
Trigonmetry

The Unit Circle:

- This is a circle of radius one. The prefix uni- means one. Thus, the unit circle has a radius equal to one.
- The equation for the unit circle is $x^2 + y^2 = 1$.
- The circumference of any circle is $2\pi r$, thus the circumference of the unit circle is 2π .
- $-\frac{1}{4}$ of the distance around the unit circle is $\frac{\pi}{2}$
- $\frac{1}{2}$ of the distance around the unit circle is π
- $-\frac{3}{4}$ of the distance around the unit circle is $\frac{3\pi}{2}$
- the full distance around the unit circle is 2π

NOTE: Any point on the unit circle has a coordinate (x,y). If we draw a right triangle from the origin, (0,0), to the point on the unit circle, (x,y), to the point on the x-axis, (x,0), we can use the following formulas for sine, cosine, and tangent to show that for any point on the unit circle that:

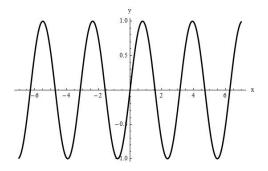
$$\cos \theta = \frac{x}{r} = \frac{x}{1} = x$$

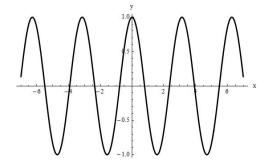
$$\sin \theta = \frac{y}{r} = \frac{y}{1} = y$$

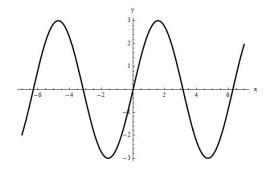
$$\tan \theta = \frac{y}{x}$$

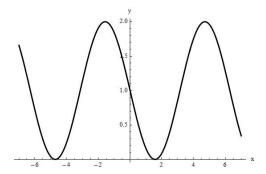
Match four of the following functions to the graphs below; then, graph the remaining two functions.

a.
$$f(x) = 1 + \sin x$$
 b. $g(x) = 1 - \sin x$ c. $h(x) = 3\sin x$


b.
$$q(x) = 1 - \sin x$$


$$c. h(x) = 3\sin x$$


$$d. \quad r(x) = \cos 2x$$


$$e. \quad s(x) = 3\sin(x)$$

e.
$$s(x) = 3\sin(x)$$
 f. $m(x) = \sin 2x$

Radians and Degrees

Conversions:

$$\begin{array}{ll} 1 & radian\left(rad\right) = \left(\frac{180}{\pi}\right) & degrees\left(^{\circ}\right) \\ \pi & radians = 180 degrees \\ 1 & degree = \left(\frac{\pi}{180}\right) & degrees \end{array}$$

1. Find the radian measure of the angle when given the degree measure:

$$a. 36^{\circ}$$
 $b. 200^{\circ}$ $c. 45^{\circ}$ $d. -72^{\circ}$ $e. 60^{\circ}$ $f. 115^{\circ}$ $g. -135^{\circ}$ $h. 150^{\circ}$ $i. -420^{\circ}$

2. Find the degree measure of the angle with the following radian measure:

Trigonometric Identities

Simplify the following trigonometric expressions:

1.
$$(\sin \theta)^2 + (\cos \theta)^2 - 1$$

2.
$$(\sin\theta + \cos\theta)^2 + 2\cos\theta$$

3.
$$(\sin \theta)(\cos \theta) + (\sin \theta)^3 - 2$$

4.
$$2(\cos\theta)^2 + 2(\sin\theta)^2 + 1$$