المبادئ التوجيهية التقنية الدولية بشأن الذخيرة

Mقدمة لمبادئ وعمليات إدارة المخاطر

UNODA 2011 ©
تحذير

تخضع المبادئ التوجيهية التقنية الدولية بشأن الذخيرة للاستعراض والتنقيح المنتظمين. هذه الوثيقة سارية اعتباراً من التاريخ المبين على صفحة الغلاف. وينبغي على المستخدمين للتحقق من حالتها مراجعة مشروع الأمم المتحدة للمبادئ التوجيهية التقنية الدولية بشأن الذخيرة من خلال الموقع الإلكتروني لمكتب الأمم المتحدة لشؤون نزع السلاح (UNODA) على العنوان www.un.org/disarmament/convarms/Ammunition

إشارة حقوق التأليف والنشر

هذه الوثيقة هي المبادئ التوجيهية التقنية الدولية بشأن الذخيرة وخاضعة لحقوق التأليف والنشر من قبل الأمم المتحدة. لا يجوز استنساخ أو تخزين أو نقل هذه الوثيقة ولا أي مستخرج منها بأي شكل من الأشكال أو بأي وسيلة من الوسائط لأي غرض آخر دون إذن كتابي مسبق من مكتب الأمم المتحدة لشؤون نزع السلاح، نيابة عن الأمم المتحدة.

لا يجوز بيع هذه الوثيقة.

مكتب الأمم المتحدة لشؤون نزع السلاح (UNODA)
مقر الأمم المتحدة، نيويورك، 10017، الولايات المتحدة الأمريكية.
بريد الإلكتروني: conventionalarms-unoda@un.org
فاكس: +1 212 963 8892

© الأمم المتحدة 2011 – جميع الحقوق محفوظة
مثال لمنهج تقييم المخاطر النوعي (المستويان 1 و2) .. 25
الملحق هاء .. 33
(إعلامي) .. 33
منهج تحليل نتائج الانفجار (المستوى 2) ... 37
الملحق واو ... 37
(إعلامي) .. 37
إدارة المخاطر وبرمجية المبادئ التوجيهية التقنية الدولية بشأن الذخيرة 38
الملحق زين .. 38
(إعلامي) .. 38
تقدير القيمة النقدية المنتظرة (المستوى 2) ... 38
المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02 [إي]
الطبعة الأولى (01-10-2012)

تمهيد
في عام 2008، رفع فريق الخبراء الحكوميين التابع للأمم المتحدة إلى الجمعية العامة تقريرا بشأن المشاكل الناشئة عن تكدس فائض مخزونات الذخيرة التقليدية. ولاحظ الفريق أن التعاون فيما يتعلق بإدارة المخزون الفعلي يحتاج إلى إقرار نهج "الإدارة مدى الحياة"، بدءًا من نظام التصنيف والمحاسبة - الضرورية لضمان المناولة الآمنة والتخزين وتلبية الفائض - إلى النظم الأمنية المادية، بما في ذلك إجراءات المراقبة والاختبار لتقييم استقرار وموثوقية الذخيرة.

وكان من التوصيات الرئيسية التي قدمها الفريق وضع المبادئ التوجيهية التقنية لإدارة مخزونات ضمن إطار الأمم المتحدة. رحبت الجمعية العامة في وقت لاحق بتقرير الفريق وشجعت الدول بقوة على تنفيذ توصياته. وهذا أعطى الوكالة للأمم المتحدة لوعد "مبادئ توجيهية تقنية لإدارة مخزونات الذخيرة التقليدية"، وتعرف الآن باسم المبادئ التوجيهية التقنية الدولية بشأن الذخيرة (IATG).

وسيتم استعراض هذه المبادئ التوجيهية التقنية الدولية بشأن الذخيرة IATG بانتظام لتعكس تطور ممارسات معايير إدارة مخزونات الذخيرة وضمان التغييرات الناتجة عن التعديلات في اللوائح والاشتراطات الدولية المناسبة.

مقدمة

يجب أن يكون أحد العناصر المهمة في عمليات إدارة المخزون الاحتياطي للذخيرة التقليدية والتخطيط لها هو تطبيق نظام إدارة مخاطر قوي وفعال ومتكامل، وفقًا لمعايير منظمة إدارة مخزون احتياطي من الذخيرة التقليدية. قد أدرجت مبادئ التوجيهية الدولية بشأن الذخيرة، والتي تشكل في حد ذاتها جزءًا من عملية إدارة المخازن، أن الالتزام بالمعايير سوف يعني أن منظمة إدارة مخزون احتياطي من الذخيرة التقليدية تتعلق بالفعل بالعديد من مكونات نظام إدارة متكامل للمخازن، ويتضمن ممارسة العملية العامة لإدارة المخازن من دليل الأيزو رقم 5151. يشمل هذا المبادئ التوجيهية التقنية الدولية بشأن الذخيرة، مع التأكيد على تطبيقها على مخازن الذخيرة التقليدية.

إن الطوارئ الطبيعية، مثل الانفجارات والتشققات، والنيران، وإنبعاثات الغازات الضارة، والتي تسبب وفيات وإصابات ومواد ضارة تؤثر في الناس، وتحث على تطبيق مبادئ التوجيهية الدولية، حيث يتم ذكرها في مبادئ التوجيهية التقنية الدولية بشأن الذخيرة. إن منظمة إدارة مخزون احتياطي من الذخيرة التقليدية يجب أن تتمكن من تقديم أنظمة متكاملة للتخطيط والتخطيط والتدريب والتدريب على تطبيق القياسات المطلوبة في جميع العمليات المتعلقة بالذخيرة، والتي تضمن أن هذه المبادئ التوجيهية التقنية الدولية بشأن الذخيرة، والتي تضمن أن هذه المبادئ التوجيهية تقدم أيضًا أشياء إلى خيارات أخرى بجانب تلك التي تضمنها المبادئ التوجيهية.

يجب أن تتخذ الظروف الخاصة على أنها إجراء فإنه يتأثر بتأثيرات التغيرات التقليدية. يمكننا أن نرى أن التغذية المستمرة عن معرفة أكثر أكثراً إذا أخذ في الحساب إمكانية وقوع حادث متعلق بالانفجارات، إضافة إلى سلوكه. لذا، يجب تطبيق الأساليب التي تم تداولها أو الإشارة إليها في هذه المبادئ التوجيهية التقنية الدولية بشأن الذخيرة.
مقدمة لمبادئ وعمليات إدارة المخاطر

1. النطاق

تقدم هذه المبادئ التوجيهية التقنية الدولية بشأن الذخيرة مفهوم إدارة المخاطر وتوضيح النشاطات الضرورية لضمان إدارة ملاءمة للمخاطر ضمن نظام إدارة الذخيرة التقليدية. وهي تركز بشكل رئيسي على أخطار تخزين الذخيرة على المجتمع المدني، لكنها تعطي أيضاً التوجيه فيما يتعلق بأساليب تقدير المخاطر التي قد تستخدم في مجالات وظيفية أخرى من إدارة المخزون الاحتياطي للذخيرة التقليدية.

تلتزم المبادئ التوجيهية كالآتي: على المخاطر أشكالاً عديدة، وترتفع في درجات التعقيد، وتتطور بشكل مستمر. وتقدم هذه المبادئ التوجيهية التقنية الدولية بشأن الذخيرة أشكال إداراً تجارية لإدارة المخاطر وتقدم التعليمات الخاصة بأساليب تقدير المخاطر البسيطة نسبياً، والتي يمكن أن تستخدم أكثر مجموعة من الظروف، ويمكن العثور على أنظمة أكثر تعقيداً في المراجع المعلوماتية.

2. المراجع المعربية

هنا قائمة من المراجع المعيارية في الملحق أ. المراجع المعيارية وثائق مهمّة يشير إليها في هذا الدليل، وتشكل جزءاً من نصوص هذا الدليل.

هناك قائمة أخرى من المراجع المعلوماتية متعلقة في الملحق ب على شكل ويبغرافيا تدرج وثائق أخرى مفيدة عن مبادئ إدارة المخاطر عند تطبيقها على الذخيرة التقليدية.

3. المصطلحات والتعريف

IATG 01.40:2011 [E]

يشير مصطلح "حادث انفجاري" إلى بدء غير متوقع وغير مرغوب لمادة أو غرض متفجر داخل مستودع ذخيرة، مؤدياً إلى نتائج مهمة أو كارثية.

يشير مصطلح "أذى" إلى إلحاق إصابة أو ضرر مادي بصحة الإنسان، أو ضرر بالممتلكات أو البيئة.

يشير مصطلح "خطر" إلى مصدر محتمل للأذى.

يشير مصطلح "مخاطر" إلى خليط من احتمال حدوث الأذى وشدة ذلك الأذى.

يشير مصطلح "تحليل المخاطر" إلى الاستعمال المنظم للمعلومات المتاحة للتعرف على الأخطار وتقييم المخاطر.

يشير مصطلح "تقييم المخاطر" إلى عملية تحليل تقييم المخاطر وتقييم المخاطر.

يشير مصطلح "تقييم الخطر" إلى العملية التي تستند على تحليل المخاطر لتقرر ما إذا كانت المخاطر التي يمكن تقبلها قد تحققت.

يشير مصطلح "إدارة المخاطر" إلى العملية الكاملة لاتخاذ القرار اعتماداً على المخاطر.

كل المصطلحات والتعريف المتصلة بالمخاطر تأتي من دليل الأيزو 51 (مرجع معاري في الملف A).
المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02
الطبعة الأولى (01-10-2012)

يشير مصطلح "الحد من المخاطر" إلى الإجراءات المتخذة للتقليل من الاحتمالات أو النتائج السلبية المرتبطة بمخاطر معينة، أو كليهما.

يشير مصطلح "الأمان" إلى تقليل المخاطر إلى مستوى يمكن تقبله.

يشير مصطلح "مخاطر يمكن تقبلها" إلى المخاطر المقبولة في سياق معين استنادًا على القيم الحالية للمجتمع.

في كل وحدات المبادئ التوجيهية التقنية الدولية بشأن الذخيرة، تستخدم الكلمات "على" و "يجب" و "قد" و "يمكن" لبيان النصوص بما يتفق واستعمالها في معايير الأيزو.

(أ) تشير "على" إلى مطلب: ويستعمل للإشارة إلى متطلبات يجب إتباعها بصرامة بغرض الالتزام بالوثيقة، ولا يسمح بأي انحراف عنها.

(ب) تشير "يجب" إلى توصية: ويستعمل للإشارة إلى أنه من بين عدة إمكانيات، يوصى بإحداها كونها مناسبةً جدًا، دون ذكر أو استبعاد الإمكانات الأخرى، أو إلى أن مسار عمل ما فعال، لكنه ليس بالضرورة مطلوباً، أو إلى أن (في صورة النفي، "يجب ألا") إمكانية أو إجراء معين مُشترِكت ولكن ليس مُحظرًأ.

(ج) تشير "قد" إلى الرخصة: ويستعمل للإشارة إلى أن عمل ما جائز ضمن حدود الوثيقة.

(د) تشير "يمكن" إلى الإمكانية والقابلية: ويستعمل لبيان الإمكانية والقابلية، سواء المادية أو الطبيعية أو العرضية.

4 المقدمة

تُعرَّف المخاطرة بأنها المخاطرة × الإمكانية × النتيجة. بمجرد اختيار مقياس للمخاطرة، فإن مصطلح إمكانية ونتيجة يمكن التوسع فيما باستعمال نظام رياضي مقبول. وقد يكون أحد مقاييس المخاطرة (انظر البند 6.2) إمكانية مقتل شخص خلال عام واحد من تعرض لخطر (مؤشر مخاطر وفاة الأفراد السنوي (IRFatality)).

ويمكن عندئذ التوسع في الإمكانية لتشمل احتمال وقوع حدث خطر لكل عام (PEvent).

Event | PFatality

ويمكن عندئذ تعريف النتيجة أنها احتمال مقتل الشخص المعرض للخطر بشكل مستمر حال وقوع حدث (P|Fatality).

(Event | PFatality) × (PEvent)

ومع ذلك، يمكن أن يصاب الفرد بالخطر فقط إذا كان متواجداً خلال عملية خطرة. لذا، تقل المخاطرة (في العام) بالنسبة للجزء من العام الذي يُعَرض خلاله فعلياً للخطر / وضع خطر (نسبة بلا أبعاد). وإذا أشير إلى احتمال وجود الشخص في الحدث أو تعرضه له بما (EP)، فإن: (EP) × (Event | PFatality) × (PEvent)

مؤشّر مخاطر وفاة الأفراد السنوي (IRFatality)

ومن هذا يمكن استبضاط معادلات أخرى مماثلة لتنبيهات متطلبات مختلفة، وزيادة مستوى التفاصل استنادًا على العلم والهندسة الصحيحة للمفهرسات.

يجب أن يكون الالتزام بالقواعد التي يكون السبب في المخاطر أخلاقية أساسية ضمن عمليات إدارة المخزون الاحتباطية للذخيرة التقليدية.

فالمخاطرات القاسمة على المخاطر تتولّد كثيراً بشكل دوري ومتكرّرة بصورة متكررة، ويجب أن تولد اعتقاداً على مستوى المعرفة بالمشورات الواردة في الجدول 1.
المبادئ التوجيهية الدولية التقنية للذخائر 10.02:10.2012 [إي]
الطبعة الأولى (01-10-2012)

<table>
<thead>
<tr>
<th>مثال لمتطلبات المعرفة</th>
<th>أنواع الخطر العامة</th>
<th>المؤشر</th>
</tr>
</thead>
<tbody>
<tr>
<td>كم مرة تحدث حوادث انفجارية غير مرغوب فيها في مستودعات الذخيرة في البلد؟</td>
<td>الخطر الخاص بالأفراد (I(R))</td>
<td>التكرار</td>
</tr>
<tr>
<td>ما هي كمية للمتضرر في مستودع؟</td>
<td>الخطر الجماعية</td>
<td>الأثار الطبيعية</td>
</tr>
<tr>
<td>ما هي مستويات الضغط الفوقي والاندفاع مقابل المدى إذا حدث الانفجار؟</td>
<td>الخطر المحسوس</td>
<td>الفائدة من خلال دراسة</td>
</tr>
<tr>
<td>ما هي المسافة التي يمكن عندها توقع حادث وقبيل إصابات؟</td>
<td>التعرض</td>
<td></td>
</tr>
<tr>
<td>ما هي المسافة التي يمكن عندها توقع حدوث أضرار إنشائية?</td>
<td>التعرض</td>
<td></td>
</tr>
<tr>
<td>كم عدد البيئات المدنية في منطقة الخطر، وما هي مستويات الضرر المتوقعة لكل منها؟</td>
<td>التعرض</td>
<td></td>
</tr>
<tr>
<td>كم عدد المدنيين في منطقة الانفجار ومنطقة التنشيط في أي فترة زمنية؟</td>
<td>التعرض</td>
<td></td>
</tr>
</tbody>
</table>

جدول رقم 1: مؤشرات القرارات القائمة على المخاطر

يجب أن يكون هدف منظمات تخزين الذخيرة التقليدية هو الإدارة الآمنة والفعالة والكفاءة للمخزون الاحتمالي للذخيرة التقليدية، والمتضرر، والدوافع والمتفجرات. إلا أن هناك أخطار محتملة لهذه العملية:

1. قد تؤدي ظروف التخزين غير الملائمة للذخيرة التقليدية إلى أحداث انفجارية غير مرغوب فيها أثناء التخزين.
2. قد يؤدي التفتيش المادي والتحليل الكيميائي غير الفعال للذخيرة كجزء من نظام تفتيش للمراقبة إلى حدوث أحداث انفجارية غير مرغوبة أثناء التخزين نتيجة لتهزيم حالة الذخيرة.
3. المجازفة والمعالجة غير الملائمة للذخيرة التقليدية لديها إمكانية التسبب في إحداث وفيات أو إصابات بين العمال والمراقبين.

إضافة إلى هذه الأخطار، هناك مجموعة من الأسباب المحتملة لوقوع حادث انفجاري غير مرغوب:

1. نار عرضية في مركبة، أو مستودع أو مخزن للمتفجرات.;
المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02
الطبيعة الأولى (01-10-2012)

6

العملية العامة لإدارة المخاطر

إدارة المخاطر هو مجال مفعم، حيث يوجد قدر هائل من الأعمال تقدم الإشراف. وحيث انه سوف يكون من غير العملي غرضية كل الخيارات والأساليب المختلفة في هذه المبادئ التوجيهية التقنية الدولية بشأن الذخيرة، فقد تم تنسيب عمليات إدارة المخاطر التي ستُطبقها فقط في إدارة المخزون الاحتياطي للذخيرة التقليدية.

يمكن تصنيف المخاطر ضمن واحدة أو أكثر من ثلاث فئات:

أ) مخاطر توجد من أجلها بعض الدلائل، ولكن لا يمكن الربط بين السبب والإصابة أو أي فرد واحد
ب) مخاطر قد تنوي من أجلها إحصائيات عن إصابات تم تحديدها؛ و
ج) مخاطر قم الاستناد_pal من أجلها بحساب أفضل تقديرات لاحتمال وقوع أحداث تم تقديره بعد.

7

سوف تصنيف المخاطر المتصلة في إدارة المخزون الاحتياطي للذخيرة التقليدية ضمن الفئة (ب) أو (ج) فيما أعلاه. وتتوفر الدلائل الإحصائية للأحداث الإيجابية السابقة في مناطق تخزين الذخيرة. 7 كما أن هناك أساليب مقررة لتقدير المخاطر بناء على نماذج احصائية أو معدلات علمية 8.

5

مفهوم الأمان

يتحقق الأمن بتقليل المخاطر إلى مستوى يمكن تقبله، يُعرَف في هذه المبادئ التوجيهية التقنية الدولية بشأن الذخيرة كمخاطر يمكن تقبلها، ولا يمكن أن يكون هناك أمان مطلق؛ فبعض المخاطر سوف تبقى، وهذه هي المخاطر المتبقيّة. 1999 (إي).

لا، ضمن سياق إدارة المخزون الاحتياطي للذخيرة التقليدية، فإن عمليات تمكين التخزين، والمناولة، والتدبير، الخ، لا يمكن أن تكون أمانة مطلقة لكل يمكن أن تكون أمانة تعبيرًا. هذه تقنية حميدة من حقائق الحياة، والتي لا تعني أن كل الجهود لا بديل لضمان الأمان. لكننا تعني فقط أنه لا يمكن إثبات أن الأطام المطلق يحقق بنسبة 100 %، وتهدف أنظمة إدارة المخاطر التي توفر المبادئ التوجيهية التقنية الدولية بشأن الذخيرة، والمستعملة ضمن برامج المبادئ التوجيهية التقنية الدولية بشأن الذخيرة، إلى الاقتراب قدر الإمكان من ذلك المستوى المثالي بالقدر الممكن وأعيانًا، مع السماح لمنظمات إدارة المخزون الاحتياطي بتحديد المخاطر المحتملة التي هي على استعداد تقبلها في بيئاتهم المعينة.

4

المبادئ التوجيهية الدولية التقنية للذخائر

(أي

(ج

(د

(ب

(ج

ب) خطاً بشيء نتيجة حادث، أو إعياء أو مناولة غير ملائمة؛
(ج

(د

(ب

ج

ب) فعال بيئة (مثل، سقوط البرق)؛
(د

(ب

ج

ب) فعال دخيل (مثل، التخريب)؛ أو
(ج

ب) فعال عدو (في فترات النزاع) (مثل، أداة متفجرة مرتجلة، أو نيران مباشرة أو غير مباشرة).

أحد الأهداف الرئيسة لعملية إدارة المخاطر أثناء إدارة مخزون احتياطي لذخيرة تقليدية هو تشجيع ثقافة تسعي من خلالها منظمة إدارة المخزون الاحتياطي إلى إنجاز هدف تحقيق الأمان عن طريق:

أ) وضع وتطبيق الإجراءات المناسبة للإدارة والتشغيل؛
ب) إرسال مهارات المديرين والعمال وتحسينها بشكل مستمر؛
ج) ضمان أن الذخيرة التقليدية تُخَزّن وتُداوّل من خلال بنية تحتية فعالة ملائمة؛ و
d) الحصول على معدات آمنة وفعالة وكفء.

6

المبادئ التوجيهية الدولية التقنية للذخائر
1.6 مكونات إدارة المخاطر

يمكنًا أحيانًا أن يكون مصطلح إدارة المخاطر، والذي يوجد في إطار الركز، خاطئة فيهما في المثال، تقييم المخاطر وتحليل المخاطر. وضمن المبادئ التوجيهية التقنية الدولية بشأن الذخائر، فإن إدارة المخاطر هي العملية الكاملة لاختيار القرارات القائمة على المخاطر. وتبين المصفوفة في الجدول رقم 2 العلاقة بين المكونات المختلفة لإدارة المخاطر التي سوف تستخدم في سلسلة المبادئ الخاصة بالمبادئ التوجيهية التقنية الدولية بشأن الذخيرة.

<table>
<thead>
<tr>
<th>إدارة المخاطر</th>
<th>تقييم المخاطر</th>
<th>تحليل المخاطر</th>
<th>تحديد وتحليل الأخطار</th>
<th>تقدير المخاطر</th>
<th>تقييم المخاطر ومبدأ "منخفض بالقدر العملي المعقول"</th>
<th>الحد من المخاطر</th>
<th>قبول المخاطر</th>
<th>التواصل بشأن المخاطر</th>
</tr>
</thead>
</table>

هناك مزيد من الشرح لكل مكون من مكونات إدارة المخاطر، إضافة إلى الأساليب الموصى بها التي يجب أن تستخدم أثناء عملية إدارة المخاطر لإدارة المخزون الاحتياطي للذخيرة التقليدية في البنود 7 - 12. هذه الأساليب تتضمنها أيضاً برامج "المبادئ التوجيهية التقنية الدولية بشأن الذخيرة"، والتي تأثمت العديد من العمليات الأكثر تقنيةً من إدارة المخاطر الخاصة بإدارة المخزون الاحتياطي للذخيرة التقليدية.

2.6 أنواع الخطر

هناك نوعان عامان من المخاطر التي قد تؤخذ في الاعتبار أثناء عملية إدارة المخاطر الخاصة بالمنشآت الخاصة بال충فارات:

أ) المخاطر الخاصة بالأفراد (IR). هو احتمال وفاة فرد معين في موقع معين أو تعرضه لإصابات خطيرة نتيجة لبدء عرضي للمفتاح وللمشتهرات، و

ب) خطر مجتمعي (SR). يشير هذا إلى احتمال أكبر عدد من الناس الذين قد يصبحون ضممن الوفيات أو إصابات خطيرة نتيجة لحدث انفجار.
المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02
الطبعة الأولي (01-10-2012)

وحيث إن معايير (IR) و (SR) (مشكّلة من مصادر مختلفة، فإن مستويات المخاطر التي قد تُدرَّبت أثناء عملية إداره المخاطر سوف تُدرج في الحوائش بشكل واضح بالإشارة إلى ما إذا كان التقدير الخاص بـ (IR) أو (SR) (أو IR) تمثل مستويات من الفترات الجارية، حيث أن تقدر (IR) والخاصة بـ (IR) و (SR) (أو IR) تستخدم عادة أثناء عملية تقييم المخاطر، حيث أن تقدر (IR) و (SR) (أو IR) أشد صعوبة. ويرجع هذا لكون المخاطر المجتمعية كثيرةً ما تتضمن مجالاً أوسع للنتائج المحمولة.

من الممكن أن المخاطر التي يمكن تقبلها قد تُنزّل باستعمال مجموعة واحدة من المعايير، لكن ليس باستعمال المعايير الأخرى. وفي هذه الحالة، يجب اتخاذ إجراءات إضافية لضمان تلبية جميع المعايير. وإذا لم يكن هذا ممكناً أو من الممكن، فإن السلطة التقنية الوطنية على إتباع الحكم والعقال أيضاً طلباً مما يوافقه سياسة رسمية على استمرار استعمال المنشأة الخاصة بالمنفخات.

3.6 تحديد المخاطر التي يمكن تقبّلها

تُحدد المخاطر التي يمكن تقبلها بالبحث عن الأمان المطلوب مقابل عوامل مثل:

أ) المخاطر المتأصلة لأمان المتفخّرات والخاصة بخزن ومعالجة ومعالجة الذخيرة;
ب) الموارد المتاحة;
ج) عادات المجتمع الذي تخزّن الذخيرة فيه؛ و
د) التكلفة المالية.

يترتب على ذلك أن هناك حاجة مستمرة لمراجعة المخاطر التي يمكن تقبلها، والتي تعزز المفهوم وراء عمليات إدارة المخزون الاحتياطي في بنية معينة.

ويحدد مستوى المخاطر التي يمكن تقبلها بواسطة السلطة الوطنية الملائمة، لكنه لا يجب أن يكون أقل من المخاطر التي يمكن تقبلها، على سبيل المثال، في التصنيع أو العمليات الصناعية. ويجب النظر إلى مستويات المخاطر التي يمكن تقبلها (استناداً على معايير المخاطر الفردية) والمبينة في الجدول رقم 3 على أنها معقولة وعملية:

<table>
<thead>
<tr>
<th>المستوى المخاطر التي يمكن تقبلها (IR)</th>
<th>المجموعة المعرضة للخطر</th>
<th>ملاحظات</th>
</tr>
</thead>
<tbody>
<tr>
<td>العمال في منشأة لتصنيع المتفخّرات</td>
<td>1 × 10^{-3} (أقصى حد يمكن تقبله)</td>
<td>• قد يتعذر أن نضمن أن العمال إلى هذا المستوى من المخاطر بصورة عرضية.</td>
</tr>
</tbody>
</table>

10 يشمل هذا كل طاقم العملي في منشأة خاصة بالمتفخّرات. ويمكن تقييمها لكل إدارات عمليات تزييد الإداري، وعمليات الفحص للعمل، من حيث يُمكن تقييمها بعضها لمتشابه، مع التفاوت في الجهود المحتملة، والcstdintات، وعمليات المتفخّرات، الذين يقومون بأعمال الدعم الإداري.
11 يرى المبادئ التوجيهية الدولية التقنية للذخائر 30.02 ترخيص مناطق للمتفخّرات.
<table>
<thead>
<tr>
<th>المجموعة المعرضة للخطر</th>
<th>مستوى المخاطر التي يمكن تقبلها (IR)</th>
<th>ملاحظات</th>
</tr>
</thead>
</table>
| العمال في منشأة لتصنيع المتفجرات (مستوى التحذير) | 1×10^{-4} | • يجب أن يكون هذ.ui الأقصي للمخاطر التي يتعرض له العاملون بشكل منتظم.
• يجب إصدار ترخيص غير قياسي لحد المتفجرات عند هذا المستوى من المخاطر. |
| العمال في منشأة لتصنيع المتفجرات (الحد المقبول) | 1×10^{-6} | • يجب أن يكون هذا المستوى المثالي للمخاطر لل تعرض اليومي.
• يجب إصدار ترخيص قياسي لحد المتفجرات عند هذا المستوى من المخاطر. |
| الجمهور العام (أقصى حد يمكن تقبله) | 1×10^{-4} | • قد يتعرض الجمهور العام إلى هذا المستوى من المخاطر بشكل عرضي وفي ظروف استثنائية.
• يجب إصدار ترخيص غير قياسي لحد المتفجرات عند هذا المستوى من المخاطر.
• إذا كانت IR أكبر من 1×10^{-3}، تقدم حالة خاصة للشرح إلى السلطة التقنية الوطنية، ويتم السعي رسميًا للحصول على قبول سياسي، كتاني، للمخاطر. |
| الجمهور العام (مستوى التحذير) | 1×10^{-5} | • يجب أن يكون هذا المستوى الأقصي للخطر الذي يتعرض له العاملون بشكل منتظم.
• يجب إصدار ترخيص غير قياسي لحد المتفجرات عند هذا المستوى من المخاطر. |
المبادئ التوجيهية الدولية التقنية للذخائر
2012:10.02

الطبعة الأولى (01-10-2012)

المجموعة المعرضة للخطر

<table>
<thead>
<tr>
<th>المستوي المخاطر التي يمكن تقبلها (IR)</th>
<th>ملاحظات</th>
</tr>
</thead>
<tbody>
<tr>
<td>الجمهور العام (الحد المقبول)</td>
<td>يجب أن يكون هذا المستوى المثالي للمخاطر لل تعرض اليومي.</td>
</tr>
<tr>
<td>1 × 10^{-6}</td>
<td></td>
</tr>
</tbody>
</table>

يجب إصدار ترسخ قياسي لحد المتفجرات عند هذا المستوى من المخاطر. 16

جدول رقم 3: المستويات المقترحة للمخاطر التي يمكن تقبلها

يرجى أن يكون المستوى المُقترح الذي يمكن تقبله للمخاطر المجتمعية (SR) هو ألا يقل الاختلاف الأقصى لوقوع حادث يسبب موت 50 شخصًا أو أكثر في أي عام عن 1 إلى 5,000 (1.2 × 10^4). 17

يجب وضع نظام يسجل رسمياً كيفية تحديد المخاطر التي يمكن تقبلها، وأي سلطة قبلتها. ويلخص الجدول رقم 4 متطلبات "نظام خطر يمكن تقبله".

<table>
<thead>
<tr>
<th>مجال / نشاط عام</th>
<th>مجال / نشاط خاص</th>
<th>ملاحظات</th>
</tr>
</thead>
<tbody>
<tr>
<td>إدارة المخاطر</td>
<td>حقوق ورشح أفرادًا مؤهلين ليكونوا مسؤولين عن سياسة إدارة المخاطر في المنشأت الخاصة بالمتفجارات.</td>
<td></td>
</tr>
<tr>
<td>تحليل المخاطر</td>
<td>"المملكة الخاصة بالمتفجارات"</td>
<td></td>
</tr>
<tr>
<td>تحليل المخاطر</td>
<td>حداد المجموعات "المعرضة للمخاطر"</td>
<td></td>
</tr>
<tr>
<td>العامون في منطقة المتفجارات (غير المؤهلين).</td>
<td>عامة الناس الذين يمرون بالقرب من منشأة خاصة بالمتفجارات.</td>
<td></td>
</tr>
<tr>
<td>العامون في منطقة المتفجارات (المؤهلون في مجال المتفجارات).</td>
<td>عامة الناس الذين يمرون بالقرب من منشأة خاصة بالمتفجارات.</td>
<td></td>
</tr>
<tr>
<td>قرار المستوى الملائم للمخاطر التي يمكن تقبلها</td>
<td>يُقرر مستوى المخاطر المُتعلق بالمخاطر الـ 16SR و IR من حيث المستوى التقني.</td>
<td></td>
</tr>
<tr>
<td>قبول المخاطر</td>
<td>يحصل على موافقة وزارية مكتوبة على مستوى المخاطر التي يمكن تقبلها.</td>
<td></td>
</tr>
<tr>
<td>تنقّل المخاطر</td>
<td>يجب أن تكون مستويات المخاطر متساوية لتلك الخاصة بالعمليات الصناعية الأخرى.</td>
<td></td>
</tr>
<tr>
<td>الإبلاغ عن نحو واسع بمستويات المخاطر التي يمكن تحملها، والتي يتم تطبيقها في المنشأت الخاصة بالمتفجارات.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

الجدول رقم 4: البروتوكول الخاص بالمخاطر التي يمكن تقبلها

تتحقق المخاطر التي يمكن تقبلها بواسطة عملية تكميرية لتقييم المخاطر (تقييم المخاطر وتحليل المخاطر) والحد من المخاطر. انظر الشكل 1.
البداية التعرف المزمع استعماله وسوء الاستخدام المتوقع بحساب اتخاذ تحديد الأخطار تقدير المخاطر هل تحقق المخاطر التي يمكن تقبلها؟ الحد من المخاطر قف ملاحظات تحليل المخاطر تقييم المخاطر

الشكل 1: عملية تكرارية لتقليع المخاطر

يتميز تقليع المخاطر الفعال بمجموعة من الفوائد التي تتضمن:

أ) المساعدة في ترتيب أهمية مساهمات المخاطر الخاصة بالأفراد في المخاطر العامة;

ب) المساعدة في تحديد المخاطر التي يمكن الحد منها أو القضاء عليها بسهولة;

ج) المساعدة في توضيح ما هو معلوم وما هو غير معلوم عن المخاطر الممكنة;

د) إمكانية توفير قاعدة موضوعية للقرارات الخاصة بالتحكم في المخاطر، خاصة تلك التي تنطبق على المجتمعات المدنية المحلية بالقرب من مناطق تخزين الذخائر.

18 سوف تظهر عملية التفكير هذه، متبعة قليلاً، في نسخ أخرى من المبادئ التوجيهية الدولية للذخائر حيث تنص المخاطر المحتملة.

المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02 الطبعة الأولى (01-10-2012)
4.6 تحقيق مخاطر يمكن تقبلها

يجب استعمال الإجراء العام التالي للحد من المخاطر إلى مستوى يمكن تقبله أثناء إدارة مخزون احتياطي من الذخيرة التقليدية:

أ) تحديد أصحاب المصلحة المحتملين في عملية إدارة المخزون الاحتياطي للذخيرة التقليدية، (بمعنى آخر، المجتمع المدني المحلي، عملاء مستودع الذخيرة، الإدارة، الخ)؛

ب) تحديد كل خطر (بما في ذلك أي حالة خطيرة وحدث ضار) يظهر في كل مراحل عملية إدارة المخزون الاحتياطي؛

ج) تقدير وتقييم المخاطر المعرض لها كل مُستخدم أو مجموعة، (على سبيل المثال، نتائج حدوث انفجاري فيما يخص الوفيات، والإصابات، والضرر البيئي والخسارة المالية)؛

د) الحكم ما إذا كانت تلك المخاطر يمكن تقبلها (بالنسبة على ذلك، مقارنة بالمخاطر الأخرى للمستخدم، وتمارين مقبولة للمجتمع)؛

ه) إذا لم تكن المخاطر يمكن تقبلها، فالحد من المخاطر حتى تصبح من الممكن تقبلها.

عند إجراء عملية الحد من المخاطر، يجب أن يكون ترتيب الأولويات كالتالي:

أ) تصميم آمن أصلًا للمعدات والعمليات؛

ب) فرض مسافة فاصلة آمنة لملامح بين مخزون الذخيرة والموارد التي يُمكن تعرضها للخطر؛

ج) إجراءات تشغيل آمنة أصلًا، حيث تم الحد من المخاطر لمستوى يمكن تقبله لكل إجراء ونشاط؛

د) تدريب ملائم وفعال للموظفين؛

ه) استخدام معدات الوقاية الشخصية أثناء مناولة الذخيرة، حيث كان ذلك ملائماً؛ و

و) تقديم المعلومات إلى موظفي إدارة المخزون الاحتياطي والمجتمعات المحلية.

7 تقدير المخاطر (تخزين الذخيرة)

التقديرات النوعية للمخاطر وصفية، بدلاً من استعمال بيانات قابلة للقياس أو الحساب. وهي إلى حد بعيد أكثر المناهج المستعملة

ليفح المخاطر في العديد من الظروف، بيانات الاحتمالات غير مطلوبة ولا يستعمل إلا الخسارات التقديرية المحتملة فقط.

ويجب أن تُستعمل دادًا أثناء عمليات تقدير مخاطر تخزين الذخيرة تقليدية حيث هناك مجموعة من الأسباب المقبولة علمياً

والتي أثبتت فاعليتها، ومنها تقييم مخاطر كمية بقدر أكبر. مع ذلك، يمكن استعمالها في عمليات معينة تدعم إدارة الذخيرة

حيث يُتاح قدر كبير من البيانات الكمية، مثل الإجراءات التقنية الخاصة بمهام معالجة الذخيرة.

هناك مثال لأسلوب تقدير مخاطر نوعي في الملحق D.
المبادئ التوجيهية الدولية التقنية للذخائر 2012

الطبعة الأولى (01-10-2012)

2.7 تقييم المخاطر الكمي

تقييم المخاطر الكمي أداة قوية لتحري المخاطر والحد منها. ويجب أن يستعمل لتقدير الاحتمال التقريبي لانفجار عرضي أثناء تخزين الذخائر، ثم تقدير الوقائع، والأضرار والإصابات الأخرى الناجمة عن مثل هذا الانفجار (يشار إليها بالناتج). ويتضح هذا الوصول إلى قرار مبني فيما إذا كانت المخاطر تتفق أو لا تتفق مع مبدأ "مطلق الفارق" المقابل للقيمة العملي المعقولة "19". ويستعمل في برمجة المبادئ التوجيهية التقنية الدولية بشأن الذخائر.

يتوفر تقييم المخاطر الكمي ميزة على الطرق الشخصية أكثر في أن مجموعة أكثر اكتمالاً من المعلومات المتوفرة تُستعمل لقياس المخاطر ثم حوارها. ويتضح هذا الاستناد والتكرار من قرار إلى قرار (على سبيل المثال، عند مقارنة الأطراف العلمية والأدوات، وتوافق المخازن المتفجرات في نطاق مستودع ذخائر).

العجز الأساسي لبعض الأساليب المستعملة ضمن تقييم المخاطر الكمي (المتفجرات) هي درجة عدم الثقة المتصاعدة في المؤشر المحصور (انظر البند 14). وكان هذا في أغلب الأحيان بسبب مجموعة واسعة من المتغيرات. على الرغم من هذا، فإن الدقة من الناحية المطلقة أو العامة يمكن أن تتألف في ظل مقارنة تقريبية بينها (مععمل قدره 10)، وتتيح رغم ذلك اتخاذ القرارات الملائمة. قد تكون الدقة الأداء 20 جيدة جداً، ويمكن مقارنة الخيارات النسبية بقدر من الثقة (بعامل قدره 2 أو أكثر).

هناك مثل لأسلوب تقييم مخاطر كمي في الملحق ه.

8 تحليل المخاطر

1.8 تحديد وتحليل الخطر

تحديد وتحليل الخطر لعملية إدارة المخاطر التي تدعم مخازن الذخائر التقليدية عملياً. حيث إن المخاطر تُعرّف بكونها مجموعه احتمال حدوث الأذى وشدة ذلك الأذى، فإن تقييم المخاطر بالكيمياء، وتقييم الخطر 21، والحالة الطبيعية والثبات الكيميائي للذخائر الموجودة في خزان المتفجرات هذا.

إذا كانت المسافات بين المخازن لا توافق التوصيات التي تضمنها المبادئ التوجيهية التقنية الدولية بشأن الذخائر 20.02، فإن الالتفاقيات بين الخزانات والمسافات الفاصلة، فسوف تكون هناك حاجة لزيادة من تحليل المخاطر. عادة، يعد كل مخزن متفجرات موقع انفجار محتمل مستقل. رغم ذلك، إذا كانت هناك مخاطر انتشار في حكم الأساليب نتيجة لوجود مسافات غير كافية بين مخازن المتفجرات، فربما يجب تناولها كموقع انفجار محتمل، وتجميع كمية المتفجرة.

2.8 تقدير المخاطر

حيث أن المخاطر تُعرّف بكونها مجموعة احتمال حدوث الأذى وشدة ذلك الأذى، فإن تقدير المخاطر الخاص بالأحداث الانفجارية في أنوان تخزين الذخائر يجب أن يحدد و/أو يقدر ما يلي: (أ) احتمال وقوع حدث انفجار غير مخطط وغير مرجوب؛ (ب) الآثار الطبيعية لمثل هذا الانفجار؛ (ج) عدد الإصابات المتوقعة، و (د) مستويات الضرر المتوقعة.

تغطي البنود 2.8.2 أعلاه ما يُعرف بـ"تحليل النتائج". (انظر البند 13).
1.2.8 تقدير احتمال وقوع حادث انفجاري غير مرغوب (المستوى 1)

في العديد من الحالات، سوف يكون من الصعب تحديد احتمال وقوع حدث انفجاري غير مرغوب في منطقة معينة تخزين المتفجرات. رغم ذلك، هناك بيانات متوفرة عن عدد من تلك الأحداث سنوياً. يجب أن تكون منظمة إدارة مخزون اعتراض على هذه الأحداث الممتلئة السابقة في منطقتيها. سوف يساعد هذا المنظمة في تقدير التكارز، وبدا الاحتمال.

ويعرف هذه المهمة "التاريخي"، وهذا نموذج كمثال في الين. 1.1.1.2.8 هذا النموذج أكثر نوعيةً في الين 2.1.2.8.

تتضمن الطرق البديلة لتحديد التكرار، وبذا احتمال وقوع الأحداث الانفجارية، أثناء عملية تقييم المخاطر، أساليب تحليلية معينة تعريف وتحديده كنماذجية للمستقبل، وتحديدها في النموذج "التاريخي"، وهناك نموذج كمثال في البند 1.1.1.2.8. هناك إلى التكرار، وبدقة، وهذا المزيد من التوجيه متاح في المراجع المعلوماتية في الملحق ب. 1.1.2.8.

تستعمل الطرق البديلة لتحديد التكرار، وبذا احتمال وقوع الأحداث الانفجارية، أثناء عملية تقييم المخاطر، أساليب تحليلية معينة تعريف وتحديده كنماذجية للمستقبل، وتحديدها في النموذج "التاريخي"، وهناك نموذج كمثال في البند 1.1.1.2.8. هناك إلى التكرار، وبدقة، وهذا المزيد من التوجيه متاح في المراجع المعلوماتية في الملحق ب. 1.1.2.8.

يمكن استعمال أو تعديل المثال التالي لنموذج تقدير احتمال وقوع حدث انفجاري غير مرغوب نتيجة أنظمة أو عمليات غير ملامحة اعتراض محاكاة، إذا لم تكن تلك بيانات أو أداة أخرى متوفرة. وتستند بيانات هذا النموذج البسيط على ما يلي:

أ) هناك 192 دولة عضو في الأمم المتحدة. وإذا افتراض بشكل متحفة أن متوسط مستودعات الذخيرة في العالم في كل دولة 10,000 فحكمة ذخيرة هائل الحجم عملياً;

ب) ويفترض أيضاً، استناداً على الخبرة المكتسبة من زيارة المراقبين الدوليين للمواقع، أن 40% على الأقل من تلك المستودعات لا تتوافق مع أفضل الممارسات الدولية لأمان المتفجرات;

ج) هناك أيضاً أداة موثقة 23 عقوبة أحداث انفجارية غير مرغوبة، بمتوسط 21.4 حدث سنوياً، خلال كل عام من الأعوام الـ5 الأخيرة (2004 - 2008); وعرفت الأغلبية الكبيرة منها حيث وجدت عمليات غير ملامحة لإدارة المخزون الاحتياطي.

لذلك يمكن الجدل إلى حد معقول بأن احتمال حدوث انفجاري غير مرغوب في مستودع ذخيرة في كل عام من الأعوام الـ5 الآتية consecutively (PEvent) هو:

\[
(2.178)^2 - 0.0278 = 0.2016
\]

من اليسار أن تقدير هذا قرب معامل قدره 1، ويمكن أن يستعمل لأغراض التخطيط.

قد يُنظر إلى احتمال 2.78 × 10² لحدث انفجار في مستودع ذخيرة ذي عمليات إدارة غير مرغوبة نتيجة للإشراف الاحتياطي على أنه مرتفع إلى حد ما عند تقديره مقارنة بالمخاطر المحتملة. خاصة وأن التأثير من حيث متوسط معدل الوفيات (2004 - 2008) لكل حدث انفجاري غير مرغوب في منطقة تخزين المتفجرات هو 20 حالة وفاة، وعدد المصائب (المصابات) 23.1 لكل حدث انفجاري.

عكس هذا النموذج هو أنه إذا تفادت أنظمة وعمليات لائقة لإدارة المخزون الاحتياطي، وتم تطبيقها بفعالية، فاحتمال وقوع

أحداث انفجارية غير مرغوبية في مستودعات الذخيرة الباقية (PNon-Event) هو:

\[
26\% = 0.0278 - 1 = (PNon-Event)
\]

22 حوالياً 2000 معلومياً

26 حوالياً 2000 معلومياً
المبادئ التوجيهية الدولية التقنية للذخائر (المستوى 1)

2.1.2.8 مثال لنموذج تقدير احتمال (نوعي)
بين الجدول رقم 5 ووسائل نوعية أكثر لتقدير احتمال وقوع حدث انفجاري:

<table>
<thead>
<tr>
<th>الوصف العام</th>
<th>التعرف النوعي</th>
<th>الاحتمال</th>
</tr>
</thead>
<tbody>
<tr>
<td>محتمل</td>
<td></td>
<td>متعارض</td>
</tr>
<tr>
<td>متكرر</td>
<td></td>
<td>موعد تقريباً</td>
</tr>
<tr>
<td>محتمل جداً</td>
<td></td>
<td>محتمل جداً</td>
</tr>
<tr>
<td>من المحتمل</td>
<td></td>
<td>من غير المحتمل</td>
</tr>
<tr>
<td>عرضي</td>
<td></td>
<td>محتمل للحدث</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مستبعد</td>
<td></td>
<td>يمكن أن يفترض أنه لن يحدث</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>قلما</td>
<td></td>
<td>غير محتمل</td>
</tr>
</tbody>
</table>

الجدول رقم 5: القدير النوعي لاحتمال وقوع حدث انفجاري

2.2.8 تقدير الآثار الطبيعية لحدث انفجاري غير مخطط أو غير مرغوب (المستوى 2)

يمكن تقدير الآثار الطبيعية لحدث انفجاري غير مرغوب في مستوى ذهيني باستخدام المعادل المانحة الموجودة ضمن المبادئ التوجيهية التقنية الدولية بشأن الذخائر 80.01 ص 80.01 إدارة الذخائر (البند 2.6). ويمكن استعمال ذلك لتحديد زيادة الضغط الثوري للانفجار في المسافة بين موقع انفجار محتمل وموقع موقع انفجار محتمل وموقع معرض للخطر من كتلة منفجورة معروفة.

وُجدت زيادة الضغط الثوري للانفجار المسبقة لآثار على البشر عن طريق التجربة (4.5 كيلوباسكال لحفرة ضرورة، 207 كيلوباسكال لحفرة ضرورة 690 كيلوباسكال لحفرة مرفوعة). إذا كانت كثافة السكان المعروفة في النطاقات المانحة، فإنه يمكن استخدام المعادلة الكلية للعواقب والتصورات. بدلاً من ذلك، يمكن استعمال نموذج الهواء الضارب لблиجتة تقرير وفق التنافر (كلاهما في البند 2.1 من المبادئ التوجيهية التكنولوجية الدولية بشأن الذخائر 80.01 ص 80.01 إدارة الذخائر).

بالمثل، يمكن تقدير آثار الانفجار على البناء داخل أو خارج محيط مستودع الذخائر. (البند 10 من المبادئ التوجيهية التكنولوجية الدولية بشأن الذخائر 80.01 ص 80.01 إدارة الذخائر).

3.2.8 تقدير المخاطر على الأفراد (المستوى 2)

تُعرَف المخاطر على أنها "الإمكانية × النتائج"، وحيث تتوفر بيانات وطنية عن الحوادث من جميع الأنواع، فإنه يمكن مقارنة معدل مخاطرة وفاة الأفراد (IRfatality) (الجدول رقم 6 كنتيجة انفجار غير مرغوب، إلى المخاطر التي يمكن قياسها للشطرنات الأخرى أو العمليات الصناعية. وفقاً للبنود 4، يُعرف IR السنوي على أنه: 27 تقدير تحمل البشر لآثار الانفجار الحربي، م. أ. ك. ث. و. 1968.
المبادئ التوجيهية الدولية التقنية للذخائر 2012

الطبعة الأولى (01-10-2012)

الجدول رقم 6: مؤشر مخاطر وفاة الأفراد السنوي

\[
\text{IRFatality} = \text{Event} \times \text{Pf} \times \text{Pe} \times \text{Ep}
\]

النموذج:

\[
\begin{align*}
\text{IRFatality} & = \text{Event} \times \text{Pf} \times \text{Pe} \times \text{Ep} \\
\text{Event} & = 2.78 \times 10^{-2} \\
\text{Pf} & = 0.99 \\
\text{Pe} & = 0.0833 \\
\text{Ep} & = 0.23
\end{align*}
\]

الجدول رقم 7: التصنيف النوعي للمخاطر

<table>
<thead>
<tr>
<th>الوصف</th>
<th>التعرف النوعي</th>
</tr>
</thead>
<tbody>
<tr>
<td>كارثي</td>
<td>حدث غير مرغوب يؤدي إلى حدوث بعض الوفيات أو إضرار جسيمٍ، و/أو خسائر أو أضرار جسيمة بالبناية التحتية.</td>
</tr>
<tr>
<td>كبير</td>
<td>حدث غير مرغوب يؤدي إلى حدوث بعض الوفيات أو إضرار جسيمٍ، و/أو خسائر أو أضرار جسيمٍ بالبناية التحتية.</td>
</tr>
<tr>
<td>صغير</td>
<td>حدث غير مرغوب يؤدي إلى حدوث إصابات بسيطة للأفراد، وتتأثر بسيطة على البناية التحتية.</td>
</tr>
</tbody>
</table>

الجدول رقم 4.2.8 مؤشر المخاطر النوعي

يمكن استعمال خليك من التقديرات النوعية في الجدولين 5 و 7 لوضع مؤشر مخاطر نوعي كما هو مبين في الجدول رقم 8:

28 من أجل شخص معرض بشكل متساو.
29 لقيمة المدى الرفعية للذخائر 20.02.02 المساواة للذخائر. والمساوات القائمة.
30 من أجل أفراد داخل منزل، يجب استعمال هذه الطريقة بالتوالي مع ذلك التي في البنين 10 و 3.11 من المبادئ التوجيهية الدولية التقنية للذخائر 0.01 صبغ إدارة الذخائر.
المبادئ التوجيهية الدولية التقنية للذخائر

التقييم المخاطر ومبدأ "منخفض بالقدر العملي المعقول"

التقييم المخاطر هو مقارنة الأثر المحتمل، بالنسبة للوفيات والإصابات البشرية، والتكلفة المالية والتأثير السياسي لحدث انفجاري، وبين ما يمكن تقبله في المجتمع. إذا قدرت المخاطر على أنها يمكن تقبلها، فلن تكون هناك إجراءات عاجبة مطلوبة، رغم أنها يجب أن تأخذ في الاعتبار أيضاً إذا كانت تلك المخاطر منخفضة بالقدر العملي المعقول.

إن التقييم المخاطر المحتمل لحادث انفجاري يمكن تقبله معين هي مقارنة بين Irfataility المقدرة مقارنة بالمخاطر التي يمكن تقبلها في مجتمع معين مع Irfataility أخرى قد تكون متوفراً لأحداث مثل:

1) الوفيات نتيجة حوادث المرور على الطرق البرية;
2) وفيات العمليات الصناعية;
3) الوفيات نتيجة الأمراض، الخ.

إذا لم تقيّم المخاطر على أنها يمكن تقبلها، فيجب اتخاذ إجراءات علاجية ملزمة للحد من المخاطر. (انظر البند 10).

الحد من المخاطر

للحد من المخاطر المحتملة لحدث انفجاري غير مخطط أو غير مرغوب في منطقة تخزين الذخيرة، يجب اتخاذ إجراء أو خليط من الإجراءات التالية:

أ) تقليل مستويات تخزين الذخيرة في منطقة تخزين المنتفجات حتى الوصول إلى مستويات متوقعة ملائمة للضغط الفوقي للانفجار في الموقع المعزز للخطر; (المستوى 1)

ب) زيادة المسافة الفاصلة بين موقع الانفجار المحتمل والموقع المحتمل للخطر حتى الوصول إلى مستويات متوقعة ملائمة للضغط الفوقي للانفجار في الموقع المعزز للخطر; (المستوى 2)

ج) إجراء تحسينات في البنية التحتية الطبيعية لمخزن الذخيرة لتحقيق مستويات متوقعة ملائمة للضغط الفوقي للانفجار في الموقع المعزز للخطر (المستويان 2 و 3)

د) استناداً نظم مراقبة وصمود فعالة للذخيرة لتحديد الذخيرة والدافع الذي تردت إلى حالة خطرية (انظر المبادئ التوجيهية التقنية الدولية بشأن الذخيرة 20.07 المراقبة واختبار الصمود؛ (المستوى 3)

ه) غلق مستودع الذخيرة ونقل المخزون إلى مستودع ذخيرة ذي قدرة احتياطية; (المستوى 1)

و) المقبول الرسمي، على المستوى السياسي المالم، للتأثير المحتمل للمخاطر المحتملة في حالة مخاطر على السكان المحليين. (المستوى 1)

11 قبول المخاطر (المستوى 1)

تنتج معايير قبول المخاطر عن ثلاثة عوامل:

أ) التصورات المحلية للمخاطر المجتمعية وبالتالي المواصفات التفصيلية لـ"المخاطر التي يمكن تقبلها";

شدة خطر

<table>
<thead>
<tr>
<th>الاحتمال</th>
<th>كارثي</th>
<th>كبير</th>
<th>متوسط</th>
<th>صغير</th>
</tr>
</thead>
<tbody>
<tr>
<td>المحتمل</td>
<td>مرتفع</td>
<td>مرتفع</td>
<td>متواضع</td>
<td>نموذج</td>
</tr>
<tr>
<td>عرضي</td>
<td>مرتفع</td>
<td>متواضع</td>
<td>متواضع</td>
<td>منخفض</td>
</tr>
<tr>
<td>غير محتمل</td>
<td>متواضع</td>
<td>متواضع</td>
<td>متواضع</td>
<td>منخفض</td>
</tr>
</tbody>
</table>

الجدول رقم 8: مؤشر المخاطر النوعي

11.07 ترتيب المعلومات الخاصة بها لطباعة في قاعدة بيانات أبحاث معلومات مرنة (WHOIS) www.who.int/whois
المبادئ التوجيهية الدولية التقنية للذخائر 02:10:2012 (إي)
الطبعة الأولى (01-10-2012)

التكلفة والخسائر الاقتصادية المحتملة نتيجة حدث انفجاري غير مرغوب (والتي سوف تتضمن: 1) تكلفة تعويض الفساد؛ 2 التكلفة المتوقعة لتعويض الفساد من المعدات المتفجرة؛ 3 تكلفة التعويض عن الخسائر المتوقعة في القطاع العام والقطاع الخاص، بما في ذلك تكلفة التعويض عن الأضرار المادية والشخصية؛ 4) تكلفة الاستعدادات والإجراءات العلاجية المتصلة بال箝شة والتخفيشات المتوقعة في القطاع العام والقطاع الخاص.

التكلفة الاقتصادية المحتملة نتيجة حدث انفجاري غير مرغوب (والتي سوف تتضمن: 1) تكلفة معالجة الظروف التي تتبع تشكل الخطر؛ 2 التكلفة المتوقعة لتعويض الفساد من المعدات المتفجرة؛ 3 تكلفة التعويض عن الخسائر المتوقعة في القطاع العام والقطاع الخاص، بما في ذلك تكلفة التعويض عن الأضرار المادية والشخصية؛ 4) تكلفة الاستعدادات والإجراءات العلاجية المتصلة بال箝شة والتخفيشات المتوقعة في القطاع العام والقطاع الخاص.

ب) تحليل مردود الكلفة المساند مطلوب قبل أن تقبل المخاطر رسمياً حيث إنه يمكن أن يؤثر على المخاطر التي يمكن تقبلها، وبالتالي يتطلب تكرار عملية تقييم المخاطر (انظر البند 15); و

(ج) الأثر البيئي.

حيث تم تحقيق مخاطر يمكن تقبلها، وإذا اقتدى الحاجة، دعمها بتحليل مردود الكلفة، فتلك المخاطر المتوقعة يمكن تقديرها بفعل قبولها رسمياً. إذا ف אחד هذه الأفكار، يجب أن يتأخذ في الاعتبار إصدار إرشادات متخصصة لموضوع تخزين الأذخيرة في الأطر الزمنية (انظر المبادئ التوجيهية الدولية بشأن تخزين الأذخيرة 30.02).

إلا إذا لم تتحقق مخاطر يمكن تقبلها، وحيث لا يتم توفير الموارد لتحقيقات المخاطر التي يمكن تقبلها، يجب قبول المخاطر المتوقعة رسمياً، كأنها من قبل الكيان المسؤول عن تخصيص الموارد لمنظمة إدارة المخزون الاحتياطي. وسيتم تحليل إجراءات تحقيق المخاطر التي يمكن تقبلها، ويشير إلى تخصيص الموارد وينشئ تنبيهات لتحسين الموارد المتبقية.

يفضل أن يتم أخذ هذا عادة على سبيل المثال لتمكين مهرة من فهم المخاطر التي يمكن تقبلها، حيث يمكن تقبلها إذا أدت الحاجة. إذا تم تحققها، فتكون مشاركة في العملية في مجال متخصص.

12 التواصل بشأن المخاطر (المستوى 1)

ال التواصل بشأن المخاطر عملية تفاعلية لتبادل المعلومات والرأي فيما يتصل بالمخاطر بين مقيّمي المخاطر، ومديري المخاطر، وأصحاب المصالحة الآخرين، الذين قد يشملون ممثلين عن المجتمع المدني المحلي الذي قد يتأثر بالمخاطر. يجب أن يتم التواصل بشأن المخاطر جزءاً من عملية إدارة المخاطر، ويعود ذلك إلى نهج الإستراتيجية التي تشمل جميع أصحاب المصالحة في النشاط الأولي. التواصل بشأن المخاطر يجعل أصحاب المصالحة على دراية بنتائج تقييم المخاطر، والمنطق وراء عملية تحليل المخاطر والإجراءات العلاجية المتصلة لضمان مستوى من المخاطر التي يمكن تقبلها.

يجب أن يتم التواصل بشأن المخاطر لضمان مستوى من المخاطر الذي يمكن تقبلها، بحيث يكون التواصل بشأن المخاطر جزءاً من إستراتيجية عامة للإدارة بشأن المخاطر. هذا الإستراتيجية الخاصة بالتعاون بشأن المخاطر يجب أن تتفق على مبادئ المخاطر في وقت مبكر من العملية لضمان المستند الملزم، ويراقب كل مجموعات أصحاب المصالحة في النشاط الأولي. التواصل بشأن المخاطر يجعل أصحاب المصالحة على دراية بنتائج تقييم المخاطر، والمنطق وراء عملية تحليل المخاطر والإجراءات العلاجية المتصلة لضمان مستوى من المخاطر التي يمكن تقبلها.

13 من أساليب تقييم المخاطر

يجب أن يكون الأسلوب المستعمل لتقدير المخاطر قابل للإيضاح بهدف تطبيقه بشكل صحيح. يمكن أن يكون هذا إن مرجعية أبتكار تقييم المخاطر، ولذا قد يحقق الأسلوب المتضمن لมากๆ من التفاصيل التي يسهل فهمها. لكن هذا لا يعني اختيارات طرق التي تكون دقيقة، ولكن غيرو صادقة. بل يعني أن الأسلوب المتضمن ل岑ج تحليل وتفسير موضوعي وواضح يستحق الحجج. وإذا لم يكن الإيضاح والتبسيط باستخدام ندوة التفاوض أو العلوم المقترحة، فقد لا يحقق بالآراء، وإن لم يجمع عليه الرأي، فإن

يتم في المحكمة.
المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02 (إي)
الطبعة الأولى (01-10-2012)

1.13 الاختبارات (المستوى 3)

قد يكون من المرغوب فيه، حيث تتوفر بسهولة بيانات غير كافية، إجراء اختبارات مادي، على نطاق كامل أو نطاق أقل، للحصول على بيانات معينة حيث كانت الأحداث نادرة أو سجلت بشكل غير كاف. وفيما يلي بالتوصل والأحداث الافتراضية غير المرغوبة أو غير المخطط لها في مناطق تخبزون الذخيرة، فإن هذه الاختبارات غاية جيدة، ونادراً ما تجري عادة على قاعدة ثنائية. ولهذا الح瑾، أعلنت نتائج اختبارات سابقة 33، وهي تشكل أساس الممارسات الأمنية للكمية والمسافات الفاصلة.

2.13 المسافات الفاصلة والمسافات الآمنة للكمية (المستوى 2)

استخدام مسافات آمنة للكمية لتحديد المسافات الفاصلة الملائمة بين مواقع الانفجار المحتملة والمناطق المعرضة لأثار مثل هذه الانفجارات هو إجراء قياسي للعديد من منظمات إدارة المخزون الاحتيائي للذخيرة التقليدية. توفر المبادئ التوجيهية التقنية الدولية بشأن الذخيرة 20.02 02 المسافة الآمنة للكمية والمسافات الفاصلة معلومات أكثر تفصيلاً عن تطبيق هذا الأسلوب، والمسافات الملائمة للاستخدام.

تقدم النماذج المتصلة بتقييم معايير المسافة الآمنة للكمية نتائج تميل إلى الخطأ من أجل الأمان، حيث إن هذا يعني الثقة في أنه لم يُقلل من قبل أشار إلى الانفجار. وحينئذ فإن نتيجة الأحداث العرضية في مناطق تخزين المتفجرات تعتمد على العديد من العوامل، لا سيما عن نماذج لها طبقتها، فهناك قوة على عملية تطبيق معيار المسافة الآمنة للكمية في كل الظروف. ورغم أن استخدام مراجعة المسافة الآمنة للكمية عملية بسيطة إلى حد معقول، فتوسط الحماية الملائمة يمكن صياغته من أجل فئات عريضة من مواقع انفجار محتملة ومناطق معرضة للخطر. سوف يختلف تصميم البنية، وحالة الإصلاح، وطبوغرافيا المكان، الخ في السيناريوهات المختلفة، وبالتالي تتوفر معايير المسافة الآمنة للكمية تقديرات دقيقة من أجل أنطائج البنيات التي تتوفر منها بأسهل ممكن.

ليس من الممكن دائمًا توفير مسافات الفاصلة التي تتطلبها الامانة للكمية، وفي هذه الحالة، يجب أخذ تحليل نتائج الانفجارات في الاعتبار.

3.13 تحليل نتائج الانفجارات (المستوى 2)

يمكن أن يُعرف تحليل نتائج الانفجارات على أنه عملية منظمة، تستعمل علم وحداثة المتفجرات لتوفير دليل علمي على المخاطر التي يمكن تقللها للأفراد والممتلكات من آثار الانفجار والمشتريات في حال وقوع حدث انفجاري غير مرغوب.

تحليل نتيجة الانفجار يمكن أن يكون مكوناً رئيسياً من مكونات عملية تحليل المخاطر أثناء تحديد تقييم المخاطر الكمي و/أو النوعي. والمكون الأول تحليل نتائج الانفجارات يجب أن يُعد باستخدام الصيغة أو الصيغة العلمية الملائمة من المبادئ التوجيهية التقنية الدولية بشأن الذخيرة 80.01 ص5 لإدارة الذخيرة.

يجب أن تكون أهداف تحليل نتائج الانفجارات:

أ) وضع سيناريو تهديد واقعي للانفجار؛
ب) تدبير أثر الانفجار على الأشخاص والأشياء القريبة؛ و
ج) إبراز المخاطر المعرضة للمخاطر بشكل خاص، والتي قد تحتاج لمتطلبات حماية خاصة.

هناك مثال لمنهج سبيسي لتحليل نتائج الانفجارات يمكن أن يستعمل في الملفق. يجب أن يأخذ تحليل أشغال لنتائج الانفجارات في الاعتبار المخاطر الخارجية الإضافية أعلاها ومساهماتها في تكرار البدء:

أ) نزول البرق. حيث لا توفر الحماية من البرق بما يتفق والمبادئ التوجيهية التقنية الدولية بشأن الذخيرة 40.05 معايير أمان التجهيزات الكهربائية.

33 بما في ذلك اختبارات شاملة في أستراليا على مدار الـ 40 عاماً، وأيضاً التقييمات دولية من مجموعة من الحكومات تعمل سوياً، 34 منظمة حلف شمال الأطلسي، تعليمات صناع وتخزين المتفجرات في المملكة المتحدة، الخ.
المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02 (إي)
الطبعة الأولى (01-10-2012)

الفيضان. حيث توجد منشأة المتفجرات في سهل معروف بحدوث الفيضانات فيه;

ج) تحطم الطائرات. حيث توجد منشأة المتفجرات بالقرب من الممرات الجوية التجارية أو في منطقة تكثر فيها حركة الطائرات الخفيفة;

د) وجود تجهيزات خطرة قريبة. حيث توجد منشأة المتفجرات بالقرب من، على سبيل المثال، مستودعات نفط أو مواقع للتخلص من الذخيرة، أو تشترك معها في الموقع;

(5) التدمير عن سوء قصد. تهديد التخريب أو الهجوم الإرهابي؛ أو

(و) بدء تبعي. حيث تتواجد مواقع الانفجار المحتملة على مسافات فاصلة غير ملائمة ويؤدي انفجار أحدها إلى بدء المتفجرات في موقع انفجار محتمل مجاور.

تتضمن برمجية المبادئ التوجيهية التقنية الدولية بشأن الذخيرة تحليلاً آلياً لنتائج الانفجارات يتطلوب فقط إدخال بيانات أساسية متوفرة بسهولة.

14 عدم التهديد من تقييم المخاطر

عدم التقني المتضمن في تقدير المخاطر عند توقع تنبؤ الأحداث المتفجرة نتيجة لمدى التغييرات المتضمنة. يجب دائماً ذكر الفرضيات أثناء العملية بشكل واضح، وكذلك مصادر البيانات. قد يكون من الممكن أيضاً تضمين حد الخطأ ومستويات الثقة، رغم أن هذا سوف يطلب الوصول إلى مجموعة من البيانات الإحصائية التي قد لا تكون متوفرة. ومن المحتمل أن عدم التقني هذا من احتمال وقوع الأحداث (انظر المثال في البنود 3.2.8) قد يكون مماثلاً بقدر 2 أو 3؛ وفي بعض الحالات يكون مماثلاً بقدر 10 وربما أكثر، سوف يكون هذا غير مرغوب في تقييم المخاطر.

للتوضيح، تقبل العديد من الدول أن تكون Irfatality للعمال بسبب عملية صناعية في حدود 1 × 10⁻⁵ إلى 1 × 10⁻⁶. إذا كانت القيمة النقديّة المتوقعة (المستوى 2) فذر Irfatality قد يتبع بمعامل قدره 2 أو ثلاثة عن مستويات المخاطر المجتمعية المقبولة في تلك الدول المعينة.

تقدير المخاطر أداة قوية لضمان أمان المخزون الاحتياطي للمخازن التقليدية، لكنه يجب أن يُستخدم بتغطير وواسطة أفراد يفهمون الأخطار ولديهم الخبرة التقنية للقيام إذا أثبتت التقييم غير ممتلئة، وهي ليست أسهل دقيقة، ولكنها سوف تكون تقريبياً فقط. لكن في ميدان همزة المتفجرات، هو أسهل تكتيك وهما من المخاطر التقليدية، وهي تقبل بسهولة عن طريق.

15 تحديد مردود الكلفة (المستوى 2)

15.1 الفئات النقدية المتوقعة (المستوى 2)

أحد أساليب تحديد مردود الكلفة الذي يمكن أن يستعمل تقييم تكلفة إجراءات المكافحة في مقابل التكلفة المالية لحذف انفجار غير مغرب ضمن منطقة تخزين الذخيرة هي القيمة النقدية المتوقعة. مضلول يجب أن يتم على نطاق واسع من قبل محاسبات التأمينات في قطاعات التأمين.

بين الجنود رقم 9 التكلفة المالية الدائرة للمعالجة بعد انفجار غير مغرب في مستودع ذخيرة. يتكون من ثلاثة سيناريوهات:

أ) حريق بسيط يؤدي إلى: (1) ضرر في المخزونات (الخالية)؛ و(2) ضرر محض نفطي بالبنية التحتية

(ب) حريق كبير يؤدي إلى انفجارات بسبيكة توتي للإي: (1) تدمير مخزونات الذخيرة؛ (2) تدمير مخزونات المتفجرات؛ (3) ضرر محض نفطي بالبنية التحتية للسكان المدنيين؛ و(6) ضرر بسيط بالممتلكات الخارجية لمستودع الذخيرة.

المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02
الطبعة الأولى (01-10-2012)

حريق كبير يؤدي إلى انفجارات كبيرة تؤدي إلى: 1) تدمير مخزون الذخيرة; 2) تدمير مخزونات المتفجرات المحيدة; 3) تدمير جزء ملحوظ من مخزون الذخيرة في مستودع الذخيرة; 4) تلوث ملحوظ بدخانة غير مفترة خارج محيطة منطقة المتفجرات; 5) وفيات وإصابات بين السكان المدنيين; و6) دمار وأضرار بالممتلكات المدنية خارج مستودع الذخيرة.

نتيجة للاختلاف الكبير في التكلفة الاقتصادية في المناطق المختلفة من العالم، ليس من الممكن تخصص تكلفة مالية محددة، لكن من الممكن الإشارة إلى الحجم التجريبي للتكلفة، مبين في الجدول رقم 9 بالرمز "×".

<table>
<thead>
<tr>
<th>منطقة التكلفة المالية</th>
<th>حريق بسيط (لا انفجار)</th>
<th>حريق كبير (انفجار بسيط)</th>
<th>حريق كبير (انفجار شامل)</th>
</tr>
</thead>
<tbody>
<tr>
<td>كلفة ترحيل المنتفخ من المعدات المتفجرة</td>
<td>×</td>
<td>××</td>
<td>×××××</td>
</tr>
<tr>
<td>كلفة إصلاح (مستودع ذخيرة)</td>
<td>××</td>
<td>××××</td>
<td>×××××</td>
</tr>
<tr>
<td>كلفة إصلاح (ممتلكات مدنية)</td>
<td>×</td>
<td>×</td>
<td>×××</td>
</tr>
<tr>
<td>كلفة إعادة بناء (مستودع الذخيرة)</td>
<td>××</td>
<td>××××</td>
<td>×××××</td>
</tr>
<tr>
<td>كلفة إعادة بناء (المباني)</td>
<td>××</td>
<td>××××</td>
<td>×××××</td>
</tr>
<tr>
<td>كلفة تعويض الإصابة</td>
<td>×</td>
<td>××××</td>
<td>×××××</td>
</tr>
<tr>
<td>كلفة استعاضة الذخيرة</td>
<td>××</td>
<td>××××</td>
<td>×××××</td>
</tr>
<tr>
<td>كلفة تدريب العاملين (عاملون جدد)</td>
<td>××</td>
<td>××××</td>
<td>×××××</td>
</tr>
<tr>
<td>التكلفة الكلية</td>
<td>8×</td>
<td>18×</td>
<td>35×</td>
</tr>
</tbody>
</table>

الجدول رقم 9: مقدار الحجم التجريبي للتكلفة المتوقعة الدلالية للإحداثات الانفجارية

يجب أن يتم تبنيها لخفض احتمال وقوع انفجار غير مرغوب في مستودع الذخيرة.

نتيجة لاختلاف كبير في التكلفة الاقتصادية في المناطق المختلفة من العالم، ليس من الممكن إشارة إلى مقدار الحجم التجريبي للتكلفة، والمبينة في الجدول رقم 10 بالرمز "×".

<table>
<thead>
<tr>
<th>منطقة التكلفة المالية</th>
<th>حجم الحد من المخاطر مقابل الحدث (× دولار أمريكي)</th>
</tr>
</thead>
</table>

17. فرض الانتقال من مخزن متفجرات إلى الآخر.
المبادئ التوجيهية الدولية التقنية للذخائر 2012 (إي)
الطبعة الأولى (01-10-2012)

<table>
<thead>
<tr>
<th></th>
<th>حريق بسيط (لا انفجار)</th>
<th>حريق كبير (انفجار بسيط)</th>
<th>حريق كبير (انفجار شامل)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بنايات مخازن متفجرات متينة</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>الحوافز والحواجز الوقائية</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>الصيانة السنوية لمخازن المتفجرات والحواجز</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>معدات فعالة لمكافحة الحرائق</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>تكلفة إزالة النباتات</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>التدريب الفعال للعاملين</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>الإجراءات الفعالة لمستودع الذخيرة</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>الإجراءات الفعالة لمكافحة المهربات</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>التكلفة الكلية</td>
<td>y6</td>
<td>13</td>
<td>y16</td>
</tr>
</tbody>
</table>

الجدول رقم 10: مقدار الحجم التقديرلي للقيم النقدية المتوقعة الدلالية لتكلفة الحد من المخاطر

التكلفة المتوقعة مصنوفة سداد لتقدير التكلفة المالية السنوية لكل من اتخاذ إجراء علاجي أو عدم اتخاذ إجراء علاجي. وتُحسب القيمة النقدية المتوقعة كالتالي:

المقدار المتوقع (دولار أمريكي) = (التكلفة العلاجية اتخذت أو لم تتخذ × Pevent) + (التكلفة العلاجية اتخذت أو لم تتخذ × PNon-Event)

يوجد شرح ل 示例 لاستخدام أرقام القيمة النقدية المتوقعة الدلالية لمصروف ذكيرة حقيقية، حيث حدث انفجار نتيجة حريق، موضح في الملحق ز: هذا يغطي السيناريو الخاص به حريق كبير / انفجار شامل، والمبين في الجدولين 9 و10.
المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02 (إي)
الطبعة الأولى (01-10-2012)

الملاحق

المراجع

(معيارية)

تحتوي الوثائق المعيارية التالية البنود، التي هي من خلال الإشارة إليها في هذا النص، تشكل بنود هذا الجزء من الدليل.

المراجع المؤرخة، والتعديلات أو التنقيحات اللاحقة لأي من هذه المنشورات، لا تنطبق. إلا أن أطراف الاتفاقيات المستندة على هذا جزء من الدليل عليهم تحرير إمكانية تطبيق أحدث طبعات الوثائق المعيارية المشار إليها أدناه من أجل المراجع غير المؤرخة، أحدث طبعة من الوثيقة المعيارية المشار إليها تطبيق. يحتفظ أعضاء الأبيزو بسجلات الأيزو السارية حالياً أو

سجلات التنفيذ الأوروبي:

المبادئ التوجيهية التقنية الدولية بشأن الذخيرة 2011:40.01 [إي] المصطلحات والمسرد والتعاريف. مكتب الأمم المتحدة لشؤون نزع السلاح 2011;

المبادئ التوجيهية التقنية الدولية بشأن الذخيرة 2011:80.01 [إي] صيغ لإدارة الذخيرة. مكتب الأمم المتحدة لشؤون نزع السلاح 2011;

المبادئ التوجيهية التقنية الدولية بشأن الذخيرة 2011:20.02 [إي] مسافات المسافات الآمنة للكمية والمسافات الفاصلة. مكتب الأمم المتحدة لشؤون نزع السلاح. 2011;

دليل الأيزو رقم 1999:51 – أوجه الأمان – المبادئ التوجيهية لإدارتها في المعايير. الأيزو. 1999; و

يجب استخدام النسخة / الطبعة الأخيرة من هذه المراجع. مكتب الأمم المتحدة لشؤوننزع السلاح لديه نسخ من كل المراجع المستعملة في هذا الدليل. كما تحتفظ مكتب الأمم المتحدة لشؤون نزع السلاح بسجل لأخر نسخة / طبعة من المبادئ التوجيهية التقنية الدولية بشأن الذخيرة، ويمكن قراءتها على الموقع الخاص بالمبادئ التوجيهية التقنية الدولية بشأن الذخيرة على الشبكة العنكبوتية: www.un.org/disarmament/convarms/Ammunition.

السلطات الوطنية، أرباب الأعمال والهيئات والمنظمات أخرى المهتمة بالأمر يجب أن تحصل على نسخ من الدليل قبل التشريع

http://books.hse.gov.uk.

41 متوفر من...
42 حيث تنص حقوق الطبع
المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02 (إي)
الطبعة الأولى (01-10-2012)

الملحق باء
(إعلامي)
بيليو غرافيا

تحتوي الوثائق المعلوماتية التالية نصوصاً يجب أيضاً الرجوع إليها من أجل المزيد من المعلومات الخلفية عن محتويات هذا الدليل:

ب) المبادئ التوجيهية التقنية الدولية بشأن الذخائر 2011:30.02 (إي) ترخيص مناطق تخزين المتفجرات. مكتب الأمم المتحدة لشؤون نزع السلاح. 2011؛

ج) منظمة حلف شمال الأطلسي 4-4 AASPT-4 تحليل مخاطر أمان المتفجرات، طبعة 1 منظمة حلف شمال الأطلسي؛

د) تقييم مخاطر أمان المتفجرات والانحرافات والنتائج. البحث التقني 14. مجلس أمان المتفجرات التابع لوزارة الدفاع، الإسكندرية، فرجينيا، الولايات المتحدة الأمريكية. فبراير/شباط 2000؛ و

ه) تحليل أمان المتفجرات القائم على المخاطر. البحث التقني 23. مجلس أمان المتفجرات التابع لوزارة الدفاع، الإسكندرية، فرجينيا، الولايات المتحدة الأمريكية. 31 يوليو/تموز 2009.

يجب استخدام النسخة / الطبعة الأخيرة من هذه المراجع. مكتب الأمم المتحدة لشؤون نزع السلاح لديه نسخ من كل المراجع المستعملة في هذا الدليل. كما تحتفظ مكتب الأمم المتحدة لشؤون نزع السلاح بسجل لأستر أخر نسخة / طبعة من المبادئ التوجيهية التقنية الدولية بشأن الذخائر، ويمكن قراءتها على الموقع الخاص بالمبادئ التوجيهية التقنية الدولية بشأن الذخائر على الشبكة العنكبوتية: www.un.org/disarmament/convarms/Ammunition...

السلطات الوطنية، أرباب الأعمال والهيئات والمنظمات أخرى المهتمة بالأمر يجب أن تحصل على نسخ من الدليل قبل الشروع في تنفيذ برامج لإدارة مخزونات الذخيرة التقليدية.

43 حيث تسحب حقوق الطبع
المبادئ التوجيهية الدولية التقنية للذخائر
الطبعة الأولى (01-10-2012)

الملحق ج (معلوماتي) الأثار العامة للانفجارات

ج.1. عام

الانفجار هو إطلاق مفاجئ للطاقة نتيجة تفاعل كيميائي سريع جداً يحول المادة الصلبة أو السائلة إلى حرارة وغاز. يحدث هذا التفاعل في أقل من جزء من الففث من الثانية. وأثناء عملية تحويل المادة الصلبة أو السائلة إلى غاز، يحدث تمدد للغاز، ولذا في حالة انفجار، ينتج تمدد الغاز بسرعة كبيرة ويدفع الهواء المحيط بالمكان أمامه، وبذا ينشئ موجة ضغط تعزف بموجة عصف الانفجار.

عند حدوث انفجار على مستوى الأرض، تنتج عدة آثار تسبب الأضرار والإصابات. وتتوقف مدة هذه الآثار بشكل عام على شدة ونوعية وكمية المادة المتفجرة المستخدمة.

الأثار السته الأساسية هي:
أ) الإشعاع الحراري;
ب) قوة القصم أو التحطم;
ج) الشظايا الرئيسية;
د) موجة عصف الانفجار;
ه) الصدمة الأرضية؛ و
و) الشظايا الثانوية.

كل من هذه الأثار ملخص في الأجزاء التالية.

ج.2. الأثار الحرارية

يمكن اعتبار الآثار الحرارية "كرة من النار" تنتج كجزء من العملية الانفجارية. وهي محدودة جداً بمكان الانفجار وقصيرة الأجل جداً (بضعة أجزاء من الففث من الثانية).

والأثار الحرارية خطيرة جداً بالنسبة لأولئك القريبين جداً من الانفجار (بمعنى أخر، من يلجهون إلى إنشاء صلب)، حيث يمكن للحرارة احتراق الفتحات الصغيرة في الإنشاء. وبالنسبة لمن هم في العراء، فإن موجة عصف الانفجار وآثار الشظايا لديها مجال أكبر لإيقاع الضرر.

ج.3. قوة القصم

قوة القصم هو التأثير المحتمل، وهي محدودة جداً يمكن أن ينتج الانفجار وترتبط بوجه عام بالمتفجرات شديدة الانفجار. ويمكن أن يكون تأثير قوة القصم شديداً عند وضع أداة متفجرة في اتصال مباشر بمواد إنسانية. إن فوهة هواوية صغيرة بين المادة المتفجرة والهدف تكون فعالة في كسر حدة الانهيارات التي تسببتها قوة القصم.

ج.4. الشظايا الرئيسية

هي أجزاء الأداة أو حاوية الأداة التي تتحطم وتتأثر بقوة القصم وذفعت بنسبة عالية لمسافات كبيرة. ويمكن للشظايا الرئيسية أن تتحدى أمام موجة عصف الانفجار، ولديها إمكانية إحداث الإصابات في مدى أكبر من مدى موجة عصف الانفجار.

ج.5. موجة عصف الانفجار
موجة عصف الانفجار هي موجة سريعة الحركة من الضغط العالي كونها الغاز السريع التمدد الناتج عن الانفجار، والتي تقل بشكل تدريجي مع المسافة. وموجة عصف الانفجار قادرة على الانبعاث على الأسطح، ويمكنها خلال هذه العملية تكبير نفسها. ويظهر هذا بشكل نموذجي عند انفجار قليلة كبيرة في بيئة حضرية وانتشار عصف الانفجار في الشوارع الضيقة. موجة الانفجار لها إمكانية التسبب في حدوث وفيات وإصابات خطيرة تشمل الإضرار بالرئة والأعضاء الداخلية، وتتمزق طبقات الأذن وما شابه. كما يمكن أن تسبب إصابات أطول نتيجة دفع أجسام الأفراد (أو القذف بهم).

ج.6 الصدمة الأرضية

تنتج الصدمة الأرضية نتيجة تحطيم تأثير قوة قسم الانفجار للأرض مخل مكان الانفجار، ويعني آخر، صنع حفرة الانفجار. تتلاطم الموجة الصدمية الناتجة عن صنع الحفرة الانتشار خلال الأرض، وتعرف بالصدمة الأرضية. وتتمتع الصدمة الأرضية بإمكانية إلحاق الأضرار بالخدمات الموجودة تحت الأرض (مثل، الماء، الكهرباء، الخ) إضافة إلى الإشعاعات المكماة تحت الأرض. وليس من غير الشائع أن يحدث فيضانات بعد هجوم بمركبة معينة بالانفجارات، بسبب انفجار أنابيب الماء الرئيسية.

ج.7 الشظايا الثانوية

هذة هي الأجزاء التي تتكون نتيجة ضغط موجة الانفجار على المواد الهشة غير القادرة على تحمل هذا الضغط، أو الأغراض الحرة الحركة. ويمكن أن تؤدي الطاقة التي تنتقل إلى الشظايا التي تنتج عن الانفجار إلى القذف بها لمسافات كبيرة وسرعة هائلة. المواد التقليدية الهشة التي تمثل الشظايا الثانوية هي الزجاج، والألواح الأسقفية، والحبل، والأنابيب، والأنابيب المعدنية وما شابه.

نتيجة لمقاومة الجسم البشري المتوسطة لآثار موجة عصف الانفجار، فمن المحتمل أن تسبب الشظايا الثانوية إصابات على مسافات أكبر من تلك التي تسببها موجة عصف الانفجار. ويمكن لتكون الشظايا الثانوية أن يسبب وفيات وإصابات خطيرة.

ج.8 آثار الحصر

انفجار مادة متفجرة داخل بيئة مغلقة أشد حدة من انفجارها في بيئة مفتوحة. ويعد هذا إلى أن موجة الانفجار قادرة على المرور ببعض الكبائر معتددة (عن الجدران، الأرضية، الخ)، مما يؤدي إلى زيادة في ضغط الموجة ودرجة الضرر من انفجار الأنسجة، إضافة إلى البشر.

بالنسبة للانفجارات الداخلية في غرف قوية، من الممكن حدوث آثار حصر أكثر شدة. ويعد هذا نتيجة حصر الغازات الساخنة جداً التي تتنتج عن انفجارات بمنع تمتد الغازات، تتعرض الغرفة التي تحتويها إلى ضغوط قوية شديدة جداً. وكلما صغرت الغرفة، كلما ازداد الضرر الناتج.
المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02

الطبعة الأولى (01-10-2012)

الملحق دال

(إعلامي)

مثال لمنهج تقييم المخاطر النوعي (المستويان 1 و 2)

القسم ألفلف – صحيفة ملخص التقييم العام للمخاطر

أكمل هذه الصحيفة بمجرد استخدام الأقسام ب إلى D لإجراء تقييم المخاطر. هذه الصحيفة تقوم مقام غلاف ملخص وسجل مراجعة.

<table>
<thead>
<tr>
<th>رقم التقييم:</th>
<th>المبادئ التوجيهية التنقية الدولية بشأن سلامة الذخيرة</th>
<th>مكان المهمة:</th>
<th>بناية معالجة الذخيرة 1</th>
<th>التاريخ: 25 أغسطس/آب 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>وصف المهمة:</td>
<td>إزالة صمامات التفجير من قذائف مدفعية عيار 152 ملمطاً بواسطة أداة إزالة صمام التفجير الهيدروليكية المعلقة عن بعد.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

المخاطر المتبقية التي حُددت

الإجراء المطلوب للتصحيح (إضافة إلى إجراءات السيطرة الحالية)

<table>
<thead>
<tr>
<th>المخاطر المتبقية التي حُددت</th>
<th>الإجراء المطلوب للتصحيح</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 فشل نظام الضغط الهيدروليكية لنظام إزالة صمام التفجير المُسير عن بعد، مما يؤدي إلى تحطم الخراطيم.</td>
<td>واقيات للأنابيب الهيدروليكية.</td>
</tr>
<tr>
<td>2 الكهرباء الإستاتيكية العالية بالأفراد الذين يعملون في بناية معالجة الذخيرة، مولدة أدوات كهربائية انفجارية، أو غبار انفجاري.</td>
<td>تطبيق إجراءات السيطرة كما في المخاطرة #5.</td>
</tr>
<tr>
<td>3 إصابة نتيجة رفع صناديق قذائف مدفعية عيار 152 ملمطاً، وإخراج كل قذيفة على حدا من أغلفتها.</td>
<td>النظر في أمر تركيب أدوات رفع ميكانيكية.</td>
</tr>
<tr>
<td>8** البدء العرضي لقنفنة عند إزالة صمامات التفجير نتيجة ملء بلورات مادة ثالثة نتريت التولون المتفجر لسن المسمر البرغي.</td>
<td>الإجراءات المبينة في #6 و #7.</td>
</tr>
</tbody>
</table>

44 استكمال تقييم المخاطر لفريق من 4 أشخاص يزيل صمام تفجير من قذائف مدفعية في بناية معالجة الذخيرة.

45 من القسم #2.
القسم يأباه - صحيفة ملخص التقييم العام للمخاطر

يُستخدم هذا القسم لتحديد المخاطر والمخاطر الثانوية. فضلًا، المخاطر المذكورة هنا في المسمى جيم من التقييم.

<table>
<thead>
<tr>
<th>المخاطر الثانوية</th>
<th>الميكانيكية</th>
<th>الكهربائية</th>
<th>الوصول والراتيج</th>
<th>المنزولات والرياح والضرر</th>
<th>المنزولات والرياح والضرر والمؤقتات للمخاطر</th>
<th>الضوضاء والانفجارات</th>
<th>الإشعاع والبيئة</th>
</tr>
</thead>
<tbody>
<tr>
<td>المخاطر الأولية</td>
<td>الاحتكاك</td>
<td></td>
<td>إلكترودي</td>
<td>الفائدة، التوزيع، الخ</td>
<td>الغذاء، المكسيكية، الخ</td>
<td>النفايات، الرفع، الخ</td>
<td>مادة سامة، الانفجار</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

والآن، استعمل القسم جيم لتوسيع الأخطار التي تم تحديدها، وتقديم إجراءات الحماية القائمة و"تقدير" المخاطر.
استعمل هذا القسم لتسجيل الأخطار التي تم تحديدها في القسم با بمزيد من التفصيل وتقييم إجراءات التحكم الحالية، إن وجدت. ثم، باستعمال القسم د، كليل، قيم المخاطر وأعطها تقديراً.

سجل التقديرات في هذا القسم وحدد المخاطر المتبقية.

<table>
<thead>
<tr>
<th>رقم التقييم</th>
<th>المبدئ التوجيهي التقنية الدولية بشأن الذخيرة المثال 1</th>
<th>المكان: بناية معالجة الذخيرة</th>
<th>التاريخ: 25 أغسطس/أب 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>إزالة صمامات التفجير من قاذفة مدفعية عيار 152 مليمتراً بواسطة أداة إزالة صمام التفجير الهيدروليكية المشرفة عن بعد.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>رقم التقييم</th>
<th>مزيد من التفاصيل عن الخطر من القسم با</th>
<th>إجراءات السيطرة الحالية</th>
<th>تقدير المخاطر المتبقي</th>
<th>المخاطر المتبقية</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>إزالة صمام التفجير الفسر عن بعد، مما يؤدي إلى تحمث الخراطيم.</td>
<td>تدريب مبديئي وتدريب لتجديد معلومات العاملين.</td>
<td>عالية جداً</td>
<td>إجراء فوري</td>
</tr>
<tr>
<td></td>
<td></td>
<td>إشراف من قبل موظفين مؤهلين في الذخيرة.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>مساهمة الدورية للأنظمة الهيدروليكية.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>الكهرباء الإستاتيكية على الأفراد العاملين في بناية معالجة الذخيرة تبدي أذواق كهرو - متحركة أو الغبار المتفرج.</td>
<td>تأكد من استعمال نظام إطلاق الشحنات الإستاتيكية عند دخول بناية معملة الذخيرة.</td>
<td>عالية</td>
<td>إجراء</td>
</tr>
<tr>
<td></td>
<td></td>
<td>استخدام أقطاب إطلاق الشحنات الإستاتيكية على سطح العمل.</td>
<td></td>
<td>بسرع ما يمكن</td>
</tr>
<tr>
<td>3</td>
<td>إصابة نتيجة رفع صاندات قد ذائف من قاذفة مدفعية عيار 152 مليمتراً، وإخراج كل قذيفة على الأفراد من أغلقتها.</td>
<td>التأكد من تدريب العاملين على أساليب الرفع اليدوي.</td>
<td>عالية</td>
<td>إجراء</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>بسرع ما يمكن</td>
</tr>
<tr>
<td>إجراءات السيطرة الحالية</td>
<td>تقدير المخاطر المتبقية</td>
<td>المخاطر المتبقية</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مزيد من التفاصيل عن الخطر من القسم 4 ب</td>
<td>• بموجب المبادئ التوجيهية التكنولوجية الدولية بشأن المعالجة 10.08</td>
<td>0.3 مقبول</td>
<td></td>
<td></td>
</tr>
<tr>
<td>الفنّجة من ظروف التشغيل</td>
<td>• المخاطر وأبقها تحت المراقبة</td>
<td>قبول</td>
<td></td>
<td></td>
</tr>
<tr>
<td>التفجير</td>
<td>• المخاطر وأبقها تحت المراقبة</td>
<td>قبول</td>
<td></td>
<td></td>
</tr>
<tr>
<td>استخدام نظام إزالة الهيدروليكي مسيّر عن بعد لإزالة صمام التفجير</td>
<td>• المخاطر وأبقها تحت المراقبة</td>
<td>قبول</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مسح سلن المسمار البرغي</td>
<td>• المخاطر وأبقها تحت المراقبة</td>
<td>قبول</td>
<td></td>
<td></td>
</tr>
<tr>
<td>للفذائف بالأسنان ضربة حصيرة على مادة متفجرة</td>
<td>• المخاطر وأبقها تحت المراقبة</td>
<td>قبول</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فرض حد مقداره 4 أفراد من العاملين للتوأج في بداية معالجة الذخيرة</td>
<td>• المخاطر وأبقها تحت المراقبة</td>
<td>قبول</td>
<td></td>
<td></td>
</tr>
<tr>
<td>وتشتيح جسم الفذيفة في حال رقم 6 أعلاه</td>
<td>• المخاطر وأبقها تحت المراقبة</td>
<td>قبول</td>
<td></td>
<td></td>
</tr>
<tr>
<td>استعمال نظام إزالة الهيدروليكي المسيّر عن بعد لإزالة صمام التفجير</td>
<td>• المخاطر وأبقها تحت المراقبة</td>
<td>قبول</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نظام إزالة صمام التفجير عن بعد من وراء سائر مدرع</td>
<td>• المخاطر وأبقها تحت المراقبة</td>
<td>قبول</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فرض حد مقداره 4 أفراد من العاملين للتوأج في بداية معالجة الذخيرة</td>
<td>• المخاطر وأبقها تحت المراقبة</td>
<td>قبول</td>
<td></td>
<td></td>
</tr>
<tr>
<td>لا شيء</td>
<td>150 عالية جداً</td>
<td>إجراء فوري</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ب يمكن أن يؤدي إلى الاختلاف في المخاطر إذا لم تتم إجراءات السيطرة.*
والآن، أكمل ملخص تقييم المخاطر، القسم ألف، ناقلاً المخاطر المتبقية ومحدداً الإجراء التصحيحي ملائم.

التقييم العام للمخاطر - جداول تقييم المخاطر - القسم دال

استعمل هذا القسم لتحديد المخاطر والمخاطر الثانوية. فصل المخاطر المحددة هنا في القسم جيم من التقييم.

استعمل هذا القسم لتقييم المخاطر وحساب تقدير لكل مخاطرة. يجب شرح التقديرات كما هو مطبق في القسم جيم.

<table>
<thead>
<tr>
<th>رقم التقييم:</th>
<th>المبادئ التوجيهية التقنية الدولية بشأن الذخيرة المثال 1</th>
<th>المكان:</th>
<th>مهمة:</th>
<th>التاريخ:</th>
<th>الهدف:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>المبادئ التوجيهية التقنية الدولية بشأن الذخيرة المثال 1</td>
<td>مكتب</td>
<td>مهام</td>
<td>25 أوت/أب 2009</td>
<td>إزالة صمامات التفجير من قذائف مدفعية عيار 152 ملم. بواسطة إزالة صمام التفجير الهيدروليكية المُسيرة عن بعد.</td>
</tr>
<tr>
<td></td>
<td>مكتب</td>
<td>مهام</td>
<td>25 أوت/أب 2009</td>
<td>إزالة صمامات التفجير من قذائف مدفعية عيار 152 ملم. بواسطة إزالة صمام التفجير الهيدروليكية المُسيرة عن بعد.</td>
<td></td>
</tr>
<tr>
<td># من القسم من الخطر</td>
<td>احتمال التعرض E'</td>
<td>تكرار التعرض F'</td>
<td>الحد الأقصى للخسارة L'</td>
<td>الأشخاص المعرضون N'</td>
<td>تقدير المخاطر E × F × L × N'</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>2.5</td>
<td>0</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.1</td>
<td>15</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0.1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8 **</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>1</td>
<td>150</td>
</tr>
</tbody>
</table>
المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02
الطبعة الأولى (01-10-2012)

<table>
<thead>
<tr>
<th># من القسم</th>
<th>جيم</th>
<th>احتمال التشغيل</th>
<th>تكرار الطلب</th>
<th>الحمولة المحتملة الأقصى للمخاطر</th>
<th>تقدير المخاطر المثلث</th>
<th>جداول التقدير</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>'E'</td>
<td>'F'</td>
<td>'L'</td>
<td>'E' x 'F' x 'L' x 'N'</td>
<td></td>
</tr>
<tr>
<td>متساوية</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.0</td>
<td>1.0</td>
</tr>
<tr>
<td>غالباً</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>محتمل جداً</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>مؤكد</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

الملاحظات: يتميز التعرض E' F' L' N' بمخاطر تمزق أو اعتلال بسيط للصحة.
المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02
الطبعة الأولى (01-10-2012)

<table>
<thead>
<tr>
<th>تقييم المخاطر</th>
<th>المخاطر</th>
<th>الجدول الزمني للإجراءات</th>
<th>تقييم المخاطر</th>
<th>المخاطر</th>
<th>الجدول الزمني للإجراءات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 0.9</td>
<td>قبل المخاطر، لكن إداخل تحت المراقبة</td>
<td>100 – 50</td>
<td>مرتفعة</td>
<td>يمكن إجراء بسرع مما</td>
<td></td>
</tr>
<tr>
<td>1.0 – 4.9</td>
<td>منخفضة جداً</td>
<td>200 – 100</td>
<td>عالية جداً</td>
<td>اتخاذ إجراء فورًا</td>
<td></td>
</tr>
<tr>
<td>5.0 – 9.9</td>
<td>منخفضة</td>
<td>300 – 200</td>
<td>قابِلة</td>
<td>اتخاذ إجراء فورًا</td>
<td></td>
</tr>
<tr>
<td>10.0 – 49.9</td>
<td>بالغة</td>
<td>+ 300</td>
<td>غير مقبولة</td>
<td>اوقف النشاط</td>
<td></td>
</tr>
</tbody>
</table>

خذ في الحسبان إجراءات السيطرة القائمة عند تقييم هذه القيم.

والآن، أكمل صحيفة الملخص في القسم جيم، والقسم ألف وتأكد من توقيع الأشخاص الملمفين على التقييم.
المحليق هاء (إعلاني)
منهج تحليل نتائج الانفجارات (المستوى 2)

منهج تحليل نتيجة الانفجار في الجدول هـ.1 أدناه هو مفهوم ومثال واحد فقط لكيف يمكن إجراء تحليل لنتائج الانفجارات. وهو نموذج قائم على مخزن متفجرات واحد، ويأخذ في الاعتبار النتائج المتعلقة بالسكان المدنيين المحليين فقط. يجب أن يفحص نموذج أكثر تفصيلاً الفقدان المحتمل للقدرة التشغيلية. سوف يكون تحليل الانفجارات الخاصة بمصود نتائج خذيرة كامل أكثر تعقيداً بمراحل، لكن ينبغي أن تنطبق نفس المبادئ المستعملة في الجدول هـ.1.

إن مراحل تحليل نتائج الانفجارات موضحة باستعمال علاقات مصطلح إدارة المخاطر في الجدول هـ.1. لذا فإن تحليل نتائج الانفجارات هو بشكل رئيسي عملية تقييم المخاطر، حيث يقدم التحليل التقني والعلمي والتقييم ليتيح اتخاذ القرارات القائمة على المخاطر. ليس دور تحليل نتائج الانفجارات اتخاذ القرارات، رغم أنه قد يتضمن توصيات.

لا يجب طلب تحليل نتائج انفجارات إذا أنتم تلبية متطلبات المبادئ التوجيهية التقنية الدولية بشأن الخذيرة 20.02 مسافات المسافات الأمنة للكمية والمسافات الفاصلة.

<table>
<thead>
<tr>
<th>م مصدر البيانات</th>
<th>مسارل البيانات</th>
<th>تقييم المخاطر</th>
<th>تحليل المخاطر (تحديد وتحليل الخطر)</th>
<th>إجراءات تحليل نتائج الانفجارات</th>
</tr>
</thead>
<tbody>
<tr>
<td>• المبادئ التوجيهية التقنية الدولية بشأن الخذيرة 50.01 نظام ورموز الأمم المتحدة لتصنيف خطر المتفجرات.</td>
<td>حدد فئة الخطر طبقاً للأمم المتحدة الخاصة بالذخيرة.</td>
<td>1</td>
<td>• المبادئ التوجيهية التقنية الدولية بشأن الخذيرة 0.01 نظام ورموز الأمم المتحدة لتصنيف خطر المتفجرات.</td>
<td></td>
</tr>
<tr>
<td>• حدد صافي كمية المتفجرات في الذخيرة طبقاً لفئة الخطر في مخازن المتفجرات.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• اجمع إلى فئة الخطر 1 إذا أمكن تطبيق هذا.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• حدد مستوى حماية مخازن المتفجرات.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• المبادئ التوجيهية التقنية الدولية بشأن الخذيرة 20.02 مسافات المسافات الأمنة للكلية والمصود الفاصلة. (نوع مخازن المتفجرات).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
المبادئ التوجيهية الدولية التقنية للذخائر 2012 [إي] الطبعة الأولى (01-10-2012)

<table>
<thead>
<tr>
<th>مكون عملية تقييم الخطر</th>
<th>مسلسل</th>
<th>إجراءات تحليل نتائج الانفجارات</th>
<th>مصدر البيانات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>حدد المدى (بالمتر) إلى أقرب طريق عام.</td>
<td>جوجل إيرث.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>الرسومات الهندسية أو الخرائط الخاصة بالموقع.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>الليزر محدد المدى.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>شريط قياس.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>الخطوات.</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>حدد المدى (بالمتر) إلى أقرب بناء ماهولة (منزل مدني).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>حدد المدى (بالمتر) إلى أقرب بناء ضعيفة (مستشفى).</td>
<td>تاريخي.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>نتائج المراقبة.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>حدد حالة الذخيرة وإمكانية الإشعال التلقائي للدافع.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>حدد الأشار الطبيعية (التي تعكس الضغط الفوقي والالنفاج) في كل مدى.</td>
<td>المبادئ التوجيهية التقنية الدولية بشأن الذخيرة 80.01، البند 2.11 (باستعمال برمجية المبادئ التوجيهية التقنية الدولية بشأن الذخيرة).</td>
</tr>
<tr>
<td>تحليل الخطر (تقييم الخطر)</td>
<td>10</td>
<td>تقدير مدى عتبة التأثير على البشر (من بون).</td>
<td>المبادئ التوجيهية التقنية الدولية بشأن الذخيرة 80.01، البند 2.11.</td>
</tr>
<tr>
<td>مسلسل</td>
<td>مكون عملية</td>
<td>تقييم المخاطر</td>
<td>إجراءات تحليل نتائج الانفجارات</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>حدد عدد البشر المحتمل أن يكونوا في العراء في مدى مسلسل 10. (تُقدر الآن الإصابات البشرية في العراء جراء آثار الانفجار).</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>من أجل صافي المسافات الأمنة للكمية المتفجرة في مسلسل 2 يُحدد المدى الذي تُنتظر عنده المستويات المختلفة من الضرر للبنى.</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>حدد عدد البناء في كل مدى لمعايير الضرر المقدرة في مسلسل 12. (يُقدر الآن الضرر الذي أصاب البناء جراء الانفجار).</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>من أجل صافي المسافات الأمنة للكمية المتفجرة في مسلسل 2 يُقدر المدى الذي يُتوقع أن تسبب فيه الصدمة الأرضية أضراراً.</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>حدد عدد البناء في مجال الصدمة الأرضية. تؤكد من عدم إصابتها بأضرار نتيجة الانفجار، لتفادي "الازدواجية في العد." (يُقدر الآن الضرر الذي أصاب البناء جراء الانفجار).</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>طبق قيم الاحتمال الخاصة بالانفجار الثانوي لنتائج مسلسل 13. (تم تقرير احتمال حدوث إصابات لكل بناء جراء الانفجار الثاني).</td>
</tr>
<tr>
<td>مكون عمليـة</td>
<td>مسلسل</td>
<td>تقييم المخاطر</td>
<td>إجراءات تحليل نتائج الانفجارات</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>---------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>_REVIEW_12016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
المبادئ التوجيهية الدولية التقنية للذخائر (إي) الطبعة الأولى (01-10-2012)

الملحق واع
(إعلامي)
إدارة المخاطر وبرمجة المبادئ التوجيهية التقنية الدولية بشأن الذخيرة

يتبع بعد تطوير البرمجية.
The principles governing international technical standards for fireworks

2012:10.02

Draft (February 2012)

The first printing (01-10-2012)

The annex (information)

Estimation of the expected monetary value

2.78 \times 10^{-2}

This is not included in the analysis of the expected monetary value, but provides the direct costs.

A)

Assumed probability of an explosion (Pe in the event) of the consignment of fireworks; it is assumed that the probability of being an explosion is 0.455.

The accident will lead to a decrease in the year 200,000 dollars. This will decrease to 50,000 dollars in the second year. (It is clear that this number requires correction within each case)

B)

The annual direct costs of operating the warehouse without taking any preventive action is 5,000 dollars.

C)

The loss of the warehouse for replacement purposes amounts to 90 million dollars if no curative actions were taken before the event. (Whereas the curative actions were taken on other consignments in the warehouse)

D)

The cost of compensation in the year 1 for each death event is assumed to be 10,000 dollars. (This is little, since this depends on the nature of the explosion)

E)

The cost of compensation in the year 1 for each injured event is assumed to be 5,000 dollars.

48 From the data contained in the Explosion Capabilities Limited (Explosives Capabilities Limited) report on explosions in areas of fireworks storage. April/May 2009. There are also cases that require correction.
المبادئ التوجيهية الدولية التقنية للذخائر 2012:10.02
الطبعة الأولى (01-10-2012)

لا يمكن استخدام الجدول لتحديد مسدد إجراءات للذخائر. لكن البيانات المدخلة لتكلفة المالية (سيناريو الحدث لا يتحقق / الإجراءات العلاجية تتخذ) حتى تتوازن القيمة النقدية المتوقعة للاستفادة من جدول الضرائب والبنية التحتية اللازمة للامتثال إلى تعليمات المبادئ التوجيهية التقنية الدولية بشأن الذخائر أثناء العام 1 يمكن تبريرها حتى مستوى نقد قدره 1,155,175 دولاراً.49

إجراءات العلاجية

الإجراءات العلاجية

التكلفة المالية (دولار أمريكي)

القيمة النقدية المتوقعة (دولار أمريكي)

سيناريو الحدث لا يتحقق

سيناريو الحدث يتحقق

أتخذت

(خبن مستند التخزين وتم تشغيله بما يتفق ونصوص من المبادئ التوجيهية التقنية الدولية بشأن الذخيرة)

(قليل فقد المخزون إلى 100,000 دولار)

لم تتخذ

خسارة للمخزون تقدر 90 مليون دولار أمريكي، و100 ألف دولار أمريكي تكلفة تعويض

943,094 دولاراً أمريكياً

جداول 1: قيمة القيمة النقدية المتوقعة بالدولار (دولار أمريكي) مستندة على الحدث الانفجاري الذي وقع في أبريل/نيسان 2002 (عام 1)

لذا، بالنسبة للعام 1 من هذا سيناريو هذا الحدث، سوف يكون هناك فائدة 943,094 دولاراً أمريكياً في القيمة النقدية المتوقعة لو أن 200,000 دولار أمريكي أُلغفت على الإجراءات العلاجية لخفض احتمال وقوع حدث انفجاري بسبب حريق في مستودع الذخائر. وحيث أن القيمة النقدية المتوقعة لعدم اتخاذ أي إجراءات في عام 11,443,359 دولاراً، فإن الاستثمار المالي في التدريب والبنية التحتية اللازمة لا يمثل إلى تعلیم المبادئ التوجيهية التقنية الدولية بشأن الذخائر أثناء العام 1 يمكن تبريرها حتى مستوى نقد قدره 1,155,175 دولاراً.49

بفرض أن الإجراءات العلاجية الخاصة بالبنية التحتية والتدريب اتخذت في العام 1، فإن تكاليف تشغيل مستودع الذخيرة تقل بشكل ملحوظ للعام 2 وما بعده، حتى تكون هناك حاجة لأعمال صيانة أو أعمال تجديد رئيسية (عادة بعد 20 عام). في الجدول ز.2 يقل احتمال وقوع حدث بمعامل قدره 2 عه في الجدول 1، لكن مستويات فقدان المخزون تظل دون تغيير في حال وقوع حدث.
المبادئ التوجيهية الدولية التقنية للذخائر 2012
الطبعة الأولى (01-10-2012)

انتمت
(حتى من المستودع التخزين وتم تشغيله بما يتفق وتوصيات المبادئ التوجيهية التقنية الدولية بشأن الذخيرة)
(تقليل قافظ المخزون إلى 100,000 دولار أمريكي)

لم تنفذ (في العامين 1 و2)
خسارة للمخزون مقدارها 90 مليون دولار أمريكي، و100 ألف دولار أمريكي تكلفة تعويض.

الاختلاف في القيمة النقدية المتوقعة

<table>
<thead>
<tr>
<th>القدار في (دولار أمريكي)</th>
<th>القيمة المتوقعة للنقدية المتضمنة في الدلاليات (دولار أمريكي)</th>
<th>القيمة المتوقعة للنقدية المتضمنة في الدلاليات (دولار أمريكي)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,120 دولار أمريكي</td>
<td>1,094,239 دولار أمريكي</td>
<td>1,144,359 دولار أمريكي</td>
</tr>
<tr>
<td>50,000 دولار أمريكي</td>
<td>1,000,000 دولار أمريكي</td>
<td>1,144,359 دولار أمريكي</td>
</tr>
<tr>
<td>0 دولار أمريكي</td>
<td>50,000 دولار أمريكي</td>
<td>1,000,000 دولار أمريكي</td>
</tr>
</tbody>
</table>

لذا، بالنسبة للأعوام 2 - 20 من سناريو هذا الحدث، سوف تكون هناك فائدة 1,094,239 دولار أمريكي في القيمة النقدية المتوقعة لو أن 50,000 دولار أمريكي أنفقت على إجراءات علاجية مستمرة لخفض احتمال وقوع حدث الافجار بسبب حريق في مستودع الذخيرة، وحيث أن القيمة النقدية المتوقعة لعدم اتخاذ أي إجراءات في العامين 1 و 2 هي 1,144,359 دولار أمريكي، فمن الناحية النظرية، الاستثمار المحلي في التدريب والصيانة اللازمة للاستمرار في تعلمات المبادئ التوجيهية التقنية الدولية بشأن الذخيرة أثناء الأعوام 2-20 يمكن تبريره حتى مستوى نقي قدره 1,144,378 دولاراً أمريكياً بناء على المنفعة المالية للقيمة النقدية المتوقعة فقط.

49 يتحقق هذا الرقم باستعمال الجدول المتضمن في برامج المبادئ التوجيهية التقنية الدولية بشأن الذخيرة، وتُمثل البيانات المدخلة للتكلفة المالية (سناريو الحدث لا يتحقق / الإجراءات العلاجية تتضمن) حتى تتوافق القيم النقدية المتوقعة لاتخاذ إجراءات، وذلك خاصة بعد اتخاذ إجراءات.

50 يظل احتمال هذه القيمة النقدية المتوقعة عند 1.11×10^{-2}، حيث إنه لم تتخذ إجراءات علاجية في العامين 1 و 2.
يُبين هذا المثال قاعدة نظام القيمة النقدية المتوقعة عند المقارنة بين المتطلبات المالية الضرورية للالتزام بتعليمات المبادئ التوجيهية الدولية التقنية بشأن الذخيرة. ويجب إجراء تحليل القيمة النقدية المتوقعة لكل نوع عام من أنواع السيناريوهات التي من المحتمل أن تؤدي إلى وقوع حدث انفجاري، مقارنة بالتكلفة المالية للإجراءات العلاجية الضرورية لخفض احتمال ونتائج مثل هذا الحدث إلى مستويات المخاطر التي يمكن تقبلها (فيما يتعلق بالتكلفة المالية والتكلفة البشرية والتكلفة الدافعة والتكلفة الاقتصادية والسياسية).