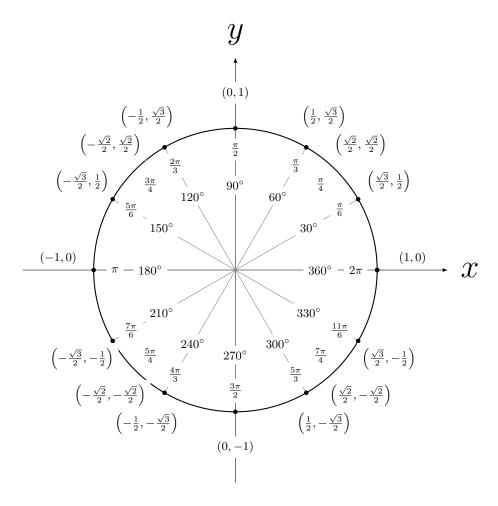
Trigonmetry

The Unit Circle:



- This is a circle of radius one. The prefix uni- means one. Thus, the unit circle has a radius equal to one.
- The equation for the unit circle is $x^2 + y^2 = 1$.
- The circumference of any circle is $2\pi r$, thus the circumference of the unit circle is 2π .
- $-\frac{1}{4}$ of the distance around the unit circle is $\frac{\pi}{2}$
- $\frac{1}{2}$ of the distance around the unit circle is π
- $-\frac{3}{4}$ of the distance around the unit circle is $\frac{3\pi}{2}$
- the full distance around the unit circle is 2π

NOTE: Any point on the unit circle has a coordinate (x,y). If we draw a right triangle from the origin, (0,0), to the point on the unit circle, (x,y), to the point on the x-axis, (x,0), we can use the following formulas for sine, cosine, and tangent to show that for any point on the unit circle that:

$$\cos \theta = \frac{x}{r} = \frac{x}{1} = x$$

$$\sin \theta = \frac{y}{r} = \frac{y}{1} = y$$

$$\tan \theta = \frac{y}{x}$$

Match four of the following functions to the graphs below; then, graph the remaining two functions.

- a. $f(x) = 1 + \sin x$ b. $g(x) = 1 \sin x$ c. $h(x) = 3\sin x$

- $d. \quad r(x) = \cos 2x$
- $e. \ \ s(x) = 3\sin(x)$
- $f. \ m(x) = \sin 2x$

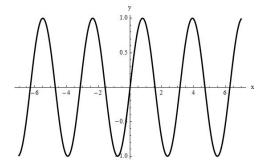


Figure 1: $m(x) = \sin 2x$

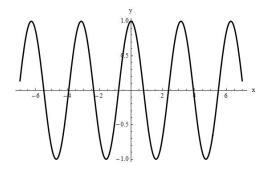


Figure 2: $r(x) = \cos 2x$

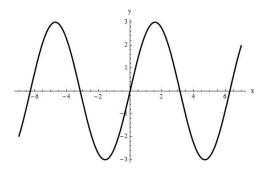


Figure 3: $s(x) = 3\sin x$

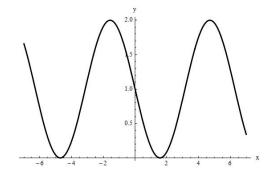


Figure 4: $g(x) = 1 - \sin x$

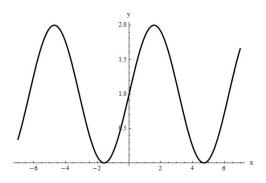


Figure 5: $f(x) = 1 + \sin x$

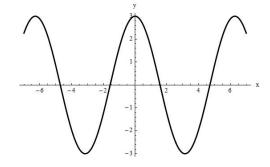


Figure 6: $h(x) = 3\sin x$

Radians and Degrees

Conversions:

$$\begin{array}{l} 1 \ radian \left(rad\right) = \left(\frac{180}{\pi}\right) \ degrees \left(^{\circ}\right) \\ \pi \ radians = 180 \ degrees \\ 1 \ degree = \left(\frac{\pi}{180}\right) \ degrees \end{array}$$

1. Find the radian measure of the angle when given the degree measure:

a.
$$36^{\circ} = 36^{\circ} \left(\frac{\pi \, rad}{180^{\circ}} \right) = \frac{\pi}{5} \, rad$$

b.
$$200^{\circ} = 200^{\circ} \left(\frac{\pi \, rad}{180^{\circ}} \right) = \frac{10\pi}{9} \, rad$$

c.
$$45^{\circ} = 45^{\circ} \left(\frac{\pi \, rad}{180^{\circ}} \right) = \frac{\pi}{4} \, rad$$

d.
$$-72^{\circ} = -72\left(\frac{\pi}{180}\right) = -\frac{2\pi}{5} rad$$

e.
$$60^{\circ} = 60 \left(\frac{\pi}{180} \right) = \frac{\pi}{3} \, rad$$

$$f. \quad 115^{\circ} = 115 \left(\frac{\pi}{180}\right) = \frac{23\pi}{36} \ rad$$

g.
$$-135^{\circ} = -135 \left(\frac{\pi}{180}\right) = -\frac{3\pi}{4} rad$$

$$h. 150^{\circ} = 150 \left(\frac{\pi}{180}\right) = \frac{5\pi}{6} \ rad$$

$$\begin{array}{llll} a. & 36^{\circ} = 36^{\circ} \left(\frac{\pi \, rad}{180^{\circ}}\right) = \frac{\pi}{5} \, rad & b. & 200^{\circ} = 200^{\circ} \left(\frac{\pi \, rad}{180^{\circ}}\right) = \frac{10\pi}{9} \, rad & c. & 45^{\circ} = 45^{\circ} \left(\frac{\pi \, rad}{180^{\circ}}\right) = \frac{\pi}{4} \, rad \\ d. & -72^{\circ} = -72 \left(\frac{\pi}{180}\right) = -\frac{2\pi}{5} \, rad & e. & 60^{\circ} = 60 \left(\frac{\pi}{180}\right) = \frac{\pi}{3} \, rad & f. & 115^{\circ} = 115 \left(\frac{\pi}{180}\right) = \frac{23\pi}{36} \, rad \\ g. & -135^{\circ} = -135 \left(\frac{\pi}{180}\right) = -\frac{3\pi}{4} \, rad & h. & 150^{\circ} = 150 \left(\frac{\pi}{180}\right) = \frac{5\pi}{6} \, rad & i. & -420^{\circ} = -420 \left(\frac{\pi}{180}\right) = -\frac{7\pi}{3} \, rad \end{array}$$

2. Find the degree measure of the angle with the following radian measure:

a.
$$\frac{3\pi}{4} rad = \frac{3\pi}{4} \left(\frac{180}{\pi} \right) = 135^{\circ}$$

b.
$$-\frac{7\pi}{2} rad = -\frac{7\pi}{2} \left(\frac{180}{\pi}\right) = -630^{\circ}$$

c.
$$\frac{5\pi}{6} rad = \frac{5\pi}{6} \left(\frac{180}{\pi} \right) = 150$$

$$d. \quad -\frac{\pi}{12} \, rad = -\frac{\pi}{12} \left(\frac{180}{\pi} \right) = -15^{\circ}$$

$$\begin{array}{llll} a. & \frac{3\pi}{4} \ rad = \frac{3\pi}{4} \left(\frac{180}{\pi}\right) = 135^{\circ} & b. & -\frac{7\pi}{2} \ rad = -\frac{7\pi}{2} \left(\frac{180}{\pi}\right) = -630^{\circ} & c. & \frac{5\pi}{6} \ rad = \frac{5\pi}{6} \left(\frac{180}{\pi}\right) = 150^{\circ} \\ d. & -\frac{\pi}{12} \ rad = -\frac{\pi}{12} \left(\frac{180}{\pi}\right) = -15^{\circ} & e. & -1.5 \ rad = -1.5 \left(\frac{180}{\pi}\right) = -\frac{270}{\pi}^{\circ} & f. & \frac{2\pi}{9} \ rad = \frac{2\pi}{9} \left(\frac{180}{\pi}\right) = 40^{\circ} \\ g. & \frac{\pi}{5} \ rad = \frac{\pi}{5} \left(\frac{180}{\pi}\right) = 36^{\circ} & h. & \frac{\pi}{18} \ rad = \frac{\pi}{18} \left(\frac{180}{\pi}\right) = 10^{\circ} & i. & \frac{5\pi}{3} \ rad = \frac{5\pi}{3} \left(\frac{180}{\pi}\right) = 300^{\circ} \end{array}$$

$$f. \quad \frac{2\pi}{9} \ rad = \frac{2\pi}{9} \left(\frac{180}{\pi}\right) = 40^{\circ}$$

$$g. \quad \frac{\pi}{5} \ rad = \frac{\pi}{5} \left(\frac{180}{\pi} \right) = 36^{\circ}$$

$$h. \quad \frac{\pi}{18} \ rad = \frac{\pi}{18} \left(\frac{180}{\pi} \right) = 10$$

$$i. \quad \frac{5\pi}{3} \ rad = \frac{5\pi}{3} \left(\frac{180}{\pi}\right) = 300^{\circ}$$

Trigonometric Identities

Simplify the following trigonometric expressions:

1.
$$(\sin \theta)^2 + (\cos \theta)^2 - 1 = 0$$

2.
$$(\sin \theta + \cos \theta)^2 + 2\cos \theta = 2\sin \theta \cos \theta + 2\cos \theta$$

3.
$$(\sin \theta) (\cos \theta) + (\sin \theta)^3 - 2 = \sin \theta - 2$$

4.
$$2(\cos\theta)^2 + 2(\sin\theta)^2 + 1 = 3$$