

A SunCam online continuing education course

Microcontrollers: Design and

Implementation

by

Mark A. Strain, P.E.

507.pdf

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page ii of 33

Table of Contents

Introduction ... 1
Design Considerations .. 1

Microcontroller ... 1
Compiler ... 3

Device Programmer .. 4
Microcontroller ... 4

Architecture... 6

Interrupts ... 11
Peripherals: Ports ... 12
Peripherals: Timer ... 13

Description .. 15
Compare Mode.. 16
Input Capture Mode .. 17

Register Description.. 17
Program Structure ... 18

Projects .. 19
Header File .. 19
LED Flasher with Delay Loop .. 21

LED Flasher Using Timer ... 23

LED Flasher with Push Button ... 26
Summary ... 29
References ... 31

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 1 of 33

Introduction
In my course entitled "Microcontrollers: an Introduction" I discussed the

architecture of microcontrollers. I showed how the central processing unit fetches

instructions (or a program) from memory and decomposes the instructions into

components that the control unit and the arithmetic logic unit can use to perform

the desired operation or function. Here I will discuss how to design a simple circuit

incorporating a microcontroller with a small footprint, small pin count, and a small

amount of internal memory (both program and data memory). I will give program

examples using the C programming language.

Microcontrollers are simply microprocessors that include program and data

memory and peripherals such as general-purpose input/output ports, timers, serial

communications controllers, analog-to-digital converter, etc.

For this course I will utilize the Atmel AVR series of microcontrollers, specifically

the Atmel ATtiny2313A series with 2048 bytes of internal flash program memory

and 128 bytes of internal data memory. The Atmel AVR series is one of several

different processor options a developer can use. Other example microcontrollers

include, but are not limited to the Microchip PIC, Texas Instruments MSP430,

Intel 8051, STMicroelectronics STM8, Freescale 68HC11, and multiple versions

of the ARM core from many vendors.

Design Considerations
When designing a microcontroller-based system, there are three things that need to

be considered: the microcontroller, the compiler, and the device programmer.

Microcontroller
First of all, consider the microcontroller. The processor must be sized appropriately

to the desired task. Consider the following parameters:

• bus width (8-bit, 16-bit, 32-bit)

• processor speed

• amount of program and data memory

• amount of input/output pins

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 2 of 33

• peripherals

• power consumption

The examples in this course perform basic operations, such as controlling an LED,

reading a button, and utilizing a timer peripheral and some interrupts. A

microcontroller with an 8-bit architecture is sufficient. The 8-bit, 16-bit, and 32-bit

architecture nomenclature refers to the width of the bus within the core of the

microprocessor. That is, how many bits the core can process at once. An 8-bit

machine is sufficient for simple systems, such as the ones exemplified in this

course, as well as thermostats, toys that have LEDs and buttons that need to be

controlled and read. Microprocessors with larger bus-widths are used for devices

that need more computing horsepower such as cell phones, GPS navigation

devices, and MP3 players.

The processor speed will determine how fast an instruction can be executed and

how much data can be processed during a given slice of time. For example, a

device transmitting and receiving data via a USB port will need to have a faster

processor speed (and probably larger bus-width) than a device simply controlling a

couple of LEDs and responding to a button. Most microprocessors are clocked by

an external clock (or oscillator) which determines the speed of the master clock.

Some low-power, low-horsepower microcontrollers may be clocked by an internal

oscillator circuit that requires no external components like a crystal or capacitors.

The microcontroller used in the examples in this course utilize an internal

oscillator circuit contained within the chip.

Memory is also a consideration, both program memory and data memory. Program

memory is where the program (or set of instructions specific to the task at hand) is

stored. Program memory is persistent and is maintained over power cycles. Data

memory is used by a program during execution for the stack and to store variables.

Both program memory and data memory may be internal to the microcontroller or

external to the chip and accessed by an address/data bus. The program memory

must be large enough to store the binary (or compiled source code) for the project.

The data memory must be large enough to contain the stack and for all of the

variables during program execution.

The number of input/output pins depends on the application or the system that the

microcontroller will control. Output pins may control an LED, a motor, a relay, or

some pins on an external peripheral device (such as a communications controller).

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 3 of 33

Input pins may be used to read an individual button, or a keypad. In some systems,

input/output ports may not be required at all.

Peripherals are those subsystems that interface with the microprocessor and pass

data to and from the processor and memory. Peripherals may include systems such

as communication devices, such as a UART (universal asynchronous receiver

transmitter) or a USB (universal serial bus) controller, timers, pulse-width

modulators, and analog-to-digital converters.

Power may or may not be a major consideration. If the processor is controlling or

monitoring an industrial process, like monitoring and controlling the temperature

of a room, then the device will most likely be plugged into the building's power

source. In this case a few extra milliwatts is not a major consideration. However, if

the processor is going to control a small handheld device, like a garage door opener

remote control or a keyless entry remote, then power consumption is a major

concern.

Power consumption needs to be considered from two angles: the amount of power

consumed at runtime and while the processor is sleeping. Also, different processors

have different levels of power saving modes. Most will let the developer turn off

unused peripherals. Some modes will actually halt the clock and resume due to an

external signal (like a button push). This power saving feature is useful for devices

(such as remote controls) that do not need to do anything until a button is pushed;

it then can perform its intended operation and then go back to sleep.

Compiler
The second consideration when designing a microcontroller-based system is what

development tools are available. Software needs to be written (whether in

assembly or in a higher-level language such as the C programming language). This

software needs to be compiled and/or assembled into a binary file that can be

loaded onto the device.

The compiler, assembler and linker tool chain need to be considered. Some simple

projects can be done in assembly. Most assembler tool chains are free. Most C

programs if written properly can be very compact, using very little memory. The

use of a compiler (such as a C compiler) allows for ease of design and prevents the

developer from having to use processor-specific assembly code instructions. This

allows more complex programs to be more easily maintained. Even some of the

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 4 of 33

tiniest microcontrollers are supported by some of the available C compiler tool

chains.

Some C compilers have a monetary cost and require some sort of licensing, while

others are free (or open source). The tool chain used in this course is from the

GNU suite of tools, specifically, WinAVR. It is open source and free.

The linker is usually (almost always) bundled with the compiler/assembler. The

job of the linker is to link all of the object code together into a single programming

file.

Device Programmer
The third consideration when designing a microcontroller-based system is how to

program the system. The software that is written is assembled, compiled and

linked, creating a single binary file that needs to be written to the device's

nonvolatile memory. The development PC containing the file to be programmed

transfers this file to the device programmer via one of the ports of the PC: serial,

parallel or USB. The device programmer then transfers the file to the

microcontroller's program memory. The file is transferred from the device

programmer to the microcontroller usually via a serial interface, like a SPI (serial

peripheral interface) or JTAG (Joint Technical Architecture Group) interface.

The device programmer used for proving the examples in this course is the

USBASP programmer. It is an inexpensive programmer (supported by the

AVRDUDE command line interface) that interfaces to the PC via a USB port.

For high volume production runs, device programmers are not the best solution.

Once a system is in production, the program memory chips (usually flash memory)

are pre-programmed at the factory or by a third-party by a multi-chip programmer.

Or, if a microcontroller is utilized with internal flash memory, the microcontroller

may be programmed by at the factory or by a third-party.

Microcontroller
The microcontroller used for the exercises in this course is Atmel ATtiny2313A

microcontroller. It is a low power, 8-bit, reduced instruction set (or RISC)

microcontroller. The one used here comes in a 20-pin DIP (dual in-line) package

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 5 of 33

which makes it easy to insert into a breadboard for experimentation. It has the

following features:

• 2048 bytes internal flash (in-system programmable)

• 128 bytes of internal RAM

• internal oscillator

• 18 programmable input/output lines

• an 8-bit timer with separate prescaler and compare mode

• a 16-bit timer with separate prescaler, compare and capture modes

• 4 pulse-width modulation (PWM) channels

• on-chip analog comparator

• serial communications controller

• USART (universal synchronous/asynchronous receiver transmitter)

• low-power idle, standby, and power down modes

• 1.8 - 5.5 volt operation

Figure 1 - ATtiny2313A pinout

Another microcontroller in the Atmel AVR series is the ATtiny10. The ATtiny10

device is a powerful microcontroller for its size. It is barely larger than the head of

a small nail, but has internal program flash and data memories, and many powerful

peripherals, including a 16-bit timer with two PWM channels. Its programming

ATtiny2313A
PDIP/SOIC

(PCINT10/RESET/dW) PA2
(PCINT11/RXD) PD0
(PCINT12/TXD) PD1

(PCINT9/XTAL2) PA1
(PCINT8/CLKI/XTAL1) PA0

(PCINT13/CKOUT/XCK/INT0) PD2
(PCINT14/INT1) PD3

(PCINT15/T0) PD4
(PCINT16/OC0B/T1) PD5

GND

VCC
PB7 (USCK/SCL/SCK/PCINT7)
PB6 (MISO/DO/PCINT6)
PB5 (MOSI/DI/SDA/PCINT5)
PB4 (OC1B/PCINT4)
PB3 (OC1A/PCINT3)
PB2 (OC0A/PCINT2)
PB1 (AIN1/PCINT1)
PB0 (AIN0/PCINT0)
PD6 (ICPI/PCINT17)

1 20
2 19
3 18
4 17
5 16
6 15
7 14
8 13
9 12
10 11

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 6 of 33

interface is different than the ATtiny2313A processor. It uses a 2-wire serial

programming instead of a 3-wire serial interface.

Figure 2 - ATtiny10 pinout

Architecture
The ATtiny2313A is a member of the Atmel AVR series of microcontrollers. It is a

reduced instruction set computer (RISC). This means that it has fewer instructions

than an x86 processor (for example), but each instruction is powerful, thereby

requiring fewer instructions for a complete instruction set. The RISC processors

are more code efficient than older-model processors. Many of the instructions may

be executed in a single clock cycle.

The AVR employs a Harvard architecture. Therefore, the core interfaces to

program and data memories using separate busses. With a Harvard architecture

program and data memories can be accessed simultaneously. While an instruction

is being executed, the next instruction is fetched from the program memory. Many

microcontrollers employ a Harvard architecture to speed processing (with a lower

clock rate) by allowing simultaneous access of program memory and data memory.

Since the data and program memory have separate busses to the core, there are no

bus collision problems. This feature makes a processor designed with a Harvard

architecture faster than a similar processor designed with a von Neumann

architecture (where data and program instructions are accessed from the same

memory device across the same bus).

Figure 3 - Harvard Architecture

ATtiny10
SOT-23

1 6
2 5
3 4

(PCINT0/TPIDATA/OC0A/ADC0/AIN0) PB0

GND

(PCINT1/TPICLK/CLKI/ICP0/OC0B/ADC1/AIN1) PB1

PB3 (RESET/PCINT3/ADC3)

VCC

PB2 (T0/CLKO/PCINT2/INT0/ADC2)

PROGRAM
MEMORY

DATA
MEMORY

CPU

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 7 of 33

The AVR core includes 32x8 bit general purpose registers that are directly

connected to the arithmetic logic unit (ALU). The main purpose of the central

processing unit (CPU), or core, is to maintain correct program execution. The core

accesses program and data memories, performs calculations, controls peripherals

and handles interrupts.

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 8 of 33

Figure 4 - Architecture of AVR core

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 9 of 33

The 32 registers in the core are able to be accessed quickly within a single clock

cycle. Two registers from the register file may be accessed by the ALU

simultaneously, perform an operation (like an add) and the result will be placed

back in the register file all in a single clock cycle. The ALU supports arithmetic

and logic operations between registers or between a constant and a register. The

stack is allocated in SRAM, and must be initialized in the reset routine.

The operations that the ALU can perform are divided into three categories:

arithmetic, logical and bit functions. Arithmetic functions include add and subtract.

Logical functions include OR, AND, XOR, NOT and one’s and two’s complement.

Bit operations include set, clear, shift and rotate.

Program execution, whether the program is written in assembly or the C

programming language, starts at the reset vector. The reset vector is at address 0.

Whenever the device is powered up (or comes out of reset) the program counter is

set to address 0 (which is the address of the reset vector) and program execution

begins. The routine pointed to by the reset vector initializes the stack and branches

(or jumps) to the main program. The main program in the C language is main().

The vector table is an address map at address 0 that contains branch (or jump)

instructions for every interrupt that the device contains. Table 1 is a description of

all interrupts supported by the ATtiny2313A device.

Vector
No.

Program
Address

Label Interrupt Source

1 0x0000 RESET
External Pin, Power-on Reset, Brown-out Reset, and

Watchdog Reset

2 0x0001 INT0 External Interrupt Request 0

3 0x0002 INT1 External Interrupt Request 1

4 0x0003 TIMER1 CAPT Timer/Counter1 Capture Event

5 0x0004 TIMER1 COMPA Timer/Counter1 Compare Match A

6 0x0005 TIMER1 OVF Timer/Counter1 Overflow

7 0x0006 TIMER0 OVF Timer/Counter0 Overflow

8 0x0007 USART0 RX USART0 Rx Complete

9 0x0008 USART0 UDRE USART0 Data Register Empty

10 0x0009 USART0 TX USART0 Tx Complete

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 10 of 33

11 0x000A ANALOG COMP Analog Comparator

12 0x000B PCINT0 Pin Change Interrupt Request 0

13 0x000C TIMER1 COMPB Timer/Counter1 Compare Match B

14 0x000D TIMER0 COMPA Timer/Counter0 Compare Match A

15 0x000E TIMER0 COMPB Timer/Counter0 Compare Match B

16 0x000F USI START USI Start Condition

17 0x0010 USI OVERFLOW USI Overflow

18 0x0011 EE READY EEPROM Ready

19 0x0012 WDT

OVERFLOW
Watchdog Timer Overflow

20 0x0013 PCINT1 Pin Change Interrupt Request 1

21 0x0014 PCINT2 Pin Change Interrupt Request 2

Table 1 - Interrupt Vectors for the ATtiny2313A

The vector table is resident in program memory at address 0. Table 1 shows an

example of the vector table. Each instruction is a jump instruction. For example,

when a reset condition occurs, the program counter is loaded with the address

0x0000 and a jump is made to the RESET routine.

0x0000 rjmp RESET

0x0001 rjmp INT0

0x0002 rjmp INT1

0x0003 rjmp TIM1_CAPT

0x0004 rjmp TIM1_COMPA

0x0005 rjmp TIM1_OVF

0x0006 rjmp TIM0_OVF

0x0007 rjmp USART0_RXC

0x0008 rjmp USART0_DRE

0x0009 rjmp USART0_TXC

0x000A rjmp ANA_COMP

0x000B rjmp PCINT0

0x000C rjmp TIMER1_COMPB

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 11 of 33

0x000D rjmp TIMER0_COMPA

0x000E rjmp TIMER0_COMPB

0x000F rjmp USI_START

0x0010 rjmp USI_OVERFLOW

0x0011 rjmp EE_READY

0x0012 rjmp WDT_OVERFLOW

0x0013 rjmp PCINT1

0x0014 rjmp PCINT2

In this course, the following interrupts will be utilized: Timer0 Compare A and

External Interrupt 0.

Interrupts
An interrupt is an asynchronous event that happens outside of the main program

loop that requires immediate attention. The processor is usually interfaced to a

number of peripherals. Each peripheral needs periodic servicing, but not always at

a predetermined interval. One solution to solve this problem is for the processor to

poll each peripheral. During a polling operation, the processor queries the

peripheral about its current state. The processor can then read and process the

incoming bytes. This method is wasteful in terms of processing power. The

practical solution is for each peripheral to interface to an interrupt controller which

will send a signal to the processor when a peripheral needs to be serviced.

Figure 5 - Interrupt Controller, Processor and Peripherals

INTERRUPT
CONTROLLER

TIMER

PORT

UART

CPU

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 12 of 33

The interrupt controller sits between hardware peripheral devices and the

processor. Its responsibility is to alert the processor when one of the hardware

devices needs its immediate attention. When the hardware signals the interrupt

controller that it needs attention, the processor stops its current activity, saves its

current state (the program counter is saved and the stack contents are saved) and

jumps to execute an interrupt service routine (or ISR) or interrupt handler. When

the interrupt is serviced, the previously saved processor state is restored - the stack

is restored and the previous value of the program counter is restored.

A peripheral such as a UART or a timer sends a signal to the interrupt controller

when it needs to be serviced. The interrupt controller sends a signal to the

processor which interrupts its current execution after executing its current

instruction. When the processor is interrupted, it executes the appropriate interrupt

handler. When an interrupt is signaled from the interrupt controller to the

processor, the processor will jump to the set of instructions pointed to by the

appropriate interrupt vector in the vector table.

An example of an interrupt is a receive character interrupt in a UART when a

character is received. The interrupt service routine reads the character from the

UART hardware and stores it in a buffer to be processed at a later time outside of

the interrupt handler.

Other examples of interrupts are the timer overflow and timer compare match. A

timer overflow interrupt occurs when the timer counter register is filled up and

overflows. For example if the timer is an 8-bit timer, the counter register will

overflow when the timer increments past a count of 255. When this happens, an

interrupt to the processor occurs. Similarly, a timer compare match interrupt occurs

when the timer counter register matches the timer compare match register. The

timer compare match register is set by the programmer in another function.

Another example of an interrupt (exemplified in this course) is the external

interrupt. An external interrupt is triggered by a change of state of a particular port

pin. Depending on how the interrupt is initialized, an external interrupt will trigger

when a port pin changes from low to high or from high to low. In this course a

button is used to trigger the external interrupt to signal the processor to turn on or

off an LED.

Peripherals: Ports

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 13 of 33

In a sense the general purpose input/output (I/O) ports of a microcontroller are the

hands and fingers of the processor. Just as fingers touch and sense their

surroundings around them, an I/O pin when configured as an input can detect

inputs from the outside world via pushbuttons and switches. In one of the course

examples a pushbutton is used to activate an LED (which is connected to another

I/O pin).

Just as humans use their hands to manipulate and control the world around them,

microcontrollers use I/O port pins to control circuits that interact with the outside

world. Port pins can be used to control LEDs directly. They can be used to turn

switches on and off by using a FET (field effect transistor) directly or by using a

FET interfaced to a relay or a solid-state switch. Port pins may also control motors

through a circuit controlled by one or more FETs.

Port pins are usually bi-directional which means they can be configured either as

an input or an output. The controller for the I/O ports usually consists of several

registers. As for the Atmel AVR series, there are three registers: a data direction

register (DDRx), an output register (PORTx) and an input register (PINx).

The data direction register (DDRx) is used to configure the port as an input or an

output. Each bit in the register corresponds to a physical pin on the device. If a bit

is written logic one, the corresponding pin is configured as an output. If a bit is

written logic zero, the corresponding pin is configured as an input.

When configured as an output, the PORTx register is used to write a zero or one to

the output pins. When configured as an input, the PINx register is used to read the

input pins.

Addres
s

Name Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0x38
PORT

B

PORTB

7

PORTB

6

PORTB

5

PORTB

4

PORTB

3

PORTB

2

PORTB

1

PORTB

0

0x37 DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

0x36 PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

Table 2 - Register Description of PortB

Peripherals: Timer

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 14 of 33

A timer within a microcontroller is a peripheral that counts clock cycles. Timers

within a microcontroller are used for many purposes. For example, a timer may be

used within an application that keeps an LED on for a period of time after a button

is pushed and switches the LED off after the preset time has expired.

A timer may be used as the basis of a task manager within a program. In this

application the timer fires off an interrupt at preset rates (100ms, 200ms, 500ms,

etc.). A separate task may be serviced within these time intervals, such as to update

a display, to service a state machine for a user interface, or to read or write data to

another interface.

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 15 of 33

Figure 6 - Block Diagram of Timer Peripheral

Description

Simplified, the timer peripheral is just a counter. A counter is a device that counts

up (or down) until it reaches its maximum value and then starts counting from zero

CONTROL
LOGIC

TCCRnA

TCCRnB

Int. Req.
(Compare Match)

D
a

ta
 B

u
s

Output Compare
OCRA/B

Timer/Counter
TCNT

= = 0

=
Top Fixed

Value

Count

Clear

Direction

Top

Bottom

Int. Req.
(Timer Overflow)

clk

Prescaler

clk
(timer)

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 16 of 33

again. When the counter reaches it maximum value and one more tick is added,

this condition is called overflow. The counter simply starts counting over again

from zero. By keeping track of these overflow conditions, the counter then

becomes a simple timer (or even a clock).

In clocks on the wall or on our desk that tell us the time, there is a counter in the

clock that ticks away and another circuit (or mechanical mechanism for older

clocks) that keeps track of the ticks and when a certain period of ticks lapse (like

60), then either a hand on the clock will advance by one tick, or a digital display

will display the next number of minutes.

The timer peripheral counts clock cycles. The clock is connected to the system

clock usually through a prescaler or a PLL (phase locked loop). The clock

frequency is selected (via the prescaler) with the application in mind so that the

desired time intervals are evenly divisible into the clock frequency. For example

32767 Hz is the perfect frequency for a real time clock because the counter register

(if 16-bit) will count to 0x8000 exactly every second. This is easily counted and no

floating point math is necessary.

The timer/counter register (TCNT0) is the heart of the timer peripheral; it is the

register that stores the count value of the circuit. For 8-bit timers, this register is 8

bits in length, and for 16-bit timers, this register is 16 bits in length. The control

logic circuitry checks the timer/counter register every cycle for an overflow

condition or a match with one of the compare registers. The output compare

registers (OCR0A/B) are registers that the programmer can set usually during

initialization that will cause the timer circuit to send an interrupt signal to the

processor every time the timer/counter register matches the compare register. The

compare register is the same size as the timer/counter register (16-bits, for

example). The compare register can be set to any value from 0 to the maximum

value of the register (0xFFFF, for example for a 16-bit counter). When this

condition occurs, the timer/counter register is cleared and resumes its count from

zero.

Compare Mode

All timer circuits in any microcontroller will have a timer/counter register, and

most will have one or more compare registers. The 8-bit or 16-bit comparator

continuously compares the timer/counter register with the output compare register.

If they are equal, then the comparator signals a match, and an interrupt signal is

sent to the processor. In the Atmel AVR series of microcontrollers, the compare

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 17 of 33

match circuit incorporates a mode that will either set or clear an I/O pin when the

compare match criteria are met. This mode is used for generating waveforms

including pulse-width-modulation (PWM) waveforms.

In the examples in this course, the timer peripheral is used to flash an LED. It will

switch on an LED on for a period of time and switch off the LED for a period of

time. The period of time is determined by the timer compare register. When the

timer counter register reaches the value stored in the compare register, the timer

signals an interrupt to the processor.

Input Capture Mode

The input capture circuit can capture an external event (detected by a high-to-low

or a low-to-high transition on a pin) and give the event a time-stamp indicating

time of occurrence. The time-stamps can be used to calculate frequency, duty-

cycle, and other features of the signal applied. The time-stamps an also be used for

creating a log of the events.

Register Description

The following register description applies to the Atmel AVR series of

microcontrollers

Register Description

TCCR0A Timer/Counter0 Control Register A

TCCR0B Timer/Counter0 Control Register B

TCCR0C Timer/Counter0 Control Register C

TCNT0 Timer/Counter0

OCCR0A Output Compare Register 0 A

OCCR0B Output Compare Register 0 B

ICR0 Input Capture Register 0

TIMSK0 Timer/Counter Interrupt Mask Register 0

TIFR0 Timer/Counter Interrupt Flag Register 0

GTCCR General Timer/Counter Control Register

Table 3 - Register Description of Timer Peripheral

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 18 of 33

Program Structure
The examples in this course are written in the C programming language. The

programming code could also be written in assembly; however the programs would

have to be written using the Atmel AVR instruction set. Although assembly

language is similar from one processor family to the next, each processor family

has its own native instruction set, each with different instructions and mnemonics.

Using a higher level language (such as C) allows the code to be relatively portable

to a different target processor for all of the code that is not register-specific. It

allows a developer to use the same programming language for most any processor

family. It provides for ease of design and allows complex programs to be easily

maintained. Also, the C programming language is very well known by

programmers and software engineers in the industry. It is powerful, yet efficient in

producing machine code which the processor executes.

All of the programs have a main() function and multiple other functions. The

interrupt service routines (or ISR) are specific functions that are called when an

interrupt signal is received by the core. When this occurs, the stack and program

counter register values are saved and the particular ISR function is called. When

the ISR returns, the stack and program counter register values are restored to their

state before the interrupt occurred. The ISR functions are differentiated by the

WinAVR compiler from other functions by the "ISR" and "__vector_ ## N"

keywords (where N is the vector or interrupt number).

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 19 of 33

Projects

Figure 7 - Schematic Diagram of Project

Header File
The following is the “register.h” header file. The header file is included in the

following projects to define certain register addresses and bit locations within the

registers. The purpose of using a header file such as this is so that meaningful

names can be used for variables (such as register names and bit locations) instead

us using confusing numbers such as 0x38 for the PORTB register and 0x08 for pin

PINB3.

#define DDRD *(volatile unsigned char *)0x31

#define DDD0 0x01

#define DDD1 0x02

#define DDD2 0x04

#define DDD3 0x08

#define DDD4 0x10

#define DDD5 0x20

#define DDD6 0x40

#define DDD7 0x80

#define PIND *(volatile unsigned char *)0x30

#define PIND0 0x01

#define PIND1 0x02

ATtiny2313A Vcc

PB0

PD2

Gnd

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 20 of 33

#define PIND2 0x04

#define PIND3 0x08

#define PIND4 0x10

#define PIND5 0x20

#define PIND6 0x40

#define PIND7 0x80

#define PORTD *(volatile unsigned char *)0x32

#define PORTD0 0x01

#define PORTD1 0x02

#define PORTD2 0x04

#define PORTD3 0x08

#define PORTD4 0x10

#define PORTD5 0x20

#define PORTD6 0x40

#define PORTD7 0x80

#define PINB *(volatile unsigned char *)0x36

#define PINB0 0x01

#define PINB1 0x02

#define PINB2 0x04

#define PINB3 0x08

#define PINB4 0x10

#define PINB5 0x20

#define PINB6 0x40

#define PINB7 0x80

#define DDRB *(volatile unsigned char *)0x37

#define DDB0 0x01

#define DDB1 0x02

#define DDB2 0x04

#define DDB3 0x08

#define DDB4 0x10

#define DDB5 0x20

#define DDB6 0x40

#define DDB7 0x80

#define PORTB *(volatile unsigned char *)0x38

#define PORTB0 0x01

#define PORTB1 0x02

#define PORTB2 0x04

#define PORTB3 0x08

#define PORTB4 0x10

#define PORTB5 0x20

#define PORTB6 0x40

#define PORTB7 0x80

#define TCCR0A *(volatile unsigned char *)0x50

#define WGM00 0x01

#define WGM01 0x02

#define COM0B0 0x10

#define COM0B1 0x20

#define COM0A0 0x40

#define COM0A1 0x80

#define TCNT0 *(volatile unsigned char *)0x52

#define TCCR0B *(volatile unsigned char *)0x53

#define CS00 0x01

#define CS01 0x02

#define CS02 0x04

#define WGM02 0x08

#define FOC0B 0x40

#define FOC0A 0x80

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 21 of 33

#define MCUCR *(volatile unsigned char *)0x55

#define ISC00 0x01

#define ISC01 0x02

#define ISC10 0x04

#define ISC11 0x08

#define SM0 0x10

#define SE 0x20

#define SM1 0x40

#define PUD 0x80

#define OCR0A *(volatile unsigned char *)0x56

#define TIMSK *(volatile unsigned char *)0x59

#define OCIE0A 0x01

#define TOIE0 0x02

#define OCIE0B 0x04

#define ICIE1 0x08

#define OCIE1B 0x20

#define OCIE1A 0x40

#define TOIE1 0x80

#define GIMSK *(volatile unsigned char *)0x5B

#define PCIE 0x20

#define INT0 0x40

#define INT1 0x80

LED Flasher with Delay Loop
The first project blinks an LED on and off in an infinite loop. There is a short delay

between turning the LED on and turning it off. The simplest form of delay is a loop

that counts to a certain value and then exits the loop. In many cases, the delay loop

must contain some instruction (such as setting a port pin) instead of just an empty

loop. The empty delay loop is often times optimized out by the compiler.

The processor is running off the internal 8MHz oscillator as the system clock for

all projects in this course. Pin PORTB0 is connected to an anode of the LED and

the cathode is connected to ground. The pin PORTB0 is initialized as an output by

setting the DDB0 bit to a one in the DDRB (data direction) register. There are no

interrupts utilized in this example.

As with most embedded systems, the main program loop is an infinite loop that

never exits (as long as the processor is powered up). The main() function first calls

the Initialize() function which calls the InitializePorts() function which initializes

PORTB. Program execution then enters the main program loop. The program loop

toggles the variable t and depending on whether t = 0 or t = 1, the pin PORTB0 is

either cleared (turning off the LED) or set (turning on the LED). The Delay()

function is then called that counts to a value (16834 in this example) which gives

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 22 of 33

the flasher about a 200 millisecond (0.2s) on/off duty cycle with the processor

running at 8MHz.

#include "register.h"

void Initialize(void);

void InitializePorts(void);

void Delay(void);

/**

 *

 * Function: Main

 *

 * This function is the main program loop.

 *

 **/

void main()

{

 unsigned char t = 1;

 Initialize();

 // main program loop (infinite)

 while(1)

 {

 if (t == 1)

 {

 // turn port pin PB0 off

 PORTB = 0;

 }

 else

 {

 // turn port pin PB0 on

 PORTB |= PORTB0;

 }

 t ^= 1;

 Delay();

 }

}

/**

 *

 * Function: Initialize

 *

 * This function initializes the system.

 *

 **/

void Initialize(void)

{

 InitializePorts();

}

/**

 *

 * Function: InitializePorts

 *

 * This function initializes the input/output ports.

 *

 **/

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 23 of 33

void InitializePorts(void)

{

 // set direction of PORTB pins

 DDRB = DDB0 | DDB1;

}

/**

 *

 * Function: Delay

 *

 * This function introduces a delay. The port is written to so that the code

 * will not be optimized out.

 *

 **/

void Delay(void)

{

 unsigned int i = 0;

 for(i = 0; i < 16834; i++)

 {

 PORTB |= PORTB1;

 }

}

LED Flasher Using Timer
The second project in this course is similar to the first project in that it blinks an

LED in an infinite loop. The difference between this project and Project #1 is that

this one utilizes the timer for the delay between turning the LED on and off. The

advantage of using a timer instead of a delay loop as in Project #1 is that the timer

gives a more exact (and consistent) approach for time keeping.

The main program loop is empty because the LED is serviced in the interrupt

service routine for Timer0. The timer is configured for compare mode (or compare

match mode). As in the first project the main program loop is an infinite loop that

never exits, since this would terminate all execution.

The main() function calls the Initialize() function which calls the functions

InitializePorts() and InitializeTimer(). The Initialize() function also calls sei()

which is a macro that sets the global interrupt enable bit. InitializePorts() sets the

pins PORTB0 and PORTB1 as outputs by setting the corresponding bits in the

DDRB (data direction) register.

The InitializeTimer() function initializes Timer0. The WGM01 bit is set in the

TCCR0A register to configure Timer0 to clear the counter register on compare

match (compare mode). The prescaler is set in the TCCR0B register using bits

CS00, CS01 and CS02. The prescaler in this example is set to 1024, which will

divide the timer frequency by 1024. This sets the timer clock frequency to 8MHz /

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 24 of 33

1024 = 8kHz. The compare value is loaded with a value of 244 which causes an

compare match interrupt to occur when the timer counter register counts to a value

of 244. The compare match interrupt is enabled by setting the OCIE0A bit in the

TIMSK register.

The interrupt service routine (ISR) for the timer compare match interrupt is

preceded by the notation ISR(_VECTOR(13)). This notation is specific to the

WinAVR compiler used in this course to designate the ISR for vector 13 (or

Timer/Counter 0 Output Compare Match A Interrupt). When this interrupt fires,

the program counter is loaded with the value 0x000D which is a jump instruction

(rjmp) to the timer compare match interrupt service routine. Table 1 shows the

corresponding vector number associated with interrupt. The value of "13" that the

compiler uses is actually the 14th vector since the compiler starts numbering the

vectors starting with 0.

In the timer compare match ISR, the LED connected to pin PORTB0 is turned on

and off. The LED is toggled each time it executes the ISR. This creates a 50% duty

cycle for the LED (equal amount of time on and off) at a rate of 500 milliseconds

(0.5s).

#include "register.h"

#define TIMER_COMPARE_VALUE 244

#define _VECTOR(N) __vector_ ## N

#define sei() __asm__ __volatile__ ("sei" ::)

#define ISR(vector, ...) \

 void vector (void) __attribute__ ((signal,__INTR_ATTRS)) __VA_ARGS__; \

 void vector (void)

void Initialize(void);

void InitializePorts(void);

void InitializeTimer(void);

/**

 *

 * Function: Main

 *

 * This function is the main program loop.

 *

 **/

void main()

{

 Initialize();

 // main program loop (infinite)

 while(1)

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 25 of 33

 {

 }

}

/**

 *

 * Function: Initialize

 *

 * This function initializes the system.

 *

 **/

void Initialize(void)

{

 InitializePorts();

 InitializeTimer();

 // global interrupt enable

 sei();

}

/**

 *

 * Function: InitializePorts

 *

 * This function initializes the input/output ports.

 *

 **/

void InitializePorts(void)

{

 // set direction of PORTB pins

 DDRB = DDB0 | DDB1;

}

/**

 *

 * Function: InitializeTimer

 *

 * This function initializes the timer.

 *

 **/

void InitializeTimer(void)

{

 // set Timer0 for clear timer on compare match (CTC) mode

 TCCR0A = WGM01;

 // set timer frequency to clkIO/1024 (From prescaler)

 TCCR0B = CS02 | CS00;

 // load compare value

 OCR0A = TIMER_COMPARE_VALUE;

 // enable the Timer/Counter0 Output Compare Match A Interrupt

 TIMSK = OCIE0A;

}

/**

 *

 * Function: ISR (TIMER0 COMPA)

 *

 * This function is the interrupt service routine for the Timer0 Compare A.

 *

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 26 of 33

 **/

ISR(_VECTOR(13))

{

 static unsigned char t = 1;

 // if the t is set - turn PB0 off, if t is clear - turn PB0 on

 if (t == 1)

 {

 // turn port pin PB0 off

 PORTB &= ~PORTB0;

 }

 else

 {

 // turn port pin PB0 on

 PORTB |= PORTB0;

 }

 // toggle for next time

 t ^= 1;

}

LED Flasher with Push Button
The third project in this course is similar to the second project in that it blinks an

LED. However, the difference here is that the LED does not begin to flash until a

pushbutton (attached to INT0 - or pin PORTD2) is pressed and released. When the

button is pressed, the LED will blink on and off three times (still at a 50% duty

cycle) and then turn off.

The main() function calls the Initialize() function which calls the InitializePorts(),

InitializeExtInt() and InitializeTimer() functions. As in the second project, the

Initialize() function calls sei() to set the global interrupt enable bit. The

InitializePorts() function sets the PORTB0 and PORTB1 pins as an output by

setting the appropriate pins in the data direction register (DDRB) to a one, and sets

the PORTD2 pin as an input by setting the data direction register (DDRD) to a

zero. The InitializeExtInt() function sets the pin PORTD2 (also known as INT0 -

or external interrupt 0) to trigger on a rising edge. The external interrupt is set in

the GIMSK register.

The InitializeTimer() function initializes the timer in the same way as in the second

project. The timer compare match ISR is preceded by the notation

ISR(_VECTOR(13)) and the external interrupt is preceded by the notation

ISR(_VECTOR(1)).

In this example, the external interrupt (triggered by a low-to-high transition on pin

PORTD2) enables the timer compare match interrupt. When the timer compare

match interrupt is enabled the ISR triggers after a timer match and turns the LED

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 27 of 33

on and off three times then disables the timer interrupt. The cycle repeats itself

when the button is pushed again.

One thing to note here is that without some debounce circuitry on the pushbutton

attached to the PORTD2 pin the interrupt may fire several times in a row in a rapid

sequence. A better approach for an actual product would be to add a series resister

and a capacitor in parallel to act as a low-pass filter on the line. Another approach

would be to add some software logic to debounce the switch.

#include "register.h"

#define TIMER_COMPARE_VALUE 244

#define _VECTOR(N) __vector_ ## N

#define sei() __asm__ __volatile__ ("sei" ::)

#define ISR(vector, ...) \

 void vector (void) __attribute__ ((signal,__INTR_ATTRS)) __VA_ARGS__; \

 void vector (void)

void Initialize(void);

void InitializePorts(void);

void InitializeExtInt(void);

void InitializeTimer(void);

/**

 *

 * Function: Main

 *

 * This function is the main program loop.

 *

 **/

void main()

{

 Initialize();

 // main program loop (infinite)

 while(1)

 {

 }

}

/**

 *

 * Function: Initialize

 *

 * This function initializes the system.

 *

 **/

void Initialize(void)

{

 InitializePorts();

 InitializeExtInt();

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 28 of 33

 InitializeTimer();

 // global interrupt enable

 sei();

}

/**

 *

 * Function: InitializePorts

 *

 * This function initializes the input/output ports.

 *

 **/

void InitializePorts(void)

{

 // set direction of PORTB pins

 DDRB = DDB0 | DDB1;

 // set direction of PORTD pins

 DDRD = 0;

}

/**

 *

 * Function: InitializeExtInt

 *

 * This function initializes the external interrupts.

 *

 **/

void InitializeExtInt(void)

{

 // set rising edge of INT0 to generate an interrupt request

 MCUCR = ISC01 | ISC00;

 // enable External Interrupt Request 0

 GIMSK = INT0;

}

/**

 *

 * Function: InitializeTimer

 *

 * This function initializes the timer.

 *

 **/

void InitializeTimer(void)

{

 // set Timer0 for clear timer on compare match (CTC) mode

 TCCR0A = WGM01;

 // set timer frequency to clkIO/1024 (From prescaler)

 TCCR0B = CS02 | CS00;

 // load compare value

 OCR0A = TIMER_COMPARE_VALUE;

}

/**

 *

 * Function: ISR (TIMER0 COMPA)

 *

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 29 of 33

 * This function is the interrupt service routine for the Timer0 Compare A.

 *

 **/

ISR(_VECTOR(13))

{

 static unsigned char t = 1;

 static unsigned char cnt = 0;

 if (cnt <= 8)

 {

 // if the t is set - turn PB0 on, if t is clear - turn PB0 off

 if (t == 1)

 {

 // turn port pin PB0 on

 PORTB |= PORTB0;

 }

 else

 {

 // turn port pin PB0 off

 PORTB &= ~PORTB0;

 }

 // toggle for next time

 t ^= 1;

 // increment counter

 cnt++;

 }

 else

 {

 // disable timer interrupt

 TIMSK = 0;

 // turn port pin PB0 off

 PORTB &= ~PORTB0;

 // reset counter

 cnt = 0;

 }

}

/**

 *

 * Function: ISR (INT0)

 *

 * This function is the interrupt service routine for external interrupt 0.

 *

 **/

ISR(_VECTOR(1))

{

 // enable the Timer/Counter0 Output Compare Match A Interrupt

 TIMSK = OCIE0A;

}

Summary
The Atmel ATtiny2313A microcontroller used for these exercises is packaged in a

20-pin DIP package. It is small compared with other microprocessors available, but

507.pdf

http://www.suncam.com/

Microcontrollers: Design and Implementation

A SunCam online continuing education course

www.SunCam.com Copyright© 2023 Mark A. Strain Page 30 of 33

there are other smaller devices available. For example the Atmel ATtiny10 is

packaged in a 6-pin SOT-23 package, making this device ideal for small projects

such as an electronic candle to simulate the flicker of the flame or a child's shoe

that has LEDs that light up when he or she walks.

Although the Atmel AVR series of microcontrollers is a great product offering

many features with a powerful core, this course is not meant to be an advertisement

for the Atmel AVR series of microcontrollers. There are many similar

microcontrollers available on the market, such as the Microchip PIC, Texas

Instruments MSP430, Intel 8051, STMicroelectronics STM8, Freescale 68HC11,

and multiple versions of the ARM core from many vendors.

Microcontrollers today can be designed and programmed to control and monitor

almost anything. They have become an integrated part of our society, industry and

culture.

507.pdf

http://www.suncam.com/

A SunCam online continuing education course

References

1. "Atmel 8-bit AVR® Microcontroller with 2/4k Bytes In-System

Programmable Flash: ATtiny2313A/ATtiny4313" September 2011

<http://www.atmel.com/Images/doc8246.pdf>

2. "Atmel 8-bit AVR® Microcontroller with 512/1024 Bytes In-System

Programmable Flash: ATtiny4/5/9/10" November 2011

<http://www.atmel.com/Images/doc8127.pdf>

3. “ProtoStack – USBASP driver for Windows 7 and Windows Vista x64”

visited 1 September 2012

<http://www.protostack.com/blog/2011/05/usbasp-driver-for-windows-7-

and-windows-vista-x64/>

4. “WinAVR: WinAVR-20100110” January 2010

<http://winavr.sourceforge.net/>

507.pdf

http://www.atmel.com/Images/doc8246.pdf
http://www.atmel.com/Images/doc8127.pdf
http://www.protostack.com/blog/2011/05/usbasp-driver-for-windows-7-and-windows-vista-x64/
http://www.protostack.com/blog/2011/05/usbasp-driver-for-windows-7-and-windows-vista-x64/
http://winavr.sourceforge.net/

