
October 3,2020
DDDAS 2020 Industry Panel

Daniel Y. Abramovitch

1

Mass Spectrometry Division 
Agilent Technologies
Santa Clara, CA 95051

Intro for DDDAS 2020 Industry Panel:
(“Who am I and why am I here?”)

• Born in Canada, grew up in Alabama, college at Clemson, grad school at Stanford.  (Yes, I’m missing CFB.)  

• Spent 30+ years working in industry on problems related to control, signal processing, and instrumentation. 

• I don’t have any magic answers, but as Liam Neeson says in Taken, “What I do have are a very particular set of 
skills, skills I have acquired over a very long career.”

• Many of the DDDAS examples look like “big iron” with large budgets and many engineers per system.

• My experience is with “small iron”, mechatronic systems with highly flexible dynamics, which blow up many of 
the standard assumptions.

• If I can help here, it is in showing what big iron DDDAS problems (state-space on steroids) can learn from the 
small iron problems.



Big Iron vs. Small Iron Problems
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“Big Iron” problems:

‒ Individual device is very expensive (think process reactor or fighter plane or spacecraft)

‒ Mission of that device is even more expensive (think spacecraft)
‒ Cost of device failure on a mission is catastrophic. 

‒ So, many engineers and scientists can work on tuning each individual device. 
‒ Models for estimators and controllers may have common structure, but individual parameters are 

adjusted by skilled engineers for each individual device.

“Small Iron” problems:

‒ Individual device is relatively inexpensive, consumer scale, $50 (HDD) – $100,000 (Tesla)

‒ We can spend money on engineering, product design, and manufacturing line.
‒ But the incremental cost to build any device has to be very small.
‒ Want to avoid repairs. Low end ones are disposable. 

‒ Individual engineers don’t tune any one device.
‒ Devices are either robust (generally lower performance) or 
‒ Self-tuning and self-diagnostic (which have to be done with product hardware, a.k.a. edge computing)



The Difficulty of Getting Model Parameters from Measurements:
A Picture of the Domains

October 3,2020
DDDAS 2020 Industry Panel

3

Top domains model driven. 
Bottom domains measurement driven.

‒ Easy to go from top to bottom (evaluate 
model at time/frequency points)

‒ Very hard to go from bottom to top (need 
to fit lots of measurement data to a small 
set of parameters).

‒ Akin to password encryption/decryption

‒ A lot of folks give up.

‒ But the key step is going from 
measurement driven frameworks to model 
driven frameworks, and that step is the 
hard one.



Why Online ID of Discrete-Time Linear Models Usually Fails with Low Damping: 
The Fate of Physical Parameters Under Discretization
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Even simple discretization makes coefficients very complicated
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Moral: We need discrete time model, but it obscures physical meaning.



The Fate of Physical Parameters Under Discretization
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• This is just a simple, common, second order model.
‒ For higher order models, the obscuration is much worse.
‒ For system ID or trying to create a state space model, the physical meaning is lost.
‒ Consider the SNR needed to back these out from any set of measured signals. 
‒ Put another way, even Neo isn’t figuring out what’s in this matrix.
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where

• Systems for which this online, discrete-time model regression ID usually works are usually well behaved, i.e. 
‒ Stable and well damped
‒ Systems where one doesn’t care so much about not recovering the physical parameters.
‒ Coincidentally, the same types of systems were ML/AI has had success. (Maybe not coincidental).



The Case for Connected Measurements
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‒ What happens when you do the grunt work to put these heterogeneous pieces together?

“But the point of a measurement is lost, if you keep it a secret. Why didn't you record it so 
you could tell the world, eh?”  – Dr. Strangelove, evangelizing on connected measurements

For a lot of reasons, a typical control lab often still has a bunch of beautiful and disconnected 
pieces of technology.  On their own, they are good but limited.

‒ They are from different vendors, with different interfaces, built by folks who would rather not be doing all that 
“not real engineering” programming.

‒ Some wonderful boxed instruments are both expensive and old.  There are no inexpensive replacements and
their communication interfaces are archaic.



Connecting Measurements Leads to Rapid Iteration
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• DSA tied to stage controller, and 
through network hub to PC.

• PC runs measurement, aggregates data, 
and does waveform math (MATLAB).

• Data saved as web pages.

• Run DSA measurements on closed-loop 
system, controller.

• Use MATLAB to model existing controller or 
measure the existing controller by opening 
the loop on the system (disconnecting the 
wires from the controller to the X-Y stage). 

• Open the loop with waveform math, divide 
out C and get P.

• With measured P design new C.

• With new C rewrap the loop (waveform math) 
to project TCL.

• When projected TCL looks good, download 
new C to stage controller.



You Can’t Do Big Data If You Mess Up the Little Data
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How the data is gathered matters

‒ The sensor, the instrumentation amplifiers, the ADC, the data collection path.

‒ But many “algorithm folks” display little interest in the “hardware”, the filtering, the sampling, the delay, the 
quantization, the relative accuracy of different data streams,  their synchronization. 

‒ There is often also a corresponding lack of interest in the physical process being measured. 

Management understands engineering workstations and servers more than microcontrollers, FPGAs, and DSPs.

‒ Product cost constraints make it hard to build in computational head room.

‒ The long term benefits of building infrastructure that enables some possible benefit of ML/AI are harder to 
define than the immediate costs of a more powerful embedded computing platform.

‒ The hardware folks (scientists, digital and analog circuit designers) are often unaware of algorithm needs and 
how relatively simple adjustments that they could make might improve the AI.

‒ Why spend more on an ADC that samples 10, 100,1000, times faster than the physical system needs?
‒ The answer, as George Carlin would say:  Because we can.
‒ The follow up is: What do we do with the extra samples?



Systems Folks Need to Get Involved with Component Selection: Ex. ADCs
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Sample period has many components:
‒ sample & hold, ADC time
‒ computation time
‒ DAC time, transmission time 
‒ all have to finish before TS

ADC time also has components:
‒ sample & hold, conversion, output/transmit time 

Conversion calcs often broken up into stages
• Can allow smaller TS

• But latency often much bigger (DSP don’t care)

When someone not attuned to latency makes choice, they can blow 90% of the phase margin & bandwidth.
‒ These “Oops!” moves cannot be fixed by any algorithm. 



What Can Small Iron Problems Teach Us About DDDAS
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“I can’t change the laws of physics.” – Scotty 

‒ Even in small problems, understanding the underlying process saves a lot of computation by cutting the 
number of tuning parameters by several orders of magnitude. 

‒ Going from empirical “data-driven” fits to parametric models makes system understanding and 
prediction more efficient and far less brittle.  And, yes, it’s really hard.

Building hardware with an awareness to the machine intelligence algorithms preempts a lot of problems.
‒ If we are smart about how we use Moore’s Law and all the inexpensive redundancy it affords, we can 

hand or sophisticated algorithms much better data. 
‒ “It’s not who has the best algorithm that wins, It’s who has the most data.” – Andrew Ng
‒ Maybe make that “the most good data”. 

‒ Systems/control engineers have a chance to be the great integrators of these problems.
‒ Only someone who understands ADCs and latency can convince a circuit designer  why they should 

change their chosen circuit.

If it’s true in general, it should be true in a single case. 

‒ These same principles might be useful in these “Big Iron” systems. 


