Continuing Education Course #291
Proportional, Integral, and Derivative
Controller Design - Part 1

1. The PID controller is the sum of how many terms?
 ○ a. 1
 ○ b. 2
 ○ c. 3

2. The proportional term?
 ○ a. sets the loop gain
 ○ b. integrates the error
 ○ c. differentiates the error

3. The integral term?
 ○ a. sets the loop gain
 ○ b. integrates the error
 ○ c. differentiates the error

4. The derivative term?
 ○ a. sets the loop gain
 ○ b. integrates the error
 ○ c. differentiates the error

5. The basic elements of a control loop are?
 ○ a. Plant and Controller
 ○ b. Controller and Feedback Sensor
 ○ c. Plant, Controller, and Feedback Sensor

6. In the basic feedback control loop block diagram the symbols for the plant and controller are?
 ○ a. P plant and H controller
 ○ b. C plant and H controller
 ○ c. P plant and C controller

7. The PID is a specific type of?
 ○ a. plant
 ○ b. controller
 ○ c. feedback sensor

8. Each block of the control loop can be represented in the?
 ○ a. time domain
 ○ b. frequency domain
 ○ c. both

9. The transform often used to convert between the continuous time and frequency domains is?
 ○ a. Bode
 ○ b. Nyquist
 ○ c. Laplace

10. The control loop frequency response can be analyzed using?
 ○ a. Bode Plots and Analysis
 ○ b. Nyquist Plots and Analysis
 ○ c. both
11. Bode frequency plots are used to analyze the?
 - a. Plant frequency response
 - b. Controller frequency response
 - c. The OLTF and CLTF frequency response

12. Key stability criteria derived from Bode and Nyquist plots are?
 - a. gain margin
 - b. phase margin
 - c. both

13. The control loop gain is primarily set by the?
 - a. plant
 - b. controller
 - c. feedback sensor

14. The control loop response from the command input to the output is termed?
 - a. The open loop transfer function
 - b. The sensitivity function
 - c. The closed loop transfer function

15. The open loop transfer function gain is primarily a function of the ________ gain?
 - a. Plant
 - b. Controller
 - c. Feedback

16. Increasing a PID proportional gain K_P will?
 - a. decrease rise time
 - b. increase rise time
 - c. have no effect

17. Increasing a PID integral gain K_I will?
 - a. decrease overshoot
 - b. increase overshoot
 - c. have no effect

18. Increasing a PID derivative gain K_D will?
 - a. decrease overshoot
 - b. increase overshoot
 - c. have no effect

19. The PID controller works best with?
 - a. plants with very long delays
 - b. complex plants with high order dynamics
 - c. simple plants with step response similar to that of a first order system

20. There are two standard PID forms, one parameterized in terms of absolute gain and the other a proportional gain and time related to integration and differentiation. Parameter equivalence between structures is related as?
 - b. \{K_P, K_I, K_D\} <-> \{K_P, K_P*T_I, K_P/T_D\}
 - c. \{K_P, K_I, K_D\} <-> \{K_P, T_I, T_D\}

21. The PI*PD configuration uses a?
 - a. PI controller in cascade with PD controller operating in forward path on the error
 - b. PI controller in forward path operating on error between output PD controller in feedback path and command input
 - c. forward path sum of PI and PD controllers in tandem

22. The PIPD configuration uses?
 - a. PI controller in cascade with PD controller operating in forward path on the error
 - b. PI controller in forward path operating on error between PD controller in output feedback path and command input
23. The most well-known PID tuning methods are?
 - a. Fourier transform
 - b. Laplace transform
 - c. Ziegler and Nichols tuning methods

24. An issue with the PID derivative term is?
 - a. windup
 - b. noise amplification
 - c. there are not any issues

25. An issue with the PID integral term is?
 - a. windup
 - b. noise amplification
 - c. there are not any issues