InfoSymbiotics / DDDAS2020

October 2-4, 2020

DATA-BASED DEFENSE-IN-DEPTH OF CRITICAL SYSTEMS

Styliani Pantopoulou, Pola Lydia Lagari, Clive H. Townsend, Lefteri H. Tsoukalas

School of Nuclear Engineering Purdue University, West Lafayette, IN, US

Outline

Motivation

Methodology

Results

Conclusions & Future Work

Motivation

- Cybersecurity in focus because of the multifaceted nature of Cyber Physical Systems (CPS).
- Digitalization and cyber technologies offer advantages; but also pose challenges.
- The DDDAS paradigm can prove helpful towards data assortment and classification.

Methodology System Modeling

- System under review: a Nuclear Power Plant (NPP)
- State-space equations
 - o n: neutron density
 - o c: neutron precursor density
 - ρ: reactivity
 - o z: control rod velocity

- Controlling z gives output regarding n
- ρ is calculated through plant measurements

Methodology *Mitigation of a Cyber-attack*

Protection architecture

- PLC controllers
- Updating setpoint component
- Delay queue
- Decision system

Methodology *Mitigation of a Cyber-attack*

Algorithm

- 1. Get measurement x(n) from plant
- 2. $x(n-k)\cdot h(n-k)+x(n-k+1)\cdot h(n-k+1)+...+x(n-1)\cdot h(n-1)=x(n-k+1)$

...

$$x(n-1)\cdot h(n-k)+x(n-2)\cdot h(n-k+1)+...+x(n-k)\cdot h(n-1)=x(n)$$

- 3. $\hat{x}(n) = h(1) \cdot x(n-1) + ... + h(k) \cdot x(n-k)$
- 4. Controllers C1 and C2 get error signal $\hat{x}(n)$ -x(n)
- 5. C1 runs PLC code1, C2 runs PLC code2
- 6. Comparator checks |out1-out2|
- 7. If |out1-out2| ≤ noise threshold → Mux_control_signal = 0 Else Mux_control_signal=1
- 8. Contents of queue erased and not added to previous_measurements vector
- C1, C2 get restarted
- 10. x(n+1) calculated from state space equations

Results

- Response of decision system.
- Plant measurements considered as following the normal distribution, with specific μ and σ .
- When the two controller outputs differ more than a threshold related to noise; C₃ forwards its output to the plant.

Conclusions & Future Work

- Importance and connection of the DDDAS paradigm with critical systems.
- A NPP can be transformed into a trustworthy digital system.
- A second layer of protection or suitable operators' training would aid towards avoiding dangerous situations.
- More complex attack schemes have to be tested in order to ensure the system's integrity and security under a greater variety of circumstances.

InfoSymbiotics / DDDAS2020

October 2-4, 2020

Styliani Pantopoulou, Pola Lydia Lagari, Clive H. Townsend, Lefteri H. Tsoukalas

School of Nuclear Engineering Purdue University, West Lafayette, IN, US

