

Continuing Education Course #290 What Every Engineer Should Know About Reliability Engineering I

1. Which of the following does not enter into the definition of reliability?

- \bigcirc a. mission time
- \bigcirc b. stress level
- c. age
- \bigcirc d. conditional probability
- \bigcirc e. all of the above is essential

2. Which of the following is/are not specific failure type(s):

- \bigcirc a. catastrophic
- \bigcirc b. drift
- \bigcirc c. intermittent
- \bigcirc d. degradation
- \bigcirc e. all are specific failure types

3. The hazard rate function of any continuous probability density function (Pdf) is:

- \bigcirc a. The reciprocal of the MTTF (or MTBF)
- \bigcirc b. The instantaneous failure rate or the conditional failure rate for a given instant
- \bigcirc c. The probability of survival to time t
- \bigcirc d. The measure of safety for a given period of time greater than zero

4. Secondary failure is defined as:

- $\bigcirc\,$ a. The failure of an item due to the failure of another item
- \bigcirc b. The second malfunction of an item
- \bigcirc c. Failure of an item which does not affect the intended function of an item
- \bigcirc d. The failure of an item due to the inherent characteristic of the item

5. In general, which of the following about reliability is true?

 \bigcirc a. In reliability analysis, no distinction is made between failure and failure types.

 \bigcirc b. As part of design reliability, an appliance maker is concerned about frequent failures because of the cost of maintenance and replacement but more so because such failures could become a safety hazard.

- \bigcirc c. For some systems there is little or no distinction between reliability and safety
- \bigcirc d. All of the above

6. Exponential density has several useful properties that makes it useful as a distribution, and especially in reliability modeling. Which one of the following is not one of the properties?

- \bigcirc a. The failure rate is constant
- \bigcirc b. The occurrence of failure is not affected by failure history (that is, no memory)
- \bigcirc c. The failure rate follows the familiar "bathtub curve"
- \bigcirc d. The number of failures in a given interval follows a Poisson distribution.

7. In describing a need for reliability improvement to top management, the best terminology to use to address the problem is usually:

- \bigcirc a. Weibull distribution
- \bigcirc b. failure modes-effects
- \bigcirc c. dollars and cents
- \bigcirc d. dislocation of the mean
- \bigcirc e. uncontrolled variance

8. Failure rates in the exponential case:

- \bigcirc a. are multiplied together for independent events
- \bigcirc b. are summed to combine independent series elements in reliability analysis
- \bigcirc c. increase to the mean value and then decrease
- \bigcirc d. None of the above

9. A component has a constant failure rate of 0.0005 failures per hour. What is its reliability for 1,000 hours of operation?

- a. 0.6065
- b. 0.9950
- c. 0.5340
- O d. 0.3667

10. The MTTF of equipment is 500 hours. Assuming a constant failure rate, its change to fail in 500 hrs of operation is

- a. 100%
- b. 37%
- c. 63%
- d. 50%

11. Availability is always:

- \bigcirc a. Expressed as a probability
- \bigcirc b. Related to operating time and downtime
- \bigcirc c. Considers both free time and idle time
- $\bigcirc\,$ d. Both a and b
- \bigcirc e. All of the above
- 12. Mathematical models of reliability may be quite complex because of:
- \bigcirc a. Differences in component failure distributions and variations in the different component and systems
- \bigcirc b. Complex nature of the interference between load and capacity
- \bigcirc c. Variations in equipment usage
- \bigcirc d. Uncertainty about environmental stresses
- \bigcirc e. All of the above

13. Which of the following is the best general advice to a designer to meet a high reliability requirement?

- \bigcirc a. Use a safety factor of 1.25
- \bigcirc b. Design for an upper three-sigma limit
- \bigcirc c. Use of interference analysis for stress-strength
- \bigcirc d. Always design for worst case
- \bigcirc e. Design for a lower limit of reliability at the 90% confidence level

14. Which of the following about PM (Preventive Maintenance) is NOT true.

 \bigcirc a. Greatest benefits are realized when the maintenance intervals are chosen such that for a given system the positive effects of wearout time is greater than the negative effects of wear-in time.

- \bigcirc b. Typically, PM is performed on those components where we arout and we ar-in effects dominate.
- \bigcirc c. Even when we arout is present, a constant failure rate model may be a reasonable approximation.
- \bigcirc d. Maintenance is one of the primary causes of common-mode failures.
- 15. Which of the following is true of periodic tests?
- \bigcirc a. Increases in repair rate increases availability
- \bigcirc b. If the test interval is longer than the optimum, the undetected failures will lower availability.
- \bigcirc c. Decrease in test time decreases availability.
- $\bigcirc\,$ d. None of the above

16. Given the following parameters about the repairable system with repair rate of 0.8/day, and failure rate = 0.6/day. What is the steady state availability?

- a. 0.4295
- b. 0.6705
- c. 0.5714
- $\bigcirc\,$ d. none of the above.

17. In general low-level redundancies yield higher reliability values than higher-level redundancies if the following conditions are met.

 \bigcirc a. The reliabilities of the component cannot depend on the configuration in which they are located.

- \bigcirc b. The failure process must be truly independent for both configurations.
- \bigcirc c. The component reliabilities are the same for both configurations.
- \bigcirc d. a and c
- \bigcirc e. All of the above.

18. Which of the following formula is the most appropriate for determining the probability associated with each ordered failure data set?

$$\bigcirc$$
 a. $F(oT_i) = i/(n+2)$
 \bigcirc 1. $\widehat{F}(oT_i) = i-0.5$

$$\bigcirc$$
 b. $\widehat{F}(oT_i)i = rac{i-0.3}{n}$

$$\bigcirc$$
 c. $\widehat{F}(oT_i) = (i-0.3)/(n+0.4)$

- \bigcirc d. a and c above
- \bigcirc e. None of the above.

19. Which of the following is true about the asymptotic availability expression given by?

$A(\infty) = rac{ ext{MTTF}}{ ext{MTTF} + ext{MTTR}}$

 \bigcirc a. It is used for system availability in those situations where both the failure and repair processes are driven by the exponential distribution.

 \bigcirc b. It may also be used even when the failure and repair distributions are not exponential.

 \bigcirc c. It could be used to evaluate the overall availability since for a reasonable time period T, availability is insensitive to the details of repair and failure process.

 \bigcirc d. All of the above.

20. Benefits of Preventive Maintenance include the following, except:

- \bigcirc a. Increases life of equipment
- \bigcirc b. Reduces failures and breakdowns
- \bigcirc c. Does not increase downtime
- \bigcirc d. Reduces costly down time
- \bigcirc e. Decreases cost of replacement

21. Predictive Maintenance(PdM) techniques are techniques that help determine the condition of in-service equipment in order to predict when maintenance should be performed. PdM activities <u>include all</u>, but:

- \bigcirc a. Data Analytics
- \bigcirc b. Infrared Thermography
- \bigcirc c. Mathematical and probabilistic analysis
- \bigcirc d. Physical examinations
- \bigcirc e. All of the above are PdM activities

22. For which distribution is the probability equal to 50% that the population would have failed by the time the MTTF is reached?

- \bigcirc a. The normal distribution
- \bigcirc b. The lognormal distribution
- \bigcirc c. The Weibull distribution
- \bigcirc d. The exponential distribution

23. For which distribution is the probability equal to 63.2% that the population would have failed by the time the MTTF is reached.

- \bigcirc a. The normal distribution
- \bigcirc b. The lognormal distribution
- \bigcirc c. The Weibull distribution
- \bigcirc d. The exponential distribution

24. A useful definition of MTTF with respect to the reliability function, is the following:

 \bigcirc a. The reliability function is the average life of the system or component over all possible values of the component or system life profile

- \bigcirc b. The MTTF cannot be estimated from the reliability function
- \bigcirc c. The MTTF is distribution independent
- $\bigcirc\,$ d. None of the above

25. Why is it important to insist on a legitimate or viable hazard function?

 \bigcirc a. It is the basis for developing the other probability distributions functions that characterize the failure process

 \bigcirc b. Not every hazard function necessarily leads to a probability density function

 \bigcirc c. Since both the reliability function and failure density are probability functions this means that the hazard function must be a probability function or it does not exist.

 $\bigcirc\,$ d. All of the above

Purchase this course on Suncam.com