EDS & Pain

Norman Marcus, M.D.
Director, Norman Marcus Pain Institute
Clinical Associate Professor of Anesthesiology and Psychiatry
Director, Division of Muscle Pain Research
NYU School of Medicine

Six clinical types Defective Metabolism of Collagen (Tenascin-X)

EDS Type III (Joint Hypermobility) and Classic Type represent 90% of all EDS cases.

Fragile and stretchy (hyperelastic) skin

Unstable and loose (hypermobile) joints

Fragile blood vessels and body tissues

Clinical Diagnosis

No genetic test

Common History with Joint Hypermobility

- Assets
 - Athletic activity/gymnastics
 - Dancing

- Liabilities
 - Joint instability
 - Pain

The majority of patients will at some point in adulthood begin to experience diffuse pain and subjective stiffness.

Symptoms

79 patients (8 men, 71 women)

Medication, Surgery, and Physiotherapy Among Patients With the Hypermobility Type of Ehler-Danlos Syndrome (Rombaut,, et al, 2011)

Joint Pain	100%
Joint Dislocation	96.3%
Joint Lock	11.1%
Joint Swelling	3.7%
Muscular Pain	29.6%
Muscle Cramp	66.7%
Muscle Stiffness	7.4%
Muscle Weakness	14.8%
Tendinitis	25.9%
Headache	29.6%
Fatigue	25.9%
Bad physical condition	22.2%
Impaired Balance	3.7%

Pain	100%
Joint Problems	84.8%
Muscle Problems	64.6%
Skin Fragility	63.3%
Dysautonomia	58.2%
Fatigue	49.4%
Headache	36.7%
Neurologic Sxs	29.1%
Infections/Illnesses	27.8%
Cardiorespir. Sx	16.5%
Sleeping Problems	16.5%
Exercise Intol.	15.2%
Inflammation	15.2%
Cognitive Problems	10.1%
Logopedic Problem	7.6%

32 patients (all women)

Musculoskeletal complaints, physical activity and health-related quality of life among patients with the Ehlers-Danlos syndrome hypermobility type (Rombaut, et al, 2010)

Locations of Pain

Location	Joint Pain (%)	Joint Dislocation (%)
Finger	59.4	44.4
Wrist	48.1	33.3
Elbow	14.8	14.8
Shoulder	85.2	63
Jaw	25.9	18.5
Neck	59.3	
Back	7.8	
Pelvis/Hip	66.7	48.1
Knee	81.5	40.7
Ankle & Foot	77.8	51.9
Toe	11.1	3.7

Rombaut, L., et al., *Musculoskeletal complaints, physical activity and health-related quality of life among patients with the Ehlers–Danlos syndrome hypermobility type.* Disability & Rehabilitation, 2010. **32**(16): p. 1339-1345.

Various Treatments

- Medication
 - NSAIDs
 - Opioids
 - Antidepressants
 - Sedatives/Benzos
 - Cardiovascular
 - Pulmonary
- Surgery
- Physiotherapy
 - Strength Training
 - Massage
 - Stabilization Training
 - Electrotherapy
 - Manual Therapy
 - Aquatic Therapy
 - Heat Therapy
 - Stretching

WHAT IS PAIN?

PAIN PRODUCING STIMULI

- Internal
 - Distension
 - Spasm
 - inflammation

- External
 - Pricking, cutting, crushing,
 - burning, freezing

What is pain?

Nociceptive/Pain Pathways

ACUTE PAIN

- Recent onset
- Usually in proportion to amount of tissue damage

ACUTE PAIN

- Patient appears in distress
- Increased heart rate
- Increased blood pressure
- Increased respiratory rate
- Increased sweating
- Dilated pupils
- Characterized as:

Throbbing, Shooting, Sharp, Aching, Cutting, Stabbing, Twisting, Pulling, Tingling, Shooting, Squeezing, Burning

Chronic Pain May not appear in distress Descriptors

- Killing
- Torturing
- Unbearable
- Too much to bear
- Overwhelming
- Consumes my life
- You can't understand

- What did I do to deserve this?
- Why is G-d Punishing Me?
- I can't go on living like this
- When will it end?
- I want to die
- Nobody can take this kind of pain

Life with Pain

Life of Pain

Typical Pain Presentations in the General Population

- Low Back Pain
- Headache
- TMJ
- Neck and Shoulder

Why do patients with EDS have pain?

Scheper MC, de Vries JE, Verbunt J, Engelbert RH. Chronic pain in Pain Mechanisms hypermobility syndrome and Ehlers-Danlos syndrome (hypermobility type): it is a challenge. Journal of pain research. 2015;8:591. Musculoskeletal Pain Biomechanical Physical **Factors Fitness Psychosocial** Neurological **Factors Factors** Joint instability Deconditioning Altered motor **CNS** Anxiety control upregulation Muscle Connective tissue Weakness laxity: GJH Generalized Pain-related Nonphysiological hyperalgesia fear Decreased motor patterns cardiovascular Proprioceptive Capacity inacuity

Could painful muscles surrounding loose joints be a source of EDS related pain?

Tightened muscles stabilize loose joints.

Should muscles around the unstable joints therefore be considered as a significant source of pain in EDS?

Muscles and Blood Vessels

Muscles and blood vessels

Muscles, Blood Vessels, and Nerves

Oxygen and Muscle Pain

Constricted blood vessels inhibit the flow of blood and deliver less oxygen:

Impaired Calcium
Pump/Inability to
relax a part of a
contracted muscle
(Trigger Points)

Areas of lower oxygen cause Pain with activity

Nerve entrapment often mistaken for pain from the spine

If muscles can be a common source of pain...

Why are they ignored?

Pathophysiology rarely studied No discipline owns muscle

Properties of Muscle Nociceptors

Mechano-nociceptors, Chemo-nociceptors, Polymodal

- Group III (A-delta) and IV (C) fibers
- Receptive free nerve ending activated by noxious (tissue-threatening, subjectively painful) stimuli. Useful in preventing as well as detecting tissue damage.
- High stimulation threshold

Mense, S and Gerwin, R. <u>Muscle Pain:</u> <u>Understanding the Mechanisms</u>. Springer: 2010.

How Muscles Hurt

• Specialized <u>muscle nerves</u> carry information telling us damage has, or is about to occur.

Chemical or Mechanical = Polymodal
 Nociceptors

Normally - High threshold to stimulate

Transmission of Peripheral Impulses into Dorsal Horn Neurons

N=nucleus
NK1=Neurokinin1
NMDA=N-methylD-aspartate
AMPA/KA=α-amino3-hydroxy-5-methyl4-isoxazole-propionate
/Kainate

Peripheral Sensitization increased excitatory response to all stimuli

Lowered mechanical threshold tenderness and painful movement/allodynia Increased response magnitude to noxious stimuli hyperalgesia

Resting activity discharges spontaneous pain

Sensitization

- What is it?
 - Picture of nerve with action potential

Peripheral Sensitization increased response to all stimuli

Lowered mechanical threshold tenderness and painful movement

Resting activity discharges spontaneous pain

Central Sensitization (CS)

Glutamate alone released affecting non-NMDA channels

- Following minutes of lasting or strong input from muscle nociceptors, SP also released (1st step in CS):
 - Opening of NMDA channels → persistent depolarization
 - Reduction of threshold to depolarize.

*Wall PD, and Woolf CJ. Muscle but not cutaneous C-afferent input produces prolonged increases in the excitability of the flexion reflex in the rat. *The Journal of Physiology.* 1984; 356: 443-458

Central Sensitization (Pain causes more pain)

Persistent peripheral nerve stimulation causes nerves in the spinal cord to be altered producing muscle pain referral patterns

Transmission of Peripheral Impulses into Dorsal Horn Neurons

N=nucleus
NK1=Neurokinin1
NMDA=N-methylD-aspartate
AMPA/KA=α-amino3-hydroxy-5-methyl4-isoxazole-propionate
/Kainate

Central Sensitization Microglia **►** IL-6, TNF-α, NO, PGs BDNF Substance P To thalamus Group IV fiber 0 TrkB CAMP Glutamate CREB NO-Synthase cGMP Na⁺ AMPA/KA Arginine Citrulline

Mense, S and Gerwin, RD. <u>Muscle Pain:</u>
Understanding the Mechanisms. Springer: 2010. pp142

Mechanisms of Muscle Pain Referral

- Opening of ineffective connections
 - --> Existing closed pathways open up

Convergence

Heterosynaptic potentiation/Facilitation

Opening ineffective connections

Muscle Pain Referral

Heterosynaptic Facilitation

Convergence

Referred Pain Pathways- Heterosynaptic

Glial Cells and Central Sensitization

Astrocytes and microglia produce proinflammatory cytokines when activated by peripheral pathological changes such as inflammation

Marchand, F, et al. Role of the immune system in chronic pain. *Nat Rev Neuroscience* 6:521-532 (2005)

Microglia ▶ IL-6, TNF-α, NO, PGs BDNF Substance P To thalamus Group IV fiber NK1 0 0 TrkB CAMP Glutamate NMDA CREB NO-Synthase cGMP Na⁺ AMPA/KA Arginine Citrulline

ation: Glia

Mense, S and Gerwin, RD. <u>Muscle Pain:</u> Understanding the Mechanisms. Springer: 2010.

Peripheral mechanism of referred pain in a sciatic nerve injury model

- Mirror Pain @ Day 1
- Dorsal spinal cord Astrocyte activation @ Day 7
 but no microglia activation

 ? Rx targets: rheumatoid arthritis, complex regional pain syndrome and neuropathic pain

Fig. 12 Possible mechanism underlying peripheral nerve injury-evoked mirror pain. Following spinal nerve ligation (SNL) on the right side, tumor necrosis factor α (TNF- α) is increased greatly in the ipsilateral (ipsi) dorsal root ganglion (DRG), diffuses t...

Chau-Fu Cheng, Jen-Kun Cheng, Chih-Yang Chen, Cheng-Chang Lien, Dachen Chu, Szu-Yi Wang, Meei-Ling Tsaur

Mirror-image pain is mediated by nerve growth factor produced from tumor necrosis factor alpha-activated satellite glia after peripheral nerve injury

PAIN®, Volume 155, Issue 5, 2014, 906 - 920

http://dx.doi.org/10.1016/j.pain.2014.01.010

Diffuse Noxious Inhibitory Control (DNIC) Conditioned Pain Modulation (CPM)

Pain inhibits pain Stronger pains conceal weaker pains

Yarnitsky D. Conditioned Pain Modulation (DNIC): its relevance for acute and chronic pain states. *Current Opinion in Anaesthesiology*. 2010; 23(5): 611–615.

Review

- Muscle tissue is a source of pain:
- Acute
- Chronic
- Referred

Hans Kraus, M.D. Functional Muscle Pain

- Tension
- Deficiency: Weakness and/or Stiffness
- Spasm
- Trigger Points

Muscle Tension

VOLUNTARY, SUSTAINED CONTRACTION OF STRIATED MUSCLE.

Examples:

- LBP
- TMJ Dysfunction
- Non-specific Neck and Shoulder Pain

Diagnosis of Tension

HISTORY of sustained overuse of muscle groups

PHYSICAL EXAM which reveals a failure to voluntarily relax

Can sustained feeling states produce prolonged contraction of specific muscle groups and subsequent pain patterns?

Hans Kraus, M.D. Functional Muscle Pain

- Tension
- Deficiency: Weakness and/or Stiffness
- Spasm
- Trigger Points

The Y's Way to a Healthy Back

- Taught to 300,000 patients twice a week for six weeks
- 12K patients studied: 80% of patients experienced reduction and/or elimination in back pain
- Patients with previous back surgery had an 82%
 success rate
 Kraus H, Nagler W, Melleby A. Evaluation of an

exercise program for back pain. *Am Fam Physician*. 1983;28(3):153-8.

Kraus/Marcus Lower Body Exercises (Level 1)

Diaphragmatic Breathing

Shoulder Shrugs

Leg Slides

Head Rotations

Single Knee to Chest

Side Lying Knee to Chest

Buttocks Squeeze

Hans Kraus, M.D. Functional Muscle Pain

- Tension
- Deficiency: Weakness and/or Stiffness
- Spasm
- Trigger Points

Pain-Spasm-Pain Concept

Lund Hypothesis

Lund J, Donga R, Widmer C, Stohler C. The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity. *Canadian Journal of Physiology and Pharmacology*. 1991;69(5):683-694.

Pain and Spasm

 The muscle in spasm is frequently not the muscle causing your pain.

 Lund hypothesis - The injured or painful muscle has less activity. The antagonist (muscle opposing the injured muscle) has more activity and often spasm.

Summary of Neuronal Input to Dorsal and Ventral Horn

Hans Kraus, M.D. Functional Muscle Pain

- Tension
- Deficiency: Weakness and/or Stiffness
- Spasm
- Trigger Points

MTrPs Theoretical Model

Myofascial Trigger Points

- Tender nodular area in muscle
- Taut band
- May refer to proximal and distal muscle
- SP, CGRP, BKN, 5-HT, Cytokines (Shah, J)
- Hypoxia and acid pH
- Diagnosis made by pain to palpation

Validity of MTrP Protocols?

- Scott NA, et al. Trigger Point Injections for Chronic Non-Malignant Musculoskeletal Pain: A Systematic Review. *Pain Medicine*. 2009; 10(1): 54-69.
- Tough, EA, et al. Variability of Criteria Used to
 Diagnose Myofascial Trigger Point Pain Syndrome –
 Evidence From a Review of Literature. Clinical
 Journal of Pain. 2007; 23(3): 278-286.

Palpation/Pressure

- Unreliable
- Sedentary muscle vs. Active muscle
- Misses nociceptors in the muscle attachment sites
- Primary Muscle/Referred Pain?

Muscle Stimulation Hypothesis

Postulate:

Externally induced contraction

Stimulates nociceptors in the attachments (entheses)

Deforms sensitized muscle tissue (trigger points)

Painful Muscle Detection Instrument

25 year old man with 5 year history of Low Back Pain, Neck Pain, Headaches

Muscle Pain Referral

Post-MTI to Right Infraspinatus

A Novel Structured Muscle Algorithm to Diagnose and Treat Pain of Muscular Origin May Successfully and Reliably Decrease or Eliminate Pain in a Chronic Pain Population

- 176 patients
 - 133 (76%) identified with muscle pain
 - 70 patients eligible for treatment
 - 45 started and finished treatment

Initial 4.95/5.00 Post 2.02/1.25 p<.001

1month 1.87/1.13 p=1.0

Avg decrease 62% Med decrease 70%

Initial 5.28/5.67 Post 1.32/0.71 p<.001

1 month 1.57/0.57 p=0.49

Avg decrease 68% Med decrease 85%

67/95 patients S/P FBSS, RFA, ESIs, TPI/Prolotherapy Pre/Post MTIs (77 weeks F/U)

Marcus NJ, Shrikhande AA, McCarberg B, Gracely E. (2013) A Preliminary Study to Determine if a Muscle Pain Protocol Can Produce Long-Term Relief in Chronic Back Pain Patients. Pain Medicine, 14(8).

Mean Severity and Interference Over Time (at 77 weeks)

Step-care pain treatment

- Most likely contributing diagnoses
- Least harmful interventions
- Most cost-effective

Outside the Box

- FBSS
- HNP
- DDD
- FMS
- Spinal Stenosis
- Facet disease
- RSD
- Sacroiliac dysfunction
- Rotator cuff tear/Impingement syndrome
- Pelvic pain
- Headaches
- EDS

Case 1/ Pain onset age 20

Joint hypermobility 9/9 Beighton Scale

Diagnoses:

- Facet arthropathy/RFA'a
- Low Back Pain
- Migraine Headaches
- Headaches of unknown origin

- Shoulder Pain
- Thigh Pain
- Shin Splints
- IBS

Case 2

- FBS onset age 10, initially pain in legs
- Total body pain, wheelchair x 2 years
- Elevated CSF pressure
- Autonomic dysfunction (hypertension)
- Began Treatment for Muscle Pain age 23

Case 3

 Multiple Joint Replacements (Severe pain post op caused CHF)

Recurrent Dislocations

Severe pain and spasm around unstable joints

Injections relieved pain but caused increased dislocations

Low Level Laser Therapy

Non-visible spectrum with sufficient energy to penetrate deep tissue.

Foundation for Research and Advocacy for Muscle Pain Evaluation and Treatment (FRAME)

- Laser treatments in EDS Type III (jt. hypermobility type)
- 10 patients (1 male, 9 female)
- 5 sessions

Results

For more information please visit:

www.nmpi.com

Chronic Painful Work-Related Muscle Syndromes

- Repetitive muscle use
- Sustained uncoordinated contraction
- Time pressure*
- Psychic Stress*
- Cinderella syndrome**

*Hughes L et al, Effects of psychosocial and individual factors on physiological risk factors for upper extremity musculoskeletal disorders Ergonomics 2007, V50, 2:261-274

**Kadefors R et al, Recruitment of low threshold motor units in the trapezius muscle in different static arm positions Ergonomics 1999, V42, 2:359-375