIScript, a domain-specific scripting language built on top of the Lua scripting language. Scripts in Falcon are essentially MIDI effects with advanced capabilities, with access to all of Falcon's synthesis engine modules. Scripts can also define their own interface, so that you can interact with the script in realtime.

UVIScripts are saved as text documents with a `.lua` extension, and loaded with Falcon’s Script Processor module. For general information on using the Script Processor module, see [Interface > Main > Events Tab] and [Appendix A > Event Processors].

EXAMPLE
To help demonstrate UVIScript, here's a simple example script for a pitch inverter (available in the Script Processor module as a factory preset, under Utilities > Invert Pitch).

```
CenterPitch = Knob("Center Pitch", 60, 0, 127, true)
function onNote(e)
    local center = CenterPitch.value
    local delta = e.note-center
    local note = center - delta
    if note>=0 and note<=127 then
        playNote(note, e.velocity)
    end
end
function onRelease()
    --
end
```

Here's what this script looks like in Falcon's script processor. This script creates one knob, which sets the script's center pitch value (line 1). When a Note On event occurs (line 3), the note's pitch value is evaluated and modified relative to the center pitch value (lines 4-6), and then the note is played with its modified pitch value (lines 7-8). For example, if the center pitch is set to C3, when a C2 is triggered a C4 would be played instead.

FULL DOCUMENTATION
For more information on writing your own UVIScripts, please refer to the latest online documentation at: http://www.uvi.net/uviscript/

For more information on the underlying Lua scripting language, see http://www.lua.org/docs.html
APPENDIX C: FALCON FACTORY PRESETS
Appendix C: Falcon Factory Presets

Preset List

Animated
- 8bit Catharsis 1.4
- Blue Vibe
- Ching Sequence 1.4
- Cityscapes 1.4
- Dark Knight 1.4
- Descent 1.4
- Desert Highway 1.4
- Evening Pluck 1.4
- FM Dream 1.4
- Gote Oahl Almos PK 1.5
- Ghetto Cloud 1.2
- Goa Motion A 1.5
- Goa Motion B 1.5
- Hiccup Wheel
- Hovering 1.4
- Long Journey
- Mercury Lead
- Moonbeam Keys
- Neon Memories 1.4
- Nightlife Red
- North Sequence 1.4
- Opossum
- Padouble Arp 1.5
- Petite Musique
- Placid Keys
- Pluck Mix S&H 1.4
- Prnsicus 1.5
- Pumping Split PK 1.5
- ReAL. E.T.12
- Retro SciFi 1.4
- Runaway
- Ruiner 1.4
- Sitn Play
- Scavengers
- Scene Change 1.4
- Secret Facility 1.4
- Shatterhand 1.4
- Solarize
- Sour AcidiB
- Spiral Arps
- Territory
- Thingamajig 1.4
- Vaporrow 1.4
- Violet Sky
- Wave AnalSeq
- Wide Drive

Arpeggiated
- 303 Motion 1.5
- ARP Voyage
- ArpSystematic
- Bass Trence Motion 1.5
- Dirty Money 11
- Disto Box
- Divider Arp 11
- Fragile Arpeggio PK 1.5
- Freq Man 1.6
- Gate on Wheel
- Hybridization Wheel
- Hypnotic Arp
- Ja Tmospheric 1.5
- Key Bel Magic Motion 1.5
- Magic Run
- Marimba Wheel
- Maytrem Cycle
- Minor Redux
- Monostale 11
- Organic TM
- OT Bass Line
- Pad Peggio
- Perc Lead Arp 1.5
- Popcorn One
- Psy Bass Motion 1.5
- Pulsion
- Random Motion A 1.5
- Random Motion B 1.5
- Round Condinet 1.5
- Round Robinit 1.5
- Run Baby Run
- Shaker Dance
- Simple Efficient
- Softef Night
- Space Christmas
- Stellet Pxx
- String Quencer
- Sweep Arp
- Trance Arp 1.5
- Trence Puck
- Tremolo Arp PK 1.5
- Wake up the Arp 1.2
- Weaver Mono
- Welcome Martin
- Xylo Dancing

Bass-Sub
- 1001n14
- 303 Stab Bass Dist 1.5
- 808 Mate 1.6
- Angry Louis
- Angry Motion 1.5
- Arm My Bass 1.6
- Arperta
- AV-98 1.4
- BA Shomp 1.2
- Bass Analog A 1.5
- Bass Analog B 1.5
- Big Sleep 1.4
- Brick Vince 1.6
- Cheap Tued
- City Bass 1.4
- Coastal Halltones 1.4
- Couka Growia
- Crime 1.4
- Dharma Bass 1.2
- Digital Bananas 1.2
- Digital Ghosts 1.4
- Dirty Wobble
- Drive Presence
- E-Bass 1.2
- Fat Phaser Bass 1.2
- Fedde Le Grandalse 1.4
- Fireworks Bass 1.4
- FM Hammer
- FM Morph Wheel
- Fosy Bassy
- Freaky Freakly
- Funsty Bron
- Funsty Magniation
- Gamma Bass 1.4
- Genesis 1.4
- Growl Alarma
- Growing
- Hard Wheel
- Harish Bass
- Heldens
- Hex Bass 1.4
- Hi Five
- Hollow Price
- Hot Bananas 12
- House Brute
- Impact Disc
- Kalach Mikos
- London Funk 1.1
- Low Five
- Metropolis 1.4
- Modular Phase 1.2
- Nasty BasSci 1.1
- Night And The Bass 1.4
- Noisy Org 1.6
- Noisy Suba
- Pants Hitlick
- Party Enclume
- Piano Hammer
- Pluck Accified
- Plucked 7th
- Psy Bass Trence 1.5
- Pulse Bass 1.5
- Pure Sub
- PWM Closing
- PWM Sweep
- Retro SciFi 1.4
- Saw Glide
- Saw TB Clean
- SciFi Classics 1.4
- Seq Triplets 1.5
- Seventh Rise
- Sexy Growl
- Sh101 Basic Saw
- Shatter Bass 1.4
- Shorty Wheel Bass
- Show Me Robin
- Sine FoldBack Wheel
- Sked Tomcap
- SolidBass Wheel 11
- Softcastel
- Square Percussion
- Square Pump
- Stab Bass 1.5
- Stealth Bass 1.4
- Sub Finger Chorus
APPENDIX C: PRESET LIST - FALCON FACTORY

Sub Sine Drumwheel
Sub-Grim Bass 1.6
Suction Bass 1.6
Sumerian 1.4
Swordfish II 1.4
Sync Force
Sync PWheelM
TB Drive Wheel
Techmo Caravan
The Hell
Tokyo Funk
Tran Spotting
Typical 80's A
Typical 80's B
Undercover Bass 1.4
Very LuWus 1.2
Xbass Wheel 1.1
XBeat Bass A 1.2
XBeat Bass B 1.2

Bells
1985 1.4
Bright Slider 1.4
Can Keys 1.4
Chime Glide 1.4
Composite Glass
Cristal Clear
Delicate Keys 1.4
Digi Bells
El Bastos
Ethereal Bells
Evertight 1.4
Expressive 11
Falcontaisa
Fog Chime 11
Glass Stair
Glowing 12
Humidity 1.2
Kalimbellfish 1.6
Lowdrive FM 1.1
Manga BelleZ
Memories 1.4
Mix Bellissima
Mystic Bowls 1.6
Old Bell 1.4
Organic Bottom
Organpad Bells 1.1
Relax 1.4
Sweep Phase Bells
Syn Bell Motion 1.5
Synthetic Bells
That Moment 1.2
Thorus Bell 1 1.1
Thorus Bell 2 1.1
Tubular FM
Vick Celeste
Wavetable Bell 1
Wavetable Bell 2
Wha Wheel Bell
Wide Keys 1.4
Winter Keys
Xmas Analog 1
Xmas Analog 2

Chords
A Street Light
Ambi Strum 11
Bass Minor
Beauty Bed
Chord Saw Mn7911
Chord Sine FM Mn7
Chord Sine Mn7911
Chord Tek 14
Chord to Jump
Chord SEQ
Dust Chord
Gloss Phaser 11
Glit Bells 16
Hong Kong Pad 1.4
Love Chord 14
Neon Chord 11
Pallon 1.2
Retro Wave Chord 16
Roky Moxy
Scout Bass 1.4
Simplicity
Sing To Sleep 1.2
Stopy SAW 1.6
Stab Chords BS
Stab Chords LP
Syn Accordian 80s 1.5
Tropicalious 1.2
Vangels Chords Cm 1.2
Violet Drive
Vowheel Morph
Winter 1.4
Won't Stop Rocking 1.2

Distorted
Assault (100-130) 1.4
Board Toronto
Disto Box
DistortedSK
Doom Metal
Doom Octaver
Drama Queen 14
Effect 1.4
Guitar Distortion Booth
I Am The Law 1.4
Jimster Broner
Justice Bass
Keytar Hero
Lead Acid Distortion
Moore Loud 12
No Justice No Peace
One Bass Army (80-180) 1.4
Oyster Harp 1.2
Psychotic Tac
Thumb War
Ultra Noisy Lead
Witchcraft 1.4
Wolves 1.4
Xtreme Saw

Experimental
A Long Way 1.6
Almost Music 11
Ambient Pad Quencer
Aquatic Apes 1.6
Attack Synth
Auto Carousell A 1.5
Auto Carousell B 1.5
Calry T Jane
Chimes Story
Complex Lender
Contrey Bass
Cosmic Phases 1.6
Dark Pad Wheel
Descender
Drunken Master 1.6
Electrons
Endomoriphone
EP ON LooPp
Fibonacci Synth
Flow Synth
Granular Xperience
Gravitational 1.6
Gulp Cello 1.6
Interferencing
Interstellar Emy
Misty Morning 11
Noise Quencer
PitchArt
Prehistoric
SE Machines Wheel
SnH Layering
Space Violin
Subban 1.6
Superideliter 1.4
Swordfish World
The Glacier 1.6
The Tin Can Program 1.6
Tijranic Symphony
Urban Step Wheel
Valse 1.6
You are Remy Beauchamp
ZooLogic

Granular
Bowled Crotale Cloud
Cosmic Grain Pad
Diminished Scanner
Ethereal Walls
Flute Dreamer
Glass Drones Split
Glass World
Granular Arp Scope
Granular Bells
Granular E-Bow
Granular Lounge
Hybrid Piano Harmonics
Orchestral Grains
String Dome
Surreal Singer Split
Tinkle Textures
Vocal Wall

Hybrid Perfs
Analog Chinese Split
Banana Split
Lions Funky Dub
Magic Oldfield PK 1.5
Minor Oldfield PK 1.5
Soundtrack Split
SPLIT Chorus Me 1.2
Space Violin
Subban 1.6
Superideliter 1.4
Swordfish World
The Glacier 1.6
The Tin Can Program 1.6
Tijranic Symphony
Urban Step Wheel
Valse 1.6
You are Remy Beauchamp
ZooLogic

Keys
Ballad Plucker
Busy Bee
Clav Station
Cloud Keys 1.1
Days Of Old 1.4
Dirty Toy Piano 1.1
Doorways 11
DX Nine
Eighty Nine
Evenseness 1.2
FM Dark Keys
FM Groove
FM Tremolo
FMish MonoPoly 1.2
Gide Mod 1.4
Hybrid Piano
Key Battered 1.2
Key Frost Piano
Key Therapy
Keys Airfall 1.1
Keys Vocalight
Vocal Wall

Mornin Keys
Paul Wuritzer
Power Keys SnH
Punt FM Tines
Slide Bright 1.1
Step FM Keys 1.4
Sync Ambient Keys A 1.1
Sync Ambient Keys B 1.1
Thorus Softkeys 1.1
APPENDIX C: PRESET LIST - FALCON FACTORY

WahKey 1.6

Leads
- All3n 1.4
- Arcade A 1.2
- Arcade B Wheel 1.2
- Aviclead
- Awesome Perc Lead PK 1.5
- Bite Lead
- Chamlead
- Chiffer Flute
- Chinese Violin
- Cinton in Da Space 1.2
- Cold Water 1.2
- CrossFade Hardlead
- DaMt Punk
- Derailer 1.6
- Digitalead
- Dirty Vl Lead Bass 1.5
- Funka Nada
- Funky Frog
- Funky Res
- Funky Synth 1.2
- Future High 1.6
- Germanic Lead
- Glide Pluck 1.6
- Gonzalead
- Hardsync Space
- Haric Hoover
- Innocent Leader
- Jimmy Digi
- Lead Angry Saw 1.5
- Lead Brass Soft
- Lead Clean SuperSaw
- Lead Clean SuperSquare
- Lead Noisy Fat 1.5
- Legato 1.6
- Lux Lead 1.6
- Mayfield Flute
- Metalizer 1.6
- Mini Ribbon 1.2
- Mono Sync
- Nasty Shaper 1.2
- Nege 1.2
- Noisy Detuned
- Obese Lead
- Octaves Glider 1.2
- Panflute 1.2
- Philcorelead
- Reduce Solo
- Retro Lead
- Sample&Hold Lead
- Saw Classic
- Saxy Wave Solo 1.4
- Sine Equalone
- Single Saw Brass
- Slim Lead
- Soft Mood
- Specious 1.6
- Synker Kraut
- Trap Oriental 1.6
- Ultra Skinny
- X-Breather 1.2
- Ze Brocante 1.2

Meditative
- A Free World
- After Midnight
- Below The Surface
- Black Fields
- Cleansing
- Confused
- Dark Nights
- Days Gone
- Discolored
- Downfall
- Dust Clouds
- Far Beyond

憾恨
- Haunted Town
- Land of Nowhere
- Last Minutes
- Lost Highway
- Many Things
- Midsummer
- Night Travel
- Outside
- Protected
- Purple Gaze
- Regular
- Runs
- Sawdust
- Shimmering
- Subject 939
- The Faculty
- The Return
- Wrong Dance

Organ
- Blues Jazz
- Caroussel
- Crazy Organ
- Doors 2015
- Dracula Night
- Drawbar Soft
- Explosion of Blues
- Full DistoSpeed
- Gold Times A 1.2
- Gold Times B 1.2
- Gold Times C 1.2
- Gold Times D 1.2
- Las Vegas Church
- Morgan Free
- NoxOrg 1.6
- Orchestra Perc
- Santanoguitar Soft
- Self Playing Organ
- Simple One 1.4

Pads
- Animat
- Aqua Move
- Arrival 1.4
- Artic Pad 1.6
- Beauty is Simple 1
- Beauty is Simple 2
- Bells Pad 1.4
- Bryan Fairies 1.2
- Calm FM Fifth
- Calm Morpher
- Cinema 14
- City Pad 1.4
- Dismotion 11
- Dream Synth
- Evolver
- Expermwheel 11
- Forgery 1.2
- Glass Ring 1.4
- Glide Sine Lead
- Green Earth 1.4
- Harp Stretch Resonances
- Inferferoid 1.2
- JMJ Satellite
- Living Harmonics
- Lost in Pad 1.1
- Lunar Mission
- Morning Pad
- Multi Saw Pad PK 1.5
- Novachord No 1.4
- Obo Even Synth
- Pad Ethereal 1.5
- Pad Generic
- Pad Motion 1.5
- Pad Visor
- Phaser Pad Gold A 1.2

Pluck
- Asian Plucker
- Beach Island
- BellCenter 1.6
- Color Guitar A 1.3
- Color Guitar B 1.2
- Film Pluck 1.1
- Gamelan Plucker
- Harpluck
- Impulse Pluck

Key Bells
- Key Bell Darbuka 1.5
- Kyoto Strum 1.6
- Marimbox
- Meditation Pluck
- Melodeek 1.6
- Metallic Pluck
- Metsine 11
- Mine de Rien 11
- Model Bass
- Multisampluck A 1.5
- Multisampluck B 1.5
- Multisampluck C 1.5
- Multisampluck D 1.5
- Multisampluck E 1.5
- Mutan Mute
- Nylon Guitar Model
- Orguo Dream 11
- Oriental Plucker
- Over Dreaming
- Pad Mullerizer
- Pernuda 11
- Pluck and Cello
- Pluck and Pad 1.4
- Pluck Box Wheel
- Pluck Delays 11
- Pluckizato
- Rainbow Wheel
- SciFi Harp
- Short Plucksyn 1.4
- Snow Land
- Soft Intro 1.6
- SteeLeemons
- Strum the Folk Up 1.6
- Strum the Funk Up 1.6
- Superstar
- Tjane Night
- Tiny Bland
- Tiny Harp 1.2
- Tropical Pluck 1.2
APPENDIX C: PRESET LIST - FALCON FACTORY

Vibra Plucker
Water Pluck
Wheel Multiply Pad 1.5
Wonder Pluck
Wood Plucker
Wooden Blocks 1.6
Polysynth
Analog Super Saws 1.6
Attack Pad A 1.2
Attack Pad B 1.2
Big Washer
Bubble Gnome
Clean SuperSaw
Clean SuperSquare
Dafta Wheela
Dbstp Short Stab A 1.5
Dbstp Short Stab B 1.5
Dirty Moving
Duosphere
Explorer 1.4
Happy Steel 1.1
Lazer Haper 1.1
Lefty 1.1
Mecha 1.4
NeoSoul Red 1.6
Noisy Poly
Noisyntron Flute
PolFO Lee
Poly 8Fifty 1.2
Poly Blue Rim
Poly Noisy Fat 1.5
Polystic 1.2
Right Nowwheel 1.6
SAWmmer
Short Grovel Slab 1.5
Solo Flight
Space Pop Corn
Spy Nos 1.5
Stabby FM 1.1
Stinger Synth
String Fast Pluck
Strings Bidule
Syn Slab 1.5
Thanos Cindy Pluck 1.1
Thrilious 1.1
Trance Step
Velocity Pluck
Wavetable FM Evo A 1.5
Wavetable FM Evo B 1.5
Wheeltable Pluck
Rhythmic
BD 1.4
BS Groover 1.6
Computer Synth
Dbstp Noisy Pattern A 1.5
Dbstp Noisy Pattern B 1.5
DR 8Bit Drp 174BPM
DR Big Room 128BPM
DR Dance 128BPM
DR Dubstep 140BPM
DR Triplet Trap 130BPM
DR Zouk 110BPM
Drive Thru
Electric Church
Fezz Omy E
Full Fuzz 1.6
Gauss Bass 1.4
Geometry Drone Wheel
Grunge Tabler
House Classic Gate
ME Drumim Vowels
MegaPile Power
Minions 11
Minor Arp Mayhem
Minor Table Quencer
Multi Env Sync
Multi Fannix
Net Sphere Engineer 1.4
Nightfll 11
Octavoto Pluck
Oilwheel Madness
P-5000 1.4
Poly Trig Arp
Popcorn Train 1.1
Prehistory 1.4
Prehistory 2.14
Prehistory 3.14
Random Scanner
Randomator 1.4
Ravers Night
Retro Finger 11
Rhythm Poly Cycle
Skw Banpass
SEQ Stirty 1.2
SEQ Angry Bot
SEQ Anticipated 12
SEQ Before the drop
SEQ Bis2ly 1.2
SEQ Bouncing
SEQ Closer 12
SEQ Crazy Louis
SEQ Dark River 12
SEQ Deep Bass 1.2
SEQ ET did Tick
SEQ Finger One
SEQ Future House 1.2
SEQ Future House 2.12
SEQ Future House 3.12
SEQ Glowing
SEQ Hiccup 1.2
SEQ Hoohah 1.2
SEQ House Mario 1.2
SEQ Kensei 1.2
SEQ Lealalala 1.2
SEQ Mambo Break
SEQ Megatron 1.2
SEQ Moombah 1.1
SEQ Night Percs 1.2
SEQ Oya
SEQ Wake up the Sun 1.2
Stack Analog Drums
Structure Drone
Table Guencer
Thug Bass Wheel 11
Tri Layering
Tri Tek 1.4
Tribal Generation 1.5
Velocity Quencer
Very Sketchy 1.6
Special FX
Appeggio Rain
Bells 2019 1.4
Bouncing Pluck
Bowed Cymbal Mystery
Chainsaw A 1.5
Chainsaw B 1.5
Cheers 1.6
Chopper 1.6
Computer Wheel 1.6
Dbstp Riser Long 1.5
Doggy Dog 1.2
Down Side 1.5
Drum Electric Tom
Drum Noise Hit
FM Dancer
FM Random Wheel
FM Tronics
FM UFO
FM Mayhem 1.1
FX Fortune 1.2
FX Unsync Riser
Game Over
Garbled Well 1.6
Ghost Flutes
Insect Scream 1.6
Landing FM Patch
Liquid Scapes
Los Bomberas
Mario Die Wheel 1.2
Mario Jump 1.2
Mario Pipe Wheel 1.2
Mayhem Muler
Medispace 1.1
Nosoboton 1.5
Nosy Filh B 1.5
Non Sensor
Organ Jumper 1.1
Outer Space Radio
Phase One 1.1
Poly Quencer
Predator Scan 1.4
Puke Mas 1.2
Radio Traffic
Rain Heavy
Retro Gaming
Rise 02B 1.1
Saw Ramp Down
Saw Ramp Up
Sewer FX 1.2
SFX Downer Beast 1.5
SFX Spastic Game 1.5
Sine Ramp Down
Space InvaWheels
SQFX Axe Loop 1.2
SQFX Cerebralpatch 1.2
SQFX Cerebralpatch B 1.2
Surfer Guitural Brain
Synced Min-Licks PK 1.5
Taking Droids
The Harmanites 1.4
Theater X Intro
Venus Crier 1.2
Vinyl Noise 1.5
Wind Freezing
Zebuwheelon
Sub-Drones
Arena 1.4
Bowed Cymbals RR
Digital Drone 1.5
Dune 1.4
Earth Stood Still 1.4
Granular Cave
Monster Horn Drums 1.5
Orbit Drones Split
Florio Mantis Split
Pieces of Star
Rigel 1.4
Solar Drops
Spectral Flute Mystery
Spheres 1.4
Storm Synth
Stratosphere Drone
Sub Sine City
Submarine Escape 1.2
Supernova
Surreal Cicadas
The Depths 1.4
Urban Mantra Split
Vocal Spheres
Void Comfort
Vulcan Rumble
Water Resonances
Whole Drum Drones Split
Sweep-Rise
Big Table Synth Wheel
Bowed Cymbal Pluck
Diverso A 1.2
Diverso B 1.2
APPENDIX C: PRESET LIST - FALCON FACTORY

Lonely Pad
Nasal Pad
Octawheel
Overtone Synth
Riser Star
Riser Zbar
Riser Growl 15
Sample and Whold
Saw Detune Bbar Up Down
Short Analog Sweep
Soft Saw 5th
Sweep Trance Gate
Transition Growl 1.5
Ultra Soft 5th Res

Vocal-Formant
Almost Natural Oobs PK.15
Arabic Ash
Choir Boys
Circle Formant 11
Counter Formants
Dark Choir Males
FairlightCON
Formant Analog Choir
Guardian Angel 11
Les Formants
Little Monster Wheel
Mahavish 16
Melchior 1.6
Ooh Choir
Pheromones 1.2
SC Vocal 15
Subalterne 1.6
Syncotron
The Voice Inside 16
Uni Vox Wheel Morph
VO Gate
** Vocal Growl Bass 16**
Vocal Meditation Drone
Vocal Trap PK.1.5
Vox A Loud

Wobble-Electronic Music
Dbstp Long Pattern A.15
Dbstp Long Pattern B.15
Dbstp Long Pattern C.15
Dbstp Long Pattern D.15
Dbstp Long Pattern E.15
Dbstp Massive Growls 1.5
Dbstp Pattern A.15
Dbstp Pattern B.15
Dbstp Pattern C.15
Dbstp Wanna Growl 1.5
DnB Reese A.15
DnB Reese B.15
Down Bass Motion 1.5
Growl Pro Talk 15
Motion Prodigy 1.5
Noisy Wob 1.5
Syn Pro Motion A.15
Synth Lead Prodigy A.15
Synth Lead Prodigy B.15
Synth Lead Prodigy C.15
Wheel Angry Growl 1.5
WO Damian Harley 1.2
WO Dub Shake 1.2
WO Jerk 1.2
WO NRV 1.2
WO Razer 1.2
WO Rolling 1.2
WO Scratch Growl 12
WO Slide 1.2
WO Somensault 1.2
WO Zombine 1.2
WO Zombine Girle 1.2

Xtra Expressive E
Achord - Fulldisclosure
Acoustic - Vanity
Aetheral - Ether
Anabass - Calculator
Angry - Angrybass
Apostol - Podra
Bells - Bellissima
Boombash - Dreaded
Bubbliebass - Kermitt
Chileheads - GreenParrot
Clavekeys - Burtin
Clavey - Blasio
Cluckey - Testa
Clubblend - Duplo
Coompad - Gloomey
Depdbass - Adriaik
Elecbass - SnrFilter
Escapelead - Tchto
Funkyclev - Jungleboogie
Grabbass - Grabuj
Hartlead - Roybgiv
Hartpad - Musicsmath
Helium - Arpbonus
Helium - Bassbonus
Helium - Keybonus
Helium - Leadbonus
Helium - Padbonus
Hepad - Blute
Hoovers - Ishitar
Interbass - Steel
Interlead - Hauntingbit
Jacker - Amdio
Keynoa - Africa
Keynoa - Brown
Keynoa - Cleavsquare
Midarp - Deadpool
Mallets - Woody
Marthes - Mathe
Mercury - Arpbonus
Mercury - Bassbonus
Mercury - Leadbonus
Mercury - Pluckbonus
Mercury - Stickbonus
Michelead - Erlin
Noisypad - MakeSomeNoise
Softkeys - Kokiri
Syrnky - Nightcall
Waterkeys - Juz
Wavepads - Bloom
Windlead - Horns

Xtra MPE presets
MPE Analog Cello 1.6
MPE Basic Waveable Index
MPE Basic Waveable Step
MPE Chameleon Synth 1.6
MPE Chiffer Flute
MPE Clean SuperSaw
MPE Clean SuperSquare
MPE Contremy Bass
MPE Daft MPE 1.6
MPE Dafta Wheelia
MPE Double 5th Pad 1.6
MPE Eye Lead 1.6
MPE Fibonacci Synth
MPE Funk Synth A 1.6
MPE Funk Synth B 1.6
MPE Ghost Bell 1.6
MPE Honic Hoover
MPE Majestic Soft
MPE Marimbox
MPE Meditation Pluck
MPE Noisy Detuned
MPE Pluckicato
MPE PW Pad 1.6
MPE Soft Killing me
MPE Softcastel
MPE Solo Flight
MPE Space Violin
MPE Step It Up 1.6
MPE StepOminous Pad
MPE Sweep Pad 1.6
MPE Table Aip 1.6
MPE Time Bubbles 1.6
MPE Wave Guide 1.6

Synth Brass
A Boffins Prescription 1.6
Bouncing Brass
Bosky Arooplyos
Caelus Texture Synth 1.6
Detuned Saw Brass
FM Old School Brass
Full Analog Brass
Gotham Brass 1.4
Last Minute Brass
Majestic Saw 11
Majestic Soft
Mammy G Brass
OB Expression
Odd Brass 1.4
Safe Bicycle
Scanner Synth
Soft Synth Brass
Stab for Chords 1.6
Steady Analog Brass
SY Brass Rhythm
Wave Brassy Bell

APPENDIX C: PRESET LIST - FALCON FACTORY