
Build Your First App
1

“The way to get started is to
quit talking and begin
doing.”

– Walt Disney

Copyright © 2015 AppCoda Limited  
All rights reserved. Please do not distribute or share without permission. No part of this
book or corresponding materials (such as images or source code) may be distributed by
any means without prior written permission of the author.

All trademarks and registered trademarks appearing in this book are the property of their
respective owners.

i

Hello World! Build Your First App Using Swift

By now you should have installed Xcode 6 and some understandings of Swift language. If
you haven’t done so, check out the previous chapter about what you need to begin iOS
programming. We’ll use Xcode 6.3 (or up) to work on all exercises in this book.

You may have heard of the “Hello World” program if you
have read any programming book before. Hello World is a
program for the first-time programmer to create. It’s a very
simple program that outputs “Hello, World” on the screen of
a device.

It’s a tradition in the programming world. So, let’s follow the
programming tradition and create a “Hello World” app using
Xcode. Despite its simplicity, the “Hello World” program
serves a few purposes:

• It gives you an overview about the syntax and structure of
Swift, the new programming language of iOS.

• It also gives you a basic introduction to the Xcode 6
environment. You’ll learn how to create an Xcode project
and lay out your user interface using Storyboard. Even if
you’ve used Xcode 5 before, you’ll learn what’s new in the latest version of Xcode.

• You’ll learn how to compile a program, build the app and test it using the Simulator.

• Lastly, it makes you think programming is not difficult. I don’t want to scare you away
from learning programming. It’ll be fun.

Your First App
Your first app, as displayed in figure 1-1, is very simple and just shows a “Hello World”
button. When user taps the button, the app shows a welcome message. That’s it.
Extremely simple but it helps you kick off your iOS programming journey.

20

Figure 1-1. HelloWorld App

Let’s Jump Right Into Create a Project
First, launch Xcode. If you’ve installed Xcode via the Mac App
Store, you should be able to locate Xcode in the LaunchPad.
Just click on the Xcode icon to start it up.

Once launched, Xcode displays a welcome dialog. From here,
choose “Create a new Xcode project” to start a new project:

Figure 1-2. Xcode - Welcome Dialog

Xcode shows various project templates for selection. For your
first app, choose “Single View Application” and click “Next”.

Figure 1-3. Xcode Project Template Selection

It’s normal if you do
not understand the
source code. Just
relax and focus on
building your first
app. Familiarize
yourself with the
Xcode environment
and Storyboard. I will
explain the language
as we go along and
you will learn how
the HelloWorld app
works in the next
chapter.

21

This brings you to the next screen to fill in all the necessary options for your project.

Figure 1-4. Options for your Hello World project

You can simply fill in the options as follows:

Product Name: HelloWorld – This is the name of your app.

Organization Name: AppCoda – It’s the name of your organization.

Organization Identifier: com.appcoda – It’s actually the domain name written the other
way round. If you have a domain, you can use your own domain name. Otherwise, you
may use “com.appcoda” or just fill in “edu.self”.

Bundle Identifier: com.appcoda.HelloWorld - It’s a unique identifier of your app, which is
used during app submission. You do not need to fill in this option. Xcode automatically
generates it for you.

Language: Swift – Xcode 6 supports both Objective-C and Swift for app development. As
this book is about Swift, we’ll use Swift to develop the project.

22

Devices: iPhone – Select “iPhone” for this
project.

Use Core Data: [unchecked] – Do not
select this option. You do not need Core
Data for this simple project. We’ll explain
Core Data in later chapters.

Click “Next” to continue. Xcode then asks
you where to save the “HelloWorld” project.
Pick any folder (e.g. Desktop) on your
Mac. You may notice there is an option
for source control. Just deselect it. We do
not need to use the option in this book. Click “Create” to continue.

After you confirm, Xcode automatically creates the “Hello World” project. The screen will
look like the screenshot shown in figure 1-6. You can ignore the “No matching signing
identity found” error.

Figure 1-6. Main Xcode Window for HelloWorld Project

23

Figure 1-5. Choose a folder and save your project

Familiarize Yourself with Xcode Workspace
Before we move on to the coding part, let’s take a few minutes to have a quick look at the
Xcode workspace environment. In the left pane is the project navigator. You can find all
your project files in this area. The center part of the workspace is the editor area. You do
all the editing stuff here (such as editing the project setting, source code file, user
interface) in this area. Depending on the type of file, Xcode shows you different interfaces
in the editor area. For instance, if you select ViewController.swift in the project navigator,
Xcode displays the source code in the center area (see figure 1-7). If you select the
“Main.storyboard”, which is the file for storing user interface, Xcode shows you the visual
editor for storyboard (see figure 1-8).

Figure 1-7. Xcode Workspace with Source Code Editor

24

Figure 1-8 . Xcode Workspace with Storyboard Editor

The rightmost pane is the utility area. This area displays the properties of the file and
allows you to access Quick Help. If Xcode doesn’t show this area, you can select the
rightmost button in the toolbar to enable it.

The middle view button of the view
selector is deselected by default. If
you click on it, Xcode displays the
debug area right below the editor
area. The debug area, as its name
suggests, is used for showing debug
messages. We’ll talk about that in
a later chapter, so don’t worry if
you do not understand what each
area is for.

25

Figure 1-9. Show/hide the content areas of your workspace

Run Your App for the First Time
Until now, we have written zero lines
of code. Even so, you can run your
app using the built-in Simulator. This
will give you an idea how to build
and test your app in Xcode. In the
toolbar you should see the Run
button. If you hit the Run button, Xcode
automatically builds the app and runs it in
the selected Simulator. By default, the Simulator is set to iPhone 6. If you click the iPhone
6 button, you’ll see a list of available Simulators. As we’re going to build an iPhone app,
you can use iPhone 6 (or any other iPhone models) as the Simulator. For this demo, I
chose the iPhone 5s. Once selected, you can click the Run button to load your app in the

Simulator. Figure 1-11 shows the simulator for an
iPhone 5s.

A white screen with nothing inside?! That’s normal.
Because we haven’t implemented the user interface or
written any lines of code, the Simulator shows a blank
screen. To terminate the app, simply hit the “Stop”
button in the toolbar.

Try to select another simulator and run the app. Just
play around with it so you’ll get used to the Xcode
development environment.

26

Figure 1-10. Run and Stop Buttons in Xcode

Figure 1-11. The Simulator

Designing User Interface Using Storyboard
Now that you have a basic idea of the Xcode development environment, let’s move on and
design the user interface of your first app. In the project navigator, select the
“Main.storyboard” file. Xcode then brings up a visual editor for Storyboards known as
Interface Builder.

Figure 1-12 . Storyboard Editor

Storyboards provide a visual way for developers to create and design an app’s UI. You use
storyboard to lay out the views and the transitions between different views. Since we
selected the “Single View Application” template, the storyboard already includes a view
controller scene. A scene in storyboard represents a view controller and its views. When
developing iOS apps, views are the basic building blocks for creating your user interface.

27

Each type of view has its own function. For instance, the view you find in the storyboard is
a container view for holding other views such as buttons, labels, image views, etc.

A view controller is designed to manage its associated view and subviews (e.g. button and
label). If you are confused about the relationship between views and view controllers, don’t
worry. We will discuss how a view and view controller work together in a later chapter.
Meanwhile, focus on learning how to use storyboard and Interface Builder to lay out the
UI.

The outline view of the Interface Builder shows you an overview of all scenes and the
objects under a specific scene. The outline view is very useful when you want to select a
particular object in the storyboard. If the outline view doesn’t appear on screen, use the
toggle button (see figure 1-12) to
enable/disable the outline view.

Disabling Size Classes
If you have some experience with
Xcode 5, you may wonder why the
size of the view controller in Xcode
6 differs from the one in older
version. The view controller is
bigger and doesn’t look like an
iPhone. It's now a one-size-fits-all canvas. Why? This is due to the introduction of Size
Classes.

Size Classes are new classes introduced in iOS 8. By using size classes, Xcode 6 lets
developers use a unified storyboard for creating an app UI that works well on both iPhone
and iPad. Prior to that, if you needed to create a universal app that supports both iPad
and iPhone, you’d need to create two different storyboards, one for each devices.

We’ll not go into size classes here. To keep things simple, we’ll disable size classes for
your first project. In the File Inspector (see figure 1-12), uncheck the “Use Size Classes”
checkbox under the Interface Builder Document. In case File Inspector is hidden, you can
choose View > Utilities > Show File Inspector.

28

Figure 1-13. Disable size classes

When you disable size classes, Xcode will prompt you to select the target device. For our
project, select iPhone and click “Disable Size Classes” to confirm. The view controller now
looks more like an iPhone.

Figure 1-14. View Controller with size classes disabled

Adding a Button to the View
Next we’ll add a Hello World button to the view. At the bottom part of the utility area, it
shows the Object library. Here, you can choose any of the UI Controls and drag-and-drop
them into the view. If you don’t see the Object Library, you can click the “Show the Object
Library” button.

You can use the toggle button to switch between list view and icon view (see figure 1-14).
If you want to learn more about a specific object in the Object Library, simply click on it
and Xcode shows you a brief description of the control.

29

Okay, it’s time to add a button to the view. All you need to do is drag a Button object from
the Object Library to the view.

Figure 1-15. Drag the Button to the View

As you drag the Button to the view, you’ll see a
set of horizontal and vertical guides if the button
is centered. Stop dragging, and release your
button to place the Button object there.

Next, let’s rename the button. To edit the label
of the button, double-click it and name it “Hello
World”.

If you hit the Run button to run the app, you’ll see a
Hello World button in the simulator as shown in figure
1-17. Cool, right? However, when you tap the button, it does nothing. We’ll need to add a
few lines of code to display the “Hello, World” message.

30

Figure 1-16. Renaming the button

Figure 1-17. Hello World app with a Button

Coding the Hello World Button
Now that you’ve completed the UI of the HelloWorld app, it’s
time to write some code. In the Project Navigator, you should
find the ViewController.swift file. Because we initially selected
the “Single View Application” project template, Xcode already
generated a ViewController class in the ViewController.swift. In
order to display a message when the button is tapped, we’ll
add some code to the file.

This is the beauty of
iOS development.
The code and user
interface of an app
are separated. You’re
free to design your
user interface in
Storyboard and
prototype an app
without writing any
lines of code.

31

Swift versus Objective-C
If you have written code in Objective-C before, one big change in Swift is the
consolidation of header (.h) and implementation file (.m). All the information of a particular
class is now stored in a single .swift file.

Select the file and the editor area immediately displays the source code. Type (I encourage
you to type the code, rather than copy & paste) the following lines of code in the
ViewController class:

@IBAction func showMessage() {
 let alertController = UIAlertController(title: "Welcome to My First App", message: "Hello
World", preferredStyle: UIAlertControllerStyle.Alert)
 alertController.addAction(UIAlertAction(title: "OK", style: UIAlertActionStyle.Default,
handler: nil))
 self.presentViewController(alertController, animated: true, completion: nil)

}

Your source code should look like this after editing:

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func showMessage() {
 let alertController = UIAlertController(title: "Welcome to My First App", message:
"Hello World", preferredStyle: UIAlertControllerStyle.Alert)
 alertController.addAction(UIAlertAction(title: "OK", style: UIAlertActionStyle.Default,
handler: nil))
 self.presentViewController(alertController, animated: true, completion: nil)

 }
}

What you have just done is added a showMessage() method in the ViewController class.
The Swift code within the method is new to you. I will explain it to you in the next chapter.
Meanwhile, just consider the showMessage() as an action. When this action is called, the
block of code will instruct iOS to display a “Hello World” message on screen.

32

Connecting User Interface with Code
I said before that the
beauty of iOS
development is the
separation of code
(.swift file) and user
interface (storyboards).
But how can we
establish the
relationship between
our source code and
user interface?

To be specific for this
demo, the question is:

How can we connect
the “Hello World”
button in the
storyboard with the
showMessage() method
in the ViewController class?

You need to establish a connection between the “Hello World” button and the
showMessage() method you’ve just added, so that the app responds when someone taps
the Hello World button. Select the “Main.storyboard” to switch back to the Interface
Builder.

Press and hold the control key on your keyboard, click the “Hello World” button and drag
it to the View Controller icon.

Release both buttons (mouse + keyboard) and a pop-up shows the “showMessage”
option under Sent Events. Select it to make a connection between the button and
“showMessage” action.

33

Figure 1-18. Drag to the View Controller icon
(left), a pop-over menu appears when

releasing the buttons (right)

Test Your App
That’s it! You’re now ready to test your first app. Just hit the “Run” button. If everything is
correct, your app should run properly in the Simulator. This time, the app displays a
welcome message when you tap the Hello World button.

Figure 1-19. Hello World app

34

Launch Screen
When the app starts up, you may aware a launch screen as shown in figure 1-20. The
screen disappears when the Hello World screen displays.

Figure 1-20. Launch screen

Traditionally this has been a static image (we called it launch image) displayed immediately
on app launch, before the actual app UI is ready to go. The launch image gives users the
impression that your app is fast and responsive as it appears instantly. In iOS 8 and Xcode
6, Apple allows developer to create the launch screen using Interface Builder instead of a
static launch image.

For any new projects created in Xcode 6, you will find a XIB launch screen file, configured
as the default launch file. Like the HelloWorld project, you should find the
LaunchScreen.xib in the project navigator. By default, the screen contains the name of
your project and the copyright notice. You can customize the screen just like you design
Hello World view controller. Meanwhile, you can leave it as it is. We’ll talk about launch
image again when you finish building a real app.

35

Changing the Button Color
There is one more thing I want to discuss with you before ending the chapter. As
mentioned before, you do not need to write code to customize a UI control. Here, I want to
show you how easy it is to change the properties (e.g. color) of a button. Select the “Hello
World” button and then click the Attributes Inspector under the Utility area. You’ll be able
to access the properties of the button. Here, you can change the font, text color,
background color, etc. Try to change the text color (under Button section) to white and
background (scroll down and you’ll find it under View section) to orange or whatever color
you want.

Figure 1-21. Changing the color of the Hello World button

36

What’s Coming Next
Congratulations! You’ve built your first iPhone app. It’s a simple app, but I believe you
already have a better understanding of Xcode 6 and understand how an app is built. It’s
easier than you thought, right?

In the next chapter, we’ll discuss the details of the Hello World app and explain how
everything works together.

For your reference, you can download the complete Xcode project from https://
www.dropbox.com/s/uiy4b31da10k58c/HelloWorld.zip

37

	￼Table of Contents
	￼Preface
	￼Getting Started with Xcode 6 Development
	￼Swift Playgrounds ￼
	Build Your First App
	Hello World App Explained
	Introduction to Auto Layout
	Prototyping Your App Before Writing Code
	Creating a Simple Table Based App
	Customize Table View Using Prototype Cell
	Table Cell Selection and UIAlertController
	Table Row Deletion, Custom Action Button and MVC
	Navigation Controller and Segue
	Introduction to Object Oriented Programming
	Beautify Detail View and Navigation Bar Customization
	Self Sizing Cells
	Basic Animations and Visual Effects
	Working with Maps
	Static Table View and Photo Library
	Core Data
	Search Bar
	Introduction to UIPageViewController
	Exploring Tab Bar
	Working with Web View and Email
	Exploring CloudKit
	Localize Your App
	Deploying and Testing Your App on an iPhone
	Beta Testing with TestFlight
	Submit Your App to App Store
	Swift Basics

