Math Exploration 8.1: Keplerian Motion

We can calculate the expected ratio between Earth’s and Jupiter’s velocities based on the proportionality for Keplerian rotation in the Solar System:

 

\begin{equation} v_{Earth} \sim \frac{1}{r^{1/2}_{Earth}}\ \ \ \ \ {\rm and}\ \ \ \ \ v_{Jupiter} \sim \frac{1}{r^{1/2}_{Jupiter}} \end{equation}

or

\begin{equation} v_{Earth} = \frac{{\rm constant}}{r^{1/2}_{Earth}}\ \ \ \ \ {\rm and}\ \ \ \ \ v_{Jupiter} = \frac{{\rm constant}}{r^{1/2}_{Jupiter}} \end{equation}

 

The ratio of ~~v_{Earth}~~ and ~~v_{Jupiter}~~ is ~~\frac{v_{Earth}}{v_{Jupiter}}~~

Dividing the two equations, we get:

\begin{equation} \frac{v_{Earth}}{v_{Jupiter}} = \frac{r^{1/2}_{Jupiter}}{r^{1/2}_{Earth}} \end{equation}