LANDSCAPE MICROCLIMATE DESIGN HORTICULTURE 401

Harvard University - Arnold Arboretum Instructor: Ben Falk, M.A.L.D. November 3, 2006

Arbutis flowering on February 2nd - hilltop, Western Massachusetts

I. II. III. V.

Climate and Microclimate Why Microclimates Microclimate Analysis IV. Design Strategies Design Exercise

Question	
I.	What are microclimates?
II.	Why care about microclimates?
III.	How do I identify them?
IV.	How do I develop them?

Course section Definitions The Problem Analysis **Design Strategies**

I. Definitions

Climate = Weather patterns over time

Microclimate = Discrete area within a larger area of differing climate. "Intentional climates"

II. The Problem

Energy Use Comfort Productivity

Define the optimal climate for a site

Optimized microclimates can result in the following:
Lower energy needs for buildings
Longer growing seasons
Higher yields from plants and animals
More enjoyable, healthier human habitats.

III. Analysis	(%)
Main climate forces	100 -
Sun - Wind - Moisture	
	80 -
Component of space Influence on space	70 —
• Heat access/solar aspect*	60 —
capture	60
o Color/reflectivity	50 —
capture	40 —
o Cover/radiative loss prevention	30 —
retention	
o Mass	20
retention	10 —
o Form	0 —
capture	
o Relative position to air currents capture & retenti	on
*Exception = active source of heat such as a hot air vent or ge	

al source

Observation starting points: Dawn/dusk/midday observations Seasonal (especially swing seasons) observations Snow and frost patterns Photographing across day and season Marks/flagging on the ground for sun/shadow lines IR thermometer Time and experience

Examples of intentional microclimates Termite mounds Beehives

Microclimate creating landscape features Hills – fields – trees – cliffs – boulders – gullies – ridges – groundwater – ponds – lakes – roads – buildings – lawns – roofs – courtyards – inner corners

IV. Design Strategies

1. SITING – THE FIRST STEP Primary factors: aspect, slope, relative elevation, groundwater, bedrock, etc.

2. SITE DESIGN – THE SECOND STEP

Secondary factors: thermal mass, vegetation, color, forms, etc.

Design of warm microclimates checklist:

- 1. Site outside of cold hollows
- 2. Face-southerly
 - a. South southwest = warmest
 - b. Consider orographic affects
- 3. Slope
 - a. The further poleward the steeper the slope
 - b. Vertical surface vs. horizontal planes
- 4. Forms

- a. Bowl solar arc/sun trap
- b. Concentrate sun's wave energy
- 5. Minimize radiative losses cover
 - a. Nighttime most critical
- 6. Wind-shelter
 - a. Buffer and deflect, create eddies
 - b. Still = key for human comfort in cold climate
- 7. High-mass
 - a. Stone and water = primary materials
- 8. High absorption (low albedo)
 - a. Color
- 9. When is your microclimate?
 - a. Design for a particular time of day and year
 - b. Offer a range of periods

