
Sentence Boundary Detection and the Problem with the U.S.

Dan Gillick
Computer Science Division

University of California, Berkeley
dgillick@cs.berkeley.edu

Abstract

Sentence Boundary Detection is widely used
but often with outdated tools. We discuss what
makes it difficult, which features are relevant,
and present a fully statistical system, now pub-
licly available, that gives the best known er-
ror rate on a standard news corpus: Of some
27,000 examples, our system makes 67 errors,
23 involving the word “U.S.”

1 Introduction

Many natural language processing tasks begin by
identifying sentences, but due to the semantic am-
biguity of the period, the sentence boundary detec-
tion (SBD) problem is non-trivial. While reported
error rates are low, significant improvement is pos-
sible and potentially valuable. For example, since
a single error can ruin an automatically generated
summary, reducing the error rate from 1% to 0.25%
reduces the rate of damaged 10-sentence summaries
from 1 in 10 to 1 in 40. Better SBD may improve
language models and sentence alignment as well.

SBD has been addressed only a few times in the
literature, and each result points to the importance of
developing lists of common abbreviations and sen-
tence starters. Further, most practical implementa-
tions are not readily available (with one notable ex-
ception). Here, we present a fully statistical system
that we argue benefits from avoiding manually con-
structed or tuned lists. We provide a detailed anal-
ysis of features, training variations, and errors, all
of which are under-explicated in the literature, and
discuss the possibility of a more structured classifi-
cation approach. Our implementation gives the best
performance, to our knowledge, reported on a stan-
dard Wall Street Journal task; it is open-source and
available to the public.

2 Previous Work

We briefly outline the most important existing meth-
ods and cite error rates on a standard English data
set, sections 03-06 of the Wall Street Journal (WSJ)
corpus (Marcus et al., 1993), containing nearly
27,000 examples. Error rates are computed as
(number incorrect/total ambiguous periods). Am-
biguous periods are assumed to be those followed
by white space or punctuation. Guessing the major-
ity class gives a 26% baseline error rate.

A variety of systems use lists of hand-crafted reg-
ular expressions and abbreviations, notably Alem-
bic (Aberdeen et al., 1995), which gives a 0.9% er-
ror rate. Such systems are highly specialized to lan-
guage and genre.

The Satz system (Palmer and Hearst, 1997)
achieves a 1.0% error rate using part-of-speech
(POS) features as input to a neural net classifier (a
decision tree gives similar results), trained on held-
out WSJ data. Features were generated using a
5000-word lexicon and a list of 206 abbreviations.
Another statistical system, mxTerminator (Reynar
and Ratnaparkhi, 1997) employs simpler lexical fea-
tures of the words to the left and right of the can-
didate period. Using a maximum entropy classifier
trained on nearly 1 million words of additional WSJ
data, they report a 1.2% error rate with an automati-
cally generated abbreviation list and special corpus-
specific abbreviation features.

There are two notable unsupervised systems.
Punkt (Kiss and Strunk, 2006) uses a set of log-
likelihood-based heuristics to infer abbreviations
and common sentence starters from a large text
corpus. Deriving these lists from the WSJ test
data gives an error rate of 1.65%. Punkt is eas-
ily adaptable but requires a large (unlabeled) in-
domain corpus for assembling statistics. An imple-
mentation is bundled with NLTK (Loper and Bird,
2002). (Mikheev, 2002) describes a “document-

centered” approach to SBD, using a set of heuris-
tics to guess which words correspond to abbrevia-
tions and names. Adding carefully tuned lists from
an extra news corpus gives an error rate of 0.45%,
though this increases to 1.41% without the abbrevi-
ation list. Combining with a supervised POS-based
system gives the best reported error rate on this task:
0.31%.

Our system is closest in spirit to mxTerminator,
and we use the same training and test data in our
experiments to aid comparison.

3 Our Approach

Each example takes the general form “L. R”, where
L is the context on the left side of the period in
question, andR is the context on the right (we use
only one word token of context on each side). We
are interested in the probability of the binary sen-
tence boundary classs, conditional on its context:
P (s|“L. R”). We take a supervised learning ap-
proach, extracting features from “L. R”.

Table 1 lists our features and their performance,
using a Support Vector Machine (SVM) with a lin-
ear kernel1. Feature 1 by itself, the token ending
with the candidate period, gives surprisingly good
performance, and the combination of 1 and 2 out-
performs nearly all documented systems. While no
published result uses an SVM, we note that a simple
Naive Bayes classifier gives an error rate of 1.05%
(also considerably better than mxTerminator), sug-
gesting that the choice of classifier alone does not
explain the performance gap.

There are a few possible explanations. First,
proper tokenization is key. While there is not room
to catalog our tokenizer rules, we note that both un-
tokenized text and mismatched train-test tokeniza-
tion can increase the error rate by a factor of 2.

Second, poor feature choices can hurt classifica-
tion. In particular, adding a feature that matches a
list of abbreviations can increase the error rate; us-
ing the list (“Mr.”, “Co.”) increases the number of
errors by up to 25% in our experiments. This is be-
cause some abbreviations end sentences often, and
others do not. In the test data, 0 of 1866 instances
of “Mr.” end a sentence, compared to 24 of 86 in-
stances of “Calif.” (see Table 2). While there may

1We use SVM Light, withc = 1 (Joachims, 1999). Non-
linear kernels did not improve performance in our experiments.

Feature Description Error
1 L = wi 1.88%
2 R = wj 9.36%
3 len(L) = l 9.12%
4 is cap(R) 12.56%
5 int(log(count(L; no period))) = ci 12.14%
6 int(log(count(R; is lower)) = cj 18.79%
7 (L = wi, R = wj) 10.01%
8 (L = wi, is cap(R)) 7.54%
1+2 0.77%
1+2+3+4 0.36%
1+2+3+4+5+6 0.32%
1+2+3+4+5+6+7+8 0.25%

Table 1: All features are binary. SVM classification re-
sults shown; Naive Bayes gives 0.35% error rate with all
features.

be meaningful abbreviation subclasses, a feature in-
dicating mere presence is too coarse.

Abbr. Ends Sentence Total Ratio
Inc. 109 683 0.16
Co. 80 566 0.14
Corp. 67 699 0.10
U.S. 45 800 0.06
Calif. 24 86 0.28
Ltd. 23 112 0.21

Table 2: The abbreviations appearing most often as sen-
tence boundaries. These top 6 account for 80% of
sentence-ending abbreviations in the test set, though only
5% of all abbreviations.

Adding features 3 and 4 better than cuts the re-
maining errors in half. These can be seen as a kind
of smoothing for sparser token features 1 and 2. Fea-
ture 3, the length of the left token, is a reasonable
proxy for the abbreviation class (mean abbreviation
length is 2.6, compared to 6.1 for non-abbreviation
sentence enders). The capitalization of the right to-
ken, feature 4, is a proxy for a sentence starter. Ev-
ery new sentence that starts with a word (as opposed
to a number or punctuation) is capitalized, but 70%
of words following abbreviations are also, so this
feature is mostly valuable in combination.

While we train on nearly 1 million words, most of
these are ignored because our features are extracted
only near possible sentence boundaries. Consider
the fragment “... the U.S. Apparently some ...”,

which our system fails to split after “U.S.” The word
“Apparently” starts only 8 sentences in the train-
ing data, but since it usually appears lowercased (89
times in training), its capitalization here is meaning-
ful. Feature 6 encodes this idea, indicating the log
count of lowercased appearances of the word right
of the candidate period. Similarly, feature 5 gives
the log count of occurrences of the token left of the
candidate appearing without a final period.

Another way to incorporate all of the training
data is to build a model ofP (s|“L R”), as is of-
ten used in sentence segmentation for speech recog-
nition. Without a period in the conditional, many
more negative examples are included. The resulting
SVM model is very good at placing periods given
input text without them (0.31% error rate), but when
limiting the input to examples with ambiguous peri-
ods, the error rate is not competitive with our origi-
nal model (1.45%).

Features 7 and 8 are added to model the nuances
of abbreviations at sentence boundaries, helping to
reduce errors involving the examples in Table 2.

4 Two Classes or Three?

SBD has always been treated as a binary classifica-
tion problem, but there are really three classes: sen-
tence boundary only (S); abbreviation only (A); ab-
breviation at sentence boundary (A + S). The label
space of the test data, which has all periods anno-
tated, is shown in Figure 1.

Sentence Boundaries (S)

Abbreviations (A)

(A+S)

(A)

(A+S)

All Data

Errors

Figure 1: The overlapping label space of the test data:
sentence boundaries 74%; abbreviations 26%; intersec-
tion 2%. The distribution of errors given by our classifier
is shown as well (not to scale with all data).

Relative to the size of the classes,A + S exam-
ples are responsible for a disproportionate number

of errors, pointing towards the problem with a bi-
nary classifier: In the absence ofA + S examples,
the left contextL and the right contextR both help
distinguishS from A. But A + S cases haveL re-
sembling theA class andR resembling theS class.

One possibility is to add a third class, but this does
not improve results, probably because we have so
few A + S examples. We also tried taking a more
structured approach, depicted in Figure 2, but this
too fails to improve performance, mostly because
the first step, identifying abbreviations without the
right context, is too hard. Certainly, theA + S cases
are more difficult to identify, but perhaps some bet-
ter structured approach could reduce the error rate
further.

P(A | “L.”) > 0.5

P(S | “R”) > 0.5

S

A+S

A

no

yes

no

yes

Figure 2: A structured classification approach. The left
context is used to separateS examples first, then those
remaining are classified as eitherA or A + S using the
right context.

5 Training Data

One common objection to supervised SBD systems
is an observation in (Reynar and Ratnaparkhi, 1997),
that training data and test data must be a good match,
limiting the applicability of a model trained from a
specific genre. Table 3 shows respectable error rates
for two quite different test sets: The Brown corpus
includes 500 documents, distributed across 15 gen-
res roughly representative of all published English;
The Complete Works of Edgar Allen Poe includes
an introduction, prose, and poetry.

A second issue is a lack of labeled data, espe-
cially in languages besides English. Table 4 shows
that results can be quite good without extensive la-
beled resources, and they are likely to continue to
improve if additional resources were available. At
the least, (Kiss and Strunk, 2006) have labeled over

Corpus Examples inS SVM Err NB Err
WSJ 26977 74% 0.25% 0.35%
Brown 53688 91% 0.36% 0.45%
Poe 11249 95% 0.52% 0.44%

Table 3: SVM and Naive Bayes classification error rates
on different corpora using a model trained from a disjoint
WSJ data set.

10000 sentences in each of 11 languages, though we
have not experimented with this data.

Corpus 5 50 500 5000 42317
WSJ 7.26% 3.57% 1.36% 0.52% 0.25%
Brown 5.65% 4.46% 1.65% 0.74% 0.36%
Poe 4.01% 2.68% 2.22% 0.98% 0.52%

Table 4: SVM error rates on the test corpora, using mod-
els built from different numbers of training sentences.

We also tried to improve results using a standard
bootstrapping method. Our WSJ-trained model was
used to annotate 100 million words of New York
Times data from the AQUAINT corpus, and we in-
cluded high-confidence examples in a new training
set. This did not degrade test error, nor did it im-
prove it.

6 Errors

Our system makes 67 errors out of 26977 examples
on the WSJ test set; a representative few are shown
in Table 5. 34% of the errors involve the word “U.S.”
which distinguishes itself as the most difficult of to-
kens to classify: Not only does it appear frequently
as a sentence boundary, but even when it does not,
the next word is often capitalized (“U.S. Govern-
ment”; “U.S. Commission”), further confusing the
classifier. In fact, abbreviations for places, includ-
ing “U.K.”, “N.Y.”, “Pa.” constitute 46% of all er-
rors for the same reason. Most of the remaining er-
rors involve abbreviations like those in Table 2, and
all are quite difficult for a human to resolve without
more context. Designing features to exploit addi-
tional context might help, but could require parsing.

7 Conclusion

We have described a simple yet powerful method for
SBD. While we have not tested models in languages
other than English, we are providing the code and
our models, complete with tokenization, available

Context Label P (S)
... the U.S. Amoco already ... A + S 0.45
... the U.K. Panel on ... A 0.57
... the U.S. Prudential Insurance ... A + S 0.44
... Telephone Corp. President Haruo ...A 0.73
... Wright Jr. Room ... A 0.67
... 6 p.m. Travelers who ... A + S 0.44

Table 5: Sample errors with the probability of being in
theS class assigned by the SVM.

at http://code.google.com/p/splitta. Future work in-
cludes further experiments with structured classifi-
cation to treat the three classes appropriately.

Acknowledgments

Thanks to Benoit Favre, Dilek Hakkani-Tür, Kofi
Boakye, Marcel Paret, James Jacobus, and Larry
Gillick for helpful discussions.

References

J. Aberdeen, J. Burger, D. Day, L. Hirschman, P. Robin-
son, and M. Vilain. 1995. MITRE: description of the
Alembic system used for MUC-6. InProceedings of
the 6th conference on Message understanding, pages
141–155. Association for Computational Linguistics
Morristown, NJ, USA.

T. Joachims. 1999. Making large-scale support vector
machine learning practical, Advances in kernel meth-
ods: support vector learning.

T. Kiss and J. Strunk. 2006. Unsupervised Multilingual
Sentence Boundary Detection.Computational Lin-
guistics, 32(4):485–525.

E. Loper and S. Bird. 2002. NLTK: The Natural Lan-
guage Toolkit. InProceedings of the ACL Workshop
on Effective Tools and Methodologies for Teaching
Natural Language Processing and Computational Lin-
guistics, pages 62–69.

M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini.
1993. Building a large annotated corpus of En-
glish: the penn treebank.Computational Linguistics,
19(2):313–330.

A. Mikheev. 2002. Periods, Capitalized Words, etc.
Computational Linguistics, 28(3):289–318.

D.D. Palmer and M.A. Hearst. 1997. Adaptive Multilin-
gual Sentence Boundary Disambiguation.Computa-
tional Linguistics, 23(2):241–267.

J.C. Reynar and A. Ratnaparkhi. 1997. A maximum en-
tropy approach to identifying sentence boundaries. In
Proceedings of the Fifth Conference on Applied Natu-
ral Language Processing, pages 16–19.

