Project Management

Jeffrey Pinto, Ph.D.
Penn State Erie

Outline

• What is Project Management?
• Scope Management
• Risk Management
• Planning and Scheduling
• Project Evaluation and Control
• Project Termination

Introduction

• Examples of projects
 – Split the atom
 – Chunnel between England and France
 – Introduce Windows XP

“Projects, rather than repetitive tasks, are now the basis for most value-added in business”

-Tom Peters

What is a Project?

Project
• Take place outside the process world
• Unique and separate from normal organization work

Process
• Ongoing, day-to-day activities
• Use existing systems, properties, and capabilities

A project is a unique venture with a beginning and an end, conducted by people to meet established goals within parameters of cost, schedule and quality.
Elements of Projects

- **Complex**, one-time processes
- **Limited** by budget, schedule, and resources
- Developed to resolve a **clear goal** or set of goals
- **Customer-focused**

General Project Characteristics (1/2)

- **Ad-hoc** endeavors with a clear life cycle
- **Building blocks** in the design and execution of organizational **strategies**
- Responsible for the **newest** and most improved **products**, services, and organizational **processes**
- Provide a philosophy and strategy for the management of change

General Project Characteristics (2/2)

- Entail **crossing** functional and organization **boundaries**
- **Traditional management functions** of planning, organizing, motivating, directing, and controlling apply
- Principal outcomes are the **satisfaction of customer** requirements within **technical**, **cost**, and **schedule constraints**
- **Terminated** upon successful completion

Why are Projects Important?

1. Shortened product **life cycles**
2. Narrow product **launch windows**
3. Increasingly **complex** and **technical** products
4. Emergence of **global markets**
5. Economic period marked by **low inflation**
Project Life Cycles

The Stages as We Experience Them
- Enthusiasm
- Disillusionment
- Panic
- Search for the Guilty
- Punishment of the Innocent
- Praise and Rewards for Nonparticipants

Determinants of Project Success

Our Goal
- Develop an *Appreciation* for Projects
- Understand *Fundamentals* of Project Management
Project Scope Management

Project Scope

Project scope is *everything about a project* – work content as well as expected outcomes.

Scope management is the function of controlling a project in terms of its goals and objectives and consists of:

1) Conceptual development
2) Scope statement
3) Work authorization
4) Scope reporting
5) Control systems
6) Project closeout

Conceptual Development

The process that addresses project objectives by finding the best ways to meet them.

Key steps in information development:

- Problem/need statement
- Information gathering
- Constraints
- Alternative analysis
- Project objectives

Problem Statements

Successful conceptual development requires:

- *Reduction* of overall project complexity
- *Goals and objects* are clearly stated
 — Reference points are provided
- *Complete understanding* of the problem
Statement of Work (SOW)

A SOW is a **detailed narrative description** of the work required for a project.

Effective SOWs contain
1. Introduction and background
2. Technical description
3. Timeline and milestones
4. Client expectations

The Scope Statement Process

1. Establish the project **goal criteria**
 a) cost
 b) schedule
 c) performance
 d) deliverables
 e) review gates
2. Develop the **management plan** for the project
3. Establish a **work breakdown structure**
4. Create a **scope baseline**

Work Breakdown Structure

A process that sets a project’s scope by **breaking down** its overall **mission** into a cohesive set of synchronous, increasingly **specific tasks**.

What does WBS accomplish?
- Echoes project objectives
- Offers a logical structure
- Establishes a method of control
- Communicates project status
- Improved communication
- Demonstrates control structure
Sample WBS in MS Project

Work Packages

- Lowest level in WBS
- Deliverable result
- One owner
- Miniature projects
- Milestones
- Fits organization
- Trackable

Responsibility Assignment Matrix

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task & Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Match IT to Org. Tasks 1.1</td>
<td>Problem Analysis 1.1.1</td>
</tr>
<tr>
<td></td>
<td>Develop info 1.1.2</td>
</tr>
<tr>
<td>Identify IS user needs 1.2</td>
<td>Interview users 1.2.1</td>
</tr>
<tr>
<td></td>
<td>Develop show 1.2.2</td>
</tr>
<tr>
<td></td>
<td>Gain user "buy in" 1.2.3</td>
</tr>
<tr>
<td>Prepare proposal 1.3</td>
<td>Find cost/benefit info 1.3.1</td>
</tr>
</tbody>
</table>

LEAD PROJECT PERSONNEL

<table>
<thead>
<tr>
<th>Dave IS</th>
<th>Sue HR</th>
<th>Ann R&D</th>
<th>Jim R&D</th>
<th>Bob IS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ■ Notification
- ○ Responsible
- □ Approval
- ☆ Support

Work Authorization

The formal “go ahead” to begin work

Follows the scope management steps of:
1. scope definition
2. planning documents
3. management plans
4. contractual documents
Contractual Documentation

Most contracts contain:
- **Requirements**
- **Valid consideration**
- **Contracted terms**

Contracts range from:
- **Lump Sum**
- **Cost Plus**
 also called “Turnkey”

Scope Reporting

determines **what** types of information reported, **who** receives copies, **when**, and **how** information is acquired and disseminated.

Typical project reports contain
1. Cost status
2. Schedule status
3. Technical performance

Types of Control Systems

- Configuration or change
- Design
- Trend monitoring
- Document
- Acquisition
- Specification

Project Closeout

The job is not over until the paperwork is done…

Closeout documentation is **used to**:
- Resolve disputes
- Train project managers
- Facilitate auditing

Closeout documentation **includes**:
- Historical records
- Post project analysis
- Financial closeout
Project Risk Management

Risk management - the art and science of identifying, analyzing, and responding to risk factors throughout the life of a project and in the best interest of its objectives.

Project risk – any possible event that can negatively affect the viability of a project

Risk Vs Amount at Stake

Process of Risk Management

- What is likely to happen?
- What can be done?
- What are the warning signs?
- What are the likely outcomes?

Project Risk = (Probability of Event)(Consequences of Event)
Four Stages of Risk Management

- Risk *identification*
- Analysis of probability and consequences
- Risk *mitigation* strategies
- Control and documentation

Risk Clusters

- Financial
- Technical
- Contractual/Legal
- Commercial
- Execution

- Common Types
 - Absenteeism
 - Resignation
 - Staff pulled away
 - Time overruns
 - Skills unavailable
 - Ineffective Training
 - Specs incomplete
 - Change orders

Risk Factor Identification

- Brainstorming meetings
- Expert opinion
- Past history
- Multiple (team based) assessments

Risk Management Assessment Matrix
Risk Mitigation Strategies
- Accept
- Minimize
- Share
- Transfer
- Contingency Reserves

Control & Documentation
Help managers classify and codify risks, responses, and outcomes

Change management report system answers
- What?
- Who?
- When?
- Why?
- How?

Planning and Scheduling

Project Scheduling Terms
- Successors
- Predecessors
- Network diagram
- Serial activities
- Concurrent activities
- Merge activities
- Burst activities
- Node
- Path
- Critical Path
Network Diagrams

- Show interdependence
- Facilitate communication
- Determine project completion
- Help schedule resources
- Show start & finish dates
- Identify critical activities

AOA Vs. AON

The same mini-project is shown with activities on arc...

...and activities on node.

Node Labels

<table>
<thead>
<tr>
<th>Early Start</th>
<th>ID Number</th>
<th>Early Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity Float</td>
<td>Activity Descriptor</td>
<td></td>
</tr>
<tr>
<td>Late Start</td>
<td>Activity Duration</td>
<td>Late Finish</td>
</tr>
</tbody>
</table>

Duration Estimation Methods

- Past experience
- Expert opinion
- Mathematical derivation – Beta distribution
 - Most likely (m)
 - Most pessimistic (b)
 - Most optimistic (a)

\[
Activity Duration = TE = \frac{a+4m+b}{6}
\]
1. Sketch the network described in the table.
2. Determine the expected duration and variance of each activity.

<table>
<thead>
<tr>
<th>Task</th>
<th>Predecessor</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>--</td>
<td>7</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Y</td>
<td>Z</td>
<td>13</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>X</td>
<td>Z</td>
<td>14</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>W</td>
<td>Y, X</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>V</td>
<td>W</td>
<td>1</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>T</td>
<td>W</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>S</td>
<td>T, V</td>
<td>11</td>
<td>14</td>
<td>19</td>
</tr>
</tbody>
</table>

Constructing the Critical Path

- Forward pass – an *additive move* through the network from *start to finish*
- Backward pass – a *subtractive move* through the network from *finish to start*
- Critical path – the *longest path* from end to end which determines the *shortest project length*

Rules for Forward/Backward Pass

Forward Pass Rules (ES & EF)
- ES + Duration = EF
- EF of predecessor = ES of successor
- Largest preceding EF at a merge point becomes ES for successor

Backward Pass Rules (LS & LF)
- LF – Duration = LS
- LS of successor = LF of predecessor
- Smallest succeeding LS at a burst point becomes LF for predecessor

Task Predecessor Time

<table>
<thead>
<tr>
<th>Task</th>
<th>Predecessor</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>9</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>11</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>C</td>
<td>7</td>
</tr>
<tr>
<td>G</td>
<td>D, F</td>
<td>3</td>
</tr>
<tr>
<td>H</td>
<td>E, G</td>
<td>2</td>
</tr>
<tr>
<td>K</td>
<td>H</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Sketch the network described in the table.
2. Determine the ES, LS, EF, LF, and slack of each activity.
Gantt Charts

- Establish a time-phased network
- Can be used as a tracking tool

Benefits of Gantt charts
1. Easy to create and comprehend
2. Identify the schedule **baseline** network
3. Allow for **updating** and **control**
4. Identify **resource needs**
Evaluation and Control

The Project Control Cycle

1. Setting a Goal
2. Measuring Progress
3. Comparing Actual with Planned
4. Taking Action and Recycling the Process

The Project S-Curve

Cumulative Cost ($ in thousands)

Elapsed Time (in weeks)

- Cumulative Budgeted Cost
- Cumulative Actual Cost

$10,000 Negative Var
Milestone Analysis

Milestones are *events or stages* of the project that represent a *significant accomplishment*. Milestones *signal* the team and suppliers *can motivate* the team *offer reevaluation points* *help coordinate* schedules *identify* key review gates *delineate* work packages

Tracking Gantt Chart

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A. Licensing Agree</td>
<td>3 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 B. Spec. Design</td>
<td>5 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 C. Site Identification</td>
<td>7 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 D. Engineering Plans</td>
<td>5 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 E. Prototype Develop</td>
<td>7 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project status is updated by linking task completion to the schedule baseline

Earned Value Management

- **Cost**
- **Performance**
- **Schedule**
- **Project S-Curves**
- **Tracking Control Charts**

Earned Value Terms

- Planned value
- Earned value
- Actual cost of work performed
- Schedule performance index
- Cost performance index
- Budgeted cost at completion
Steps in Earned Value Management

1. **Clearly define each activity** including its resource needs and budget
2. **Create usage schedules** for activities and resources
3. **Develop a time-phased budget** (PV)
4. **Total the actual costs** of doing each task (AC)
5. **Calculate** both the budget variance (CV) and schedule variance (SV)

Earned Value Milestones

<table>
<thead>
<tr>
<th></th>
<th>AC</th>
<th>Overspend</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV</td>
<td>EV</td>
<td></td>
</tr>
<tr>
<td>Scheduled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Earned Value Example

<table>
<thead>
<tr>
<th>Activity</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>April</th>
<th>Plan</th>
<th>%C Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staffing</td>
<td>8</td>
<td>7</td>
<td></td>
<td>15</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>Blueprint</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>80</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Prototype</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>60</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>3</td>
<td>3</td>
<td>33</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Plan</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmltv</td>
<td>8</td>
<td>15</td>
<td>21</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Act</td>
<td>8</td>
<td>11</td>
<td>8</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmltv Act</td>
<td>8</td>
<td>19</td>
<td>27</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cumulative:

- Planned Value: 80 (10)
- Earned Value: 75 (6+1)

Schedule Variances

- Planned Value (PV) = 38 = 15+10+10+3
- Earned Value (EV) = 30 = 15+8+6+1
- Schedule Performance Index = .79 = 30/38 = EV/PV
- Estimated Time to Completion = (1/.79)x4=5

Cost Variances

- Actual Cost of Work Performed (AC) = 40 = 8+11+8+13
- Cost Performance Index = .75 = 30/40 = EV/AC
- Estimated Cost to Completion = 50.7 = (1/.75)x38
Completion Values in EVM

Accurate and *up-to-date* information is *critical* in the use of *EVM*

- 0/100 Rule
- 50/50 Rule
- Percentage Complete Rule

Project Termination

Elements of Project Closeout Management

- Finishing The Work
- Handing Over the Product
- Gaining Acceptance for the Product
- Harvesting the Benefits
- Reviewing How It All Went
- Putting it All to Bed
- Disbanding the Team

Lessons Learned Meetings

Meeting Guidelines
- Establish clear rules of *behavior*
- Describe *objectively* what occurred
- Fix the *problem*, not the blame

Common Errors
- Misidentifying *systematic errors*
- Misinterpreting *lessons* based on events
- Failure to *pass along* conclusions
Closeout Paperwork

- Documentation
- Legal
- Cost
- Personnel

Why are Closeouts Difficult?

- Project sign off can be a de-motivator
- Constraints cause shortcuts on back-end
- Low priority activities
- Lessons learned analysis seen as bookkeeping
- Unique view of projects

Early Termination Decision Rules

- Costs exceed business benefits
- Failure to meet strategic fit criteria
- Deadlines are continually missed
- Technology evolves beyond the project’s scope

Project Termination Issues

- Emotional
 - Staff
 - Client
- Intellectual
 - Internal
 - External
Claims & Disputes

Two types of claims
- Ex-gratia claims
- Default by the project company

Resolved by
- Arbitration
 - Binding
 - Non-binding
- Standard litigation

Protecting Against Claims

- Consider claims as part of the project plan
- Verify stakeholders know their risks
- Keep good records throughout the life cycle
- Keep clear details of change orders
- Archive all correspondence

Final Report Elements

- Project performance
- Administrative performance
- Organizational structure
- Team performance
- Project management techniques
- Benefits to the organization and customer