Lotting and batching
Warning

The International Ammunition Technical Guidelines (IATG) are subject to regular review and revision. This document is current with effect from the date shown on the cover page. To verify its status, users should consult the UN SaferGuard IATG project through the United Nations Office for Disarmament Affairs (UNODA) website at:

Copyright notice

This document is an International Ammunition Technical Guideline and is copyright protected by the United Nations. Neither this document, nor any extract from it, may be reproduced, stored or transmitted in any form, or by any means, for any other purpose without prior written permission from UNODA, acting on behalf of the United Nations.

This document is not to be sold.

United Nations Office for Disarmament Affairs (UNODA)
United Nations Headquarters, New York, NY 10017, USA

E-mail: conventionalarms-unoda@un.org
Tel: +1 917 367 2904
Fax: +1 917 367 1757

© UN 2015 – All rights reserved
Contents

Contents... ii
Foreword .. iii
Introduction .. iv
Lotting and batching.. 1
 1 Scope.. 1
 2 Normative references ... 1
 3 Terms and definitions ... 1
 4 Background .. 2
 5 Lotting and Batching system requirements ... 2
 6 Lotting and Batching system responsibilities (LEVEL 2) ... 3
 7 Lot and Batch numbering system (LEVEL 2) .. 3
 7.1 Lot number .. 3
 7.2 Batch number ... 3
 7.3 Sub-Batch number .. 3
 7.4 Allocation of Lot numbers (except propellant) .. 3
 7.5 Allocation of Lot numbers (propellant) ... 4
 7.6 Allocation of Batch numbers .. 4
 7.7 Special case – small arms ammunition ... 5
 7.8 Special case – logistic Batching (LEVEL 3) .. 6
 7.8.1 Marking logistic Batch containers or pallets .. 7
 8 Lotted or Batched governing components (LEVEL 2) ... 7
 9 Availability of ammunition technical data (LEVEL 2) .. 8
Annex A (normative) References .. 9
Annex B (informative) References ... 10
Ageing, unstable and excess ammunition stockpiles pose the dual hazards of illicit proliferation and accidental explosion, which have caused destabilization and humanitarian disaster in all regions of the world.

Crucial for adequate stockpile management is the identification of surpluses – that is, the portion of weapons and ammunition that does not constitute an operational need. When surpluses are not recognized, the entirety of the stockpile may continue to be seen as of operational value. Although not used, weapons and ammunition surpluses thus continue to fill warehouses and can thus pose a significant risk to safety and security.

Defective stockpile management has been assessed as the norm rather than the exception in many countries. Often it is not only surplus stocks that should be the focus of attention, but the lack of appropriate policy for stockpile management. Governments remain unaware of surpluses; their national stockpiles remain a risk to public safety; and diversion from warehouses feed into crime and armed violence.

In 2011, the United Nations developed the International Ammunition Technical Guidelines (IATG) to ensure that the United Nations as a whole consistently delivers high-quality advice and support in ammunition management. Many stakeholders, including international organizations, non-governmental entities and national authorities, use these guidelines.

The IATG, along with other conventional ammunition issues, are managed through the United Nations SaferGuard programme.

Taking into account the diversity in capacity of States, three levels of ascending comprehensiveness are offered in the IATG, referred to as “risk-reduction process levels” (RRPLs). These are indicated within each IATG as either LEVEL 1 (basic), LEVEL 2 (intermediate) or LEVEL 3 (advanced).

The aim of implementing partners should be to maintain stockpile management processes at RRPL 1 as a minimum. This will often reduce risk significantly. Ongoing and gradual improvements could then be made to the stockpile management infrastructure and processes as staff development improves and further resources become available. These additional actions would equate to RRPLs 2 and 3.

The RRPLs are determined by calculating a weighted score of questions about a particular ammunition stockpile. A checklist is available at: https://www.un.org/disarmament/un-saferguard/risk-reduction-process-levels/.

The IATG are reviewed on a regular basis to reflect developing ammunition stockpile management norms and practices, and to incorporate changes due to changing international regulations and requirements. The IATG are also available in multiple languages.

The latest version of each guideline, together with practical IATG implementation support tools, can be found at https://www.un.org/disarmament/un-saferguard/.
Introduction

Ammunition and explosives may deteriorate or become damaged unless they are correctly stored, handled and transported, with the resultant effect that they may fail to function as designed and may become dangerous in storage, handling, transport and use. It is therefore important that the location of specific items of ammunition and explosives can be rapidly identified in order that the appropriate remedial action can be taken to ensure safety in storage, handling, transport and use. A system of Lotting and Batching is an important component of this safety mechanism.

Lotting and Batching is a means by which a discrete and homogenous quantity of ammunition may be identified. It will usually have been manufactured at the same time, using the same raw materials, using the same process and may therefore be expected to provide a uniform and similar performance. Whether it is appropriate to use the term Lot or Batch will depend upon the complexity of the ammunition and will require technical judgment.

Lotting and Batching is also important for stockpile accounting and, therewith, to allow for timely and reliable identification of diversions through loss or theft.
Lotting and batching

1 Scope

This IATG introduces the concept of Lotting and Batching of ammunition and introduces a system that could be used to support the safe, effective and efficient management of conventional ammunition.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

A list of normative references is given in Annex A. Normative references are important documents to which reference is made in this guide and which form part of the provisions of this guide.

A further list of informative references is given at Annex B in the form of a bibliography that lists additional documents that contain other useful information on the lotting and batching of conventional ammunition.

3 Terms and definitions

For the purposes of this guide the following terms and definitions, as well as the more comprehensive list given in IATG 01.40:2015[E] Terms, definitions and abbreviations, shall apply.

The term ‘ban’ refers to a moratorium placed on the issue and use of ammunition, usually pending technical investigation.

The term ‘Batch’ refers to a discrete quantity of ammunition which is assembled from two or more Lotted components (one of which will be the Primary Governing Component), is as homogeneous as possible and under similar conditions may be expected to give uniform performance.

The term ‘batch key identity’ refers to a term used to identify a particular Lot or Batch of ammunition.

The term ‘constraint’ refers to the imposition of a limitation or restriction in the use, transportation, carriage, issue, storage or inspection of a munition.

The term ‘Lot’ refers to a predetermined quantity of ammunition or components which is as homogeneous as possible and under similar conditions may be expected to give uniform performance.¹

The term ‘primary governing component’ refers to the component in a Batch, which is considered to be of major importance to the correct functioning of the round.

In all modules of the International Ammunition Technical Guidelines, the words ‘shall’, ‘should’, ‘may’ and ‘can’ are used to express provisions in accordance with their usage in ISO standards.

a) ‘shall’ indicates a requirement: It is used to indicate requirements strictly to be followed in order to conform to the document and from which no deviation is permitted.

¹ A Lot is normally manufactured from the same raw materials, using the same production technique and in the same production run.
b) **'should' indicates a recommendation**: It is used to indicate that among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form, 'should not') a certain possibility or course of action is deprecated but not prohibited.

c) **'may' indicates permission**: It is used to indicate a course of action permissible within the limits of the document.

d) **'can' indicates possibility and capability**: It is used for statements of possibility and capability, whether material, physical or casual.

4 **Background**

Explosive safety during the storage, handling, use and transport of ammunition can not be assessed without detailed technical information on every ammunition item within the national stockpile. This information should include a means of identifying all items of ammunition that are, for example: 1) filled with the same type of explosive or propellant made from the same production run with the same raw materials; or 2) contain the same component made on the same production run from the same raw materials. A system of Lotting and Batching should be used to achieve this.

Empty components that consist of one or more factory pieces (i.e. shell bodies with no explosive content) are produced as empty Lots, each Lot being considered to be homogeneous. Empty Lots should be given empty Lot numbers for identification purposes (i.e. if metallurgical failure is responsible for an ammunition accident, then all filled ammunition made from that particular Lot may be identified and appropriate remedial action taken).

Bulk high explosive and propellants are manufactured from individual constituent materials, and the final product should be given a unique Lot number, which may be considered as the primary governing component when it is used to fill empty ammunition components (i.e. shell bodies).

Empty Lots of components become filled Lots when they are filled with explosive, propellant or pyrotechnic compositions. The explosive used to fill an empty component Lot should also be from a homogeneous Lot of explosive. The filled components should then be given a unique, filled Lot number for future identification and records kept of the Lot numbers of the empty component and the explosive used to make up the filled Lot.

When ammunition is assembled from two or more critical components, the two most critical components should be nominated as the Primary and Secondary Governing Components (see Clause 8), and the item should be Batched. The Primary Governing Component should be used to determine the Batch size.

5 **Lotting and Batching system requirements**

The requirements of a Lotting and Batching system should be:

a) to identify a homogeneous quantity of ammunition which should give uniform performance under similar conditions of use;

b) to simplify the identification of specific items and/or rounds of ammunition items when an unsatisfactory report (due to an ammunition accident, performance failure or fault) is made on a particular Lot or Batch of ammunition;

c) to simplify the tracking in storage and the subsequent withdrawal or replacement of those components which have proved unsatisfactory, have become life expired or have been replaced by later marks, models and types;
d) to identify a definite quantity in which the results of inspection, proof and test can be representative;
e) to facilitate the establishment and maintenance of technical records and surveillance;\(^2\) and
f) to reduce the amount of marking on ammunition containers.

The terms Lot, Batch and sub-Batch are all used to identify discrete and homogeneous quantities of ammunition. Which term is used depends on the complexity of the ammunition (the number of component parts) and ultimately the approving authority.

6 Lotting and Batching system responsibilities (LEVEL 2)

The appropriate authority within the wider stockpile management organisation should:

a) develop and implement a system of Lotting and Batching, or similar, in order that the requirements of Clause 5 are met;
b) determine exactly which ammunition should be Lotted and which should be Batched;
c) determine which components (i.e. HE filling, propellant, fuze etc) should control the Lotting or Batching of service ammunition; and
d) assign manufacturers monograms and Lot, Batch, sub-Batch, and logistic Batch\(^3\) codes and numbers.

7 Lot and Batch numbering system (LEVEL 2)

7.1 Lot number

The Lot number is a unique identifying number allocated to individual ammunition Lots at the time of manufacture, assembly or modification that identifies a particular Lot. It is normally associated with the identity of a significant, major component, (i.e. the Lotting component).

7.2 Batch number

The Batch number is a unique identifying number allocated to individual ammunition Batches at the time of manufacture, assembly or modification.

7.3 Sub-Batch number

When the quantity of the governing component used is so large that in the event of a failure of another component the total quantity of the complete round at risk would be unacceptable, the Batch should be divided into sub-Batches. In order to reduce the degree of risk, the secondary component should be used to govern the sub-Batch size. The addition of a suffix letter to the Batch number should be used to identify the sub-Batch.

7.4 Allocation of Lot numbers (except propellant)

Lot numbers should normally be issued as a process of consultation between the manufacturer and the stockpile management organisation. For ammunition purchased abroad it may be permissible to accept the Lot number allocated by the manufacturer at the time of production.

\(^2\) This also assists in the investigation of cases of diversion of ammunition to illicit users.

\(^3\) See Clause 7.8 for logistic batching.
A system of numbering should be developed that ensures that there can be no repetition of a Lot number. Such a system may look like the example in Table 1:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Manufacturers Monogram</th>
<th>Unique Identification Number</th>
<th>Suffix</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>HG</td>
<td>005</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>AA to ZZ</td>
<td>001 to 999 (Excluding B or R)</td>
<td>A to X</td>
<td>B or R are uniquely used for propellant Lot numbers.</td>
</tr>
</tbody>
</table>

Example Lot Number: HG005D

Table 1: Example system of ammunition and explosive Lot numbering

7.5 Allocation of Lot numbers (propellant)

Propellant Lot numbers should normally be issued as a process of consultation between the manufacturer and the stockpile management organisation. For ammunition purchased abroad it may be permissible to accept the propellant Lot number allocated by the manufacturer at the time of production.

A system of numbering should be developed that ensures that there can be no repetition of a Lot number. Such a system may look like the example in Table 2:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Manufacturers Monogram</th>
<th>Unique Identification Number</th>
<th>Suffix</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>BD</td>
<td>004</td>
<td>(B)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>AA to ZZ</td>
<td>1 to 999999</td>
<td>B, R or nothing only</td>
<td>B indicates that the propellant was been re-blended at some stage in its life cycle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example Lot Number: BD004

Table 2: Example system of propellant Lot numbering

7.6 Allocation of Batch numbers

Batch numbers should normally be issued as a process of consultation between the manufacturer and the stockpile management organisation. They shall only be used for the calibre and type of ammunition for which they are issued.

A system of Batch numbering should be developed that ensures that there can be no repetition of a Batch number. Such a system may look like the example in Table 3:
The Batch number is also often known as the Batch Identity (BI) or Batch Key Identity (BKI) during accounting and other inventory management processes.

There are also specific rules that should be followed during the allocation of Batch numbers:

a) the date of assembly or manufacture shall be the that of the month in which production commenced;
b) that date of assembly or manufacture may be used for a maximum period of three months, (i.e. if production commenced on 01 August 1997 and finished on 23 October 1997, then the BI would use 0897 as the date); and
c) if assembly or manufacture of a Batch exceeds the three month period, even if the process is continuous, then a new Batch number must be brought into use.

7.7 Special case – small arms ammunition

For small arms ammunition the Lot number should consist of the manufacturer’s monogram and a work date as shown in Table 4:

For small arms ammunition containing tracer ammunition the Batch number should consist of the manufacturers monogram, a work date and a number (to cover the tracer element used within the round) as shown in Table 5:

<table>
<thead>
<tr>
<th>Manufacturers Monogram</th>
<th>Date Filling Commenced</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement</td>
<td>Two letters</td>
<td>In format DDMYY</td>
</tr>
<tr>
<td>Example</td>
<td>FG</td>
<td>01 11 99</td>
</tr>
<tr>
<td>Range</td>
<td>AA to ZZ</td>
<td></td>
</tr>
<tr>
<td>Example Batch Number</td>
<td>FG 01 08 97A</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Example system of Lot numbering for SAA

<table>
<thead>
<tr>
<th>Manufacturers Monogram</th>
<th>Date of Assembly or Manufacture</th>
<th>Unique Identification Number</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement</td>
<td>Two letters</td>
<td>In format MMYY</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>GD</td>
<td>0897</td>
<td>020</td>
</tr>
<tr>
<td>Range</td>
<td>AA to ZZ</td>
<td>01 to 999999</td>
<td></td>
</tr>
<tr>
<td>Example Batch Number</td>
<td>GD 0897 020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Example system of Batch numbering
Manufacturers Monogram	Date Filling Commenced	Unique Identification Number	Remarks
Requirement | • Two letters | • In format DDMMYY | • One numeral (underlined) | •
Example | FG | 01 08 07 | 021(A) | • A suffix may be used to identify different Lots that commenced production on the same day.
Range | • AA to ZZ | • 01 - 99999 | •
Example Batch Number | FG 01 08 97 021A | |

Table 5: Example system of Batch numbering for SAA (containing tracer)

7.8 **Special case – logistic Batching (LEVEL 3)**

Logistic Batching is a system of Batching that allows the enhancement of the operational efficiency of ammunition supply units during operations whilst ensuring accounting accuracy. When, for example, HE shells, propelling cartridges and fuzes are supplied separately to an artillery unit during operations, if they run out of one item (i.e. fuzes) then firing has to stop until that item is re-supplied. In order to ensure that this does not happen, it may be desirable to have pre-made up pallets containing all the individual ammunition items needed to make a complete round for use (i.e. HE shell, propelling cartridge, primer and fuzes). Although this solves a problem for the user, it creates problems for the ammunition manager, because all the individual ammunition items on the pallet would have different and unique BKIs. Either ammunition has to be accounted for by BKI and pallet, an onerous task, or an alternative system of Batching needs to be developed.

One such system is the use of logistic Batching, which ammunition managers may choose to adopt. A logistic Batch number should be similar to a Batch number but with differences in its makeup. Logistic Batch numbers should normally only be issued by the stockpile management organisation and the individual BKI within each logistic Batch recorded in the ammunition accounting system.

A system of logistic Batch numbering should be developed that ensures that there can be no repetition of a logistic Batch number. Such a system may look like the example in Table 6:

<table>
<thead>
<tr>
<th>Assemblers Monogram</th>
<th>Date of Assembly or Manufacture</th>
<th>Unique Identification Number</th>
<th>Remarks</th>
</tr>
</thead>
</table>
Requirement | • Three letters | • In format MMYY | • Six numerals | • |
Example | BDR | 1199 | 000035 | • A suffix may be used to identify logistic sub-Batch numbers. |
Range | • Developed from the depot name, For example TTN for Toytown. | | • 000001 to 999999 | • |
Example Batch Number | LBDR 1199 000035 | | |

Table 6: Example system of logistic Batch numbering

There are also specific rules that should be followed during the allocation of logistic Batch numbers:

4 Usually the ammunition depot in which the assembly of the multi-item pallets took place.
a) a logistic Batch should be as homogeneous as possible in terms of the Lot and Batch numbers of ammunition items within the logistic Batch;

b) only one logistic Batch should be packed on each pallet or in each ammunition container;

c) no more than two separate logistic sub-Batches should be packed on each pallet or in each ammunition container; and

d) details of the ammunition component Lot and Batch numbers of the ammunition items that form the logistic Batch or sub-Batch should be clearly marked on the pallet or on the ammunition container.

7.8.1. Marking logistic Batch containers or pallets

A pallet or logistic container that contains a logistic Batch or sub-Batch should be marked with the following to ease identification:

a) quantity;

b) type of ammunition by complete round (i.e. 152mm shell HE);

c) model or mark, (if applicable);

d) logistic Batch number or logistic sub-Batch number;

e) monogram of assembler;

f) date of assembly; and

g) details of the ammunition items forming the logistic Batch or sub-Batch (see Clause 7.8(d)).

8 Lotted or Batched governing components (LEVEL 2)

In order to provide guidance on which generic types of ammunition should be Lotted or Batched, and what the primary governing component should be, Table 7 illustrates a system that may be considered for use by the stockpile management organisation:

<table>
<thead>
<tr>
<th>Generic Ammunition Type</th>
<th>Lotted or Batched</th>
<th>Primary Governing Component</th>
<th>Secondary Governing Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAA² Cartridge Ball (>20mm)</td>
<td>Lotted</td>
<td>Propellant</td>
<td></td>
</tr>
<tr>
<td>SAA Cartridge Tracer (>20mm)</td>
<td>Lotted</td>
<td>Propellant</td>
<td></td>
</tr>
<tr>
<td>Flare (Illuminating)</td>
<td>Lotted</td>
<td>Filled Flare</td>
<td></td>
</tr>
<tr>
<td>Grenades (Hand)</td>
<td>Lotted</td>
<td>Filled Lot</td>
<td></td>
</tr>
<tr>
<td>Grenades (Rocket Propelled)</td>
<td>Batched</td>
<td>Propellant</td>
<td>Fuze</td>
</tr>
<tr>
<td>Mortar Bomb HE (>60mm)</td>
<td>Batched</td>
<td>Primary Cartridge</td>
<td>Fuze</td>
</tr>
<tr>
<td>Mortar Bomb HE (81mm – 160mm)</td>
<td>Batched</td>
<td>Augmenting Cartridge</td>
<td>Primary Cartridge</td>
</tr>
<tr>
<td>Mortar Bomb Smoke (>60mm)</td>
<td>Batched</td>
<td>Primary Cartridge</td>
<td>Augmenting Cartridge</td>
</tr>
<tr>
<td>Mortar Bomb Smoke (81mm – 160mm)</td>
<td>Batched</td>
<td>Augmenting Cartridge</td>
<td>Primary Cartridge</td>
</tr>
<tr>
<td>Round Cannon HE (20mm – 30mm)</td>
<td>Batched</td>
<td>Propellant</td>
<td>Primer</td>
</tr>
<tr>
<td>Tank Round HE</td>
<td>Lotted</td>
<td>Fuze</td>
<td></td>
</tr>
<tr>
<td>Tank Round Smoke</td>
<td>Lotted</td>
<td>Fuze</td>
<td></td>
</tr>
<tr>
<td>Artillery Shell HE (Complete Round) (>155mm)</td>
<td>Batched</td>
<td>Propellant</td>
<td></td>
</tr>
<tr>
<td>Artillery Shell Smoke (Complete Round) (>155mm)</td>
<td>Batched</td>
<td>Propellant</td>
<td></td>
</tr>
<tr>
<td>Artillery Shell HE (<155mm)</td>
<td>Lotted</td>
<td>Filled Shell</td>
<td>Fuze</td>
</tr>
<tr>
<td>Artillery Shell Smoke (<155mm)</td>
<td>Lotted</td>
<td>Filled Shell</td>
<td>Fuze</td>
</tr>
<tr>
<td>Propelling Charge (Separate) (>155mm)</td>
<td>Lotted</td>
<td>Propellant</td>
<td></td>
</tr>
</tbody>
</table>

² Small arms ammunition.
Table 7: Example system of Lotting, Batching and governing components by generic type

<table>
<thead>
<tr>
<th>Generic Ammunition Type</th>
<th>Lotted or Batched</th>
<th>Primary Governing Component</th>
<th>Secondary Governing Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuzes Nose Percussion</td>
<td>Lotted</td>
<td>Filled Fuze</td>
<td></td>
</tr>
<tr>
<td>Fuzes Nose Mechanical Time</td>
<td>Lotted</td>
<td>Filled Fuze</td>
<td></td>
</tr>
<tr>
<td>Primer Percussion</td>
<td>Lotted</td>
<td>Filled Fuze</td>
<td></td>
</tr>
<tr>
<td>Primer Electrical</td>
<td>Lotted</td>
<td>Filled Primer</td>
<td></td>
</tr>
<tr>
<td>Safety Fuze</td>
<td>Lotted</td>
<td>Filled Lot</td>
<td></td>
</tr>
<tr>
<td>Fuze Instantaneous</td>
<td>Lotted</td>
<td>Filled Lot</td>
<td></td>
</tr>
<tr>
<td>Detonating Cord</td>
<td>Lotted</td>
<td>Filled Lot</td>
<td></td>
</tr>
<tr>
<td>Detonator Non-Electric</td>
<td>Lotted</td>
<td>Filled Lot</td>
<td></td>
</tr>
<tr>
<td>Detonator Electric</td>
<td>Lotted</td>
<td>Filled Lot</td>
<td></td>
</tr>
<tr>
<td>Charge Linear Cutting</td>
<td>Lotted</td>
<td>Filled Lot</td>
<td></td>
</tr>
<tr>
<td>Charge Demolition HE</td>
<td>Lotted</td>
<td>Filled Lot</td>
<td></td>
</tr>
<tr>
<td>Mine Anti-Tank</td>
<td>Lotted</td>
<td>Filled Lot</td>
<td></td>
</tr>
</tbody>
</table>

9 Availability of ammunition technical data (LEVEL 2)

The availability of the following basic data for the specific types of ammunition in a national stockpile is essential to the development of an effective and safe ammunition stockpile management system:

a) ammunition Lot numbers;

b) ammunition Batch numbers (if applicable); and
c) technical drawings.

If this basic technical data is not available for each specific item of ammunition then the integrity of the overall ammunition stockpile management system is dangerously compromised. This is the basic data that allows for effective and appropriate remedial action when technical investigation identified a fault in the ammunition. Without this data the only option is to take remedial action on each individual item of the particular type of ammunition identified as at risk that was manufactured in the same year. (For example, 60mm mortar propellant, where the only available data identifies a year of production of 1967 as this is marked on the rounds and packaging, spontaneously ignites during storage. The only possible and effective remedial action in this case should be the destruction of all propellant for all mortar bombs where the ammunition is marked 1967).

For those stockpile management organisations that do not hold the technical data above for each item of ammunition, the only short term solution shall be to conduct a 100% stock take of all ammunition and record all markings on that ammunition and its packaging. Informed decisions shall then be taken about instigating a Lotting and Batching system, based on the principles of logistic Batching, which is integrated with the ammunition accounting system and that allows the ammunition managers a degree of visibility of the entire stockpile by individual ammunition type. This may be a massive task, dependent on the stockpile size, but it is the only way to gain effective control over the ammunition and to reduce the inherent explosive risks during storage, handling and use.
Annex A
(normative)
References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this part of the guide. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of the guide are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO maintain registers of currently valid ISO or EN:

The latest version/edition of these references should be used. The UN Office for Disarmament Affairs (UN ODA) holds copies of all references\(^6\) used in this guide. A register of the latest version/edition of the International Ammunition Technical Guidelines is maintained by UN ODA, and can be read on the IATG website: www.un.org/disarmament/un-saferguard/. National authorities, employers and other interested bodies and organisations should obtain copies before commencing conventional ammunition stockpile management programmes.

\(^6\) Where copyright permits.
Annex B
(informative)
References

The following informative documents contain provisions, which should also be consulted to provide further background information to the contents of this guide:

a) IATG 01.60:2015[E] Ammunition faults and performance failures. UNODA. 2015;

b) IATG 01.70:2015[E] Bans and constraints. UNODA. 2015; and

The latest version/edition of these references should be used. The UN Office for Disarmament Affairs (UN ODA) holds copies of all references used in this guide. A register of the latest version/edition of the International Ammunition Technical Guidelines is maintained by UN ODA, and can be read on the IATG website: www.un.org/disarmament/un-safeguard/. National authorities, employers and other interested bodies and organisations should obtain copies before commencing conventional ammunition stockpile management programmes.

7 Where copyright permits.
Amendment record

Management of IATG amendments

The IATG guidelines are subject to formal review on a five-yearly basis, however this does not preclude amendments being made within these five-year periods for reasons of operational safety and efficiency or for editorial purposes.

As amendments are made to this IATG they will be given a number, and the date and general details of the amendment shown in the table below. The amendment will also be shown on the cover page of the IATG by the inclusion under the edition date of the phrase 'incorporating amendment number(s) 1 etc.'

As the formal reviews of each IATG are completed new editions may be issued. Amendments up to the date of the new edition will be incorporated into the new edition and the amendment record table cleared. Recording of amendments will then start again until a further review is carried out.

The most recently amended, and thus extant, IATG will be the versions that are posted on the UN SaferGuard IATG website at www.un.org/disarmament/un-saferguard/.

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Amendment Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01 Feb 15</td>
<td>Release of Edition 2 of IATG.</td>
</tr>
</tbody>
</table>