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Adversarial Forecasting: Background

Standard assumptions of forecasting

Clean and legitimate data streams

Identically distributed training and test data

But what about

Potential manipulation of digital data streams to influence forecasts

Attack on forecasting output through manipulating input data
(data-fiddler attack) or model parameters (structural attack)

Attempts of pushing the forecast towards (i.e., attractive attack) or
away from a certain region of interest (i.e., repulsive attack).

How to incorporate the impact of such manipulations and the associated
uncertainty and incomplete knowledge into forecasting models?
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Adversarial Forecasting: Examples

Military when an adversary attempts to poison the input data to alter
forecasts and automated decisions

Accounting where the attacker cooks the books by misreporting past
values to avoid an audit

E-commerce recommendation systems: botnets to manipulate the
number of visits to a web site which would be inputted into web
traffic prediction and ad placement models

Electricity load management, demand response models: Attacker
corrupts the past price or load

Assisted driving systems: manipulating weather data of a sensor
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Adversarial Forecasting: Literature

Adversarial machine learning: mostly adversarial classification, e,g.,
Dalvi et al. (2004)

Emerging literature of temporal and unsupervised adversarial learning

Stackelberg games between the learner (predictive method) and the
adversary assuming common knowledge about adversary’s costs and
action space: Bruckner and Scheffer (2011)
Poisoning of trained linear autoregressive forecasting models where the
attacker manipulates the inputs to drive the latent space of a linear AR
model towards a region of interest: Alfeld et al. (2016)
Load forecasting, attacker injecting malicious data in temperature from
online weather forecast APIs : Chen et al. (2019)
Sequential adversarial attacks on Kalman Filter output which is fed
into the forward collision warning system: Ma et al. (2020)
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Adversarial attacks within a decision analysis framework

Gaps in literature:

Limited adversarial statistical theory and computational algorithms:
Adversarial forecasting and unsupervised methods
Common knowledge assumption in existing adversarial games:
Incomplete information with uncertainty

Goal: Utilize Bayesian decision theory (adversarial risk analysis- ARA)
principles in developing the theoretical, computational and applicable
frameworks for adversarial forecasting embedded to decision making

Potential practical needs: Incomplete information inherent in
adversarial settings, more than one decision maker, non-cooperative
dynamic decision environments, (decision dependent) uncertainty

Focus is on incorporating the impact of data-fiddler grey-box attacks
and the associated uncertainty and incomplete information into
(defender’s) forecasting models
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DDDAS: Relevant background

DDDAS: systems that utilize physical sensor/measurement data to
dynamically update a computational model (Darema, 2004)

Dynamic feedback loop

Applicability in decision support applications with adversarial contexts

Attack detection via anomaly detection modules (Combita et al.,
DDDAS18), outlier detection based defenses against data poisoning
attacks for classifiers (Li et al., DDDAS20), iterative dynamic data
repair in sensor networks for power network load forecasting models
(Zhou et al., DDDAS20)

rDDDAS to operate safely in a compromised environment while
building tolerating defenses (Dsouza et al., 2013) “It is almost
impossible to build perfectly secure cyber systems and fully avoid the
impact of adversarial attacks.”

Resilient adaptive machine learning ensemble that tolerates adversarial
learning attacks via moving target defense (Yao et al., DDDAS20)
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ARA (Rios Insua, Rios, Banks, JASA 2009)

Models games as a decision-theoretic problem from the expected
utility maximizing perspective of a given player.
Relaxes common knowledge assumption and the common prior hyp.

Defender first solving Attacker’s problem while incorporating her
uncertainty about his probabilities and utilities (hence optimal
decision) by using pD(a|d) = PF [A∗(d) = a]; then solving her own
problem as in d∗ARA = argmaxd

∫
ψD(d , a)pD(a|d)da

ARA for AML: Naveiro et al. (2019), Gonzalez-Ortega et al. (2021)
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Adversarial ARIMA within DDDAS for Load forecasting
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Data stream for demonstration

Data from Electric Reliability Council of Texas (ERCOT)
Focus: Time series of 2015-2017 summer electricity hourly load of
Houston
High seasonality peaking around 16-17, and bottoming around 4-5.
The best fit by a seasonal SARIMA (5, 0, 0)x(2, 1, 0)24 model
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Figure: Historical data (in black) and forecast (in red) under complete information
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Adversarial ARIMA: Attacker’s decision model

Determine the perturbation size,η, that leads to decreased load
forecasts (which could eventually motivate Defender decrease supply
leading to outages)

Y = X + η

max
η

ψA(η, β,Φ) =
h=H∑
h=1

[u(f h|X )− u(f h|X , η)]

ηt < L ∀t,
t=T∑
t=1

ct ∗ ηt <= B,η ∈ A(η, β)

Defender’s decision of data auditing, β of time t is denoted as β = t
which indicates ηt = 0 updating the Attacker’s set of achievable
attacks, A(η, β)
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Adversarial ARIMA: Attacker’s decision model

ARA allows the Attacker to acknowledge his uncertainty about
Defender’s forecasting model, pD(Φ) as well as the data audit
decision, β affecting A(η, β)

Attacker’s expected utility:

ψA(η) =

∫ [∫
uA(η, β,Φ) pA(Φ|η, β)dΦ

]
pA(β|η)dβ

To find pA(β|η), he would induce a distribution over the Defender’s
expected utility ψD(η), from which random optimal alternative,
β∗(η) is computed for each η decision alternative.

η∗ARA = argmaxη∈A(η,β)ψA(η).
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Adversarial ARIMA: Defender’s decision model

Defender’s problem to impact A(η) via data audits β = t with the
goal of minimizing the maximum potential attack impact

After Defender retrieves the data (which could have been poisoned)
and makes a forecast, that is compared to a predetermined threshold
within a simple decision support tool.

min
β

max
h=H∑
h=1

[PT h − u(f h|Y , β)] (2)

If the load forecast is less than the predetermined threshold for hth

time period, PT h (mean historical load), there may be supply
adjustments.
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Adversarial ARIMA: Insights

5 10 15 20

1
0

0
0

0
1

2
0

0
0

1
4

0
0

0
1

6
0

0
0

1
8

0
0

0
2

0
0

0
0

Time

L
o

a
d

Original (no attack)
Poisoned L=100
Poisoned L=500
Poisoned L=1000

Figure: Forecasts with varying levels of attack
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Computational Algorithms

Need for computational advances in solution methods

max
x

Eξ[Q(x , ξ)]

Sequential estimation of the expectation and optimization

Estimation challenges with high dimensions, skewed and/or
multi-modal and/or decision dependent uncertainty

Optimization challenges with complex objective functions

Customized solution approaches: ranking & selection heuristics,
augmented probability simulation
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Augmented probability simulation

max
z

∑
ρ

∫
A

∫
B

∫
Π
uZ (z , φ)gA(A)gB(B)gπ(π)Pρ(ρ)πBA

Ekin et al. (2022) EJOR
APS converts this into a grand simulation problem by simultaneously
performing expectation and optimization

ğ(z ,A,B, π, ρ) ∝ uZ (z , φ)gA(A)gB(B)gπ(π)Pρ(ρ).

When we sample (z ,A,B, π, ρ) ∼ ğ(z ,A,B, π, ρ), the mode of z
samples approximates the optimal solution.
Transformation

ğH(z , {Ah,Bh, πh, ρh}h∈H) ∝
∏
h∈H

uZ
(
z , φh

)
gA(Ah)gB(Bh)gπ(πh)Pρ(ρh).

Metropolis within Gibbs

ğH(zt |z−t , {Ah,Bh, πh, ρh}h∈H) ∝ exp

(∑
h∈H

log
[
uZ

(
zt ∪ z−t , φ

h
)])

.
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Application Areas

Application use cases/examples: Electricity load management,
demand response models, cybersecurity, command and control

Figure: Conceptual architecture of multi-domain C2 systems (Caballero, Friend
and Blasch (2021))
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Relevant work: HMM poisoning

Ex: Satellite data transmission to down link ground station

Batch data: full observation sequence {xt}t∈T
Grey-box attack: knows family (HMM), but not the parameterization

Attacks with uncertain outcomes and (deterministic) cost coupled
with risk of discovery
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Concluding remarks

Major takeaways

Theoretical focus on unsupervised learning and classical statistical
forecasting methods
Incomplete information and uncertainty in an adversarial environment
for more than one decision maker
Proactive and dynamic protection for resilient grids

What is next?

Potential applications to C2 problem sets: e.g. USAF’s Air Operations
Centers, decision models with automation that use sensor data
Implications for defender and solving defender’s problems
Implications for autonomous systems and robustifying forecasts
Accommodation of multi-sensor data under adversarial attacks,
multiple decision makers of different types
Theoretical extensions to structural attacks and other methods
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Thank you

Contact: tahirekin@txstate.edu
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