Radicals and Exponents Solutions

Laws of exponents:

If a and b are positive numbers, and x and y are any real numbers, then

1.
$$a^{x+y} = a^x a^y$$

2.
$$a^{x-y} = \frac{a^x}{a^y}$$

3.
$$(a^x)^y = a^{xy}$$

$$\mathbf{4.} \ (ab)^x = a^x b^x$$

Simplify the following expressions:

1.
$$\frac{8x^{n+2}}{6x^3} = \frac{4x^{n-1}}{3}$$

2.
$$(x^{r+2})(x^{r+3}) = x^{2r+5}$$

3.
$$\sqrt[2]{b^7} = b^{\frac{7}{2}}$$

4.
$$\frac{x^7}{x^5} = x^2$$

5.
$$\sqrt{49b^6} + \sqrt{\frac{b^4}{4a^2}} = 7b^3 + \frac{b^2}{2a}$$

6.
$$x^5y^5 = (xy)^5$$

7.
$$(x^2)^3 = x^6$$

8.
$$(x^2)(x^3) = x^5$$

Simplify the following expressions:

9.
$$\sqrt[3]{a^2b^6} = a^{\frac{2}{3}}b^2$$

10.
$$\frac{3r^{k-1}}{r^{k+4}} = \frac{3r^{-5}}{r^5} = \frac{3}{r^5}$$

11.
$$\left(\frac{-2x^{\frac{1}{3}}}{y^{\frac{1}{2}}}\right)^3 = \frac{-8x}{\sqrt{y^3}} = \frac{-8x}{y^{\frac{3}{2}}}$$

12.
$$16^{\frac{1}{2}} \cdot 27^{-\frac{2}{3}} = \frac{4}{9}$$

13.
$$125^{-\frac{1}{3}} \cdot 8^{\frac{2}{3}} = \frac{4}{5}$$

14.
$$4^{-\frac{3}{2}} \cdot 16^{-\frac{1}{4}} = \frac{1}{16}$$

15.
$$64^{\frac{1}{3}} = 4$$

16.
$$\frac{5r^{k-1}}{r^{k+3}} = 5r^{-4} = \frac{5}{r^4}$$