Simulating Drone React to Contact

How can light infantry platoons counter small UAS attacks?

Methodology

- 1. Defined Problem
- Stakeholder interviews
- Functional hierarchy

- 2. Used combat modeling simulation to experimentally evaluate:
- Drone attack type
- Organic weapon usage
- Shotgun
- Jammers

Results

- Shotguns & jammers increased combat effectiveness
- However, shotguns present fratricide risk & additional training requirements

- 3. Compared Alternatives
- System weight analysis

Autonomous Ground Vehicle Simulation

How does weather affect the performance of Autonomous Ground Vehicles (AGVs)?

Phase 1
Establish Software-in-the-Loop
SIL Simulation

Phase 2
Usability Study

Phase 3
Design of Experiments

Results

- Improved AGV simulation installation and usability by identifying and addressing system operator challenges
- Discovered effects of simulated sensor attenuation → AGV performed better under rain and fog conditions

Modeling Cold Region Installation Resilience

How can installations enhance the resilience & recovery of critical infrastructure in extreme environments?

Methodology

- Reviewed data from ERDC and FEMA's HAZUS Earthquake Model
 Technical Manual
- Developed a systems dynamics model to analyze recovery times from earthquakes and icing events on critical infrastructure on Fort Wainwright, Alaska.

Results

- Identified vulnerabilities in two mission-essential functions: transportation and power systems.
- Revealed 2nd-order effects not captured in traditional analysis
- Informed policy recommendations to mitigate risk