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Assurance Monitoring of autonomous systems

Machine  learning  components are  being  used  by  autonomous systems because of their ability to 
handle dynamic and uncertain environments.

● Deep neural networks (DNNs)
● High dimensional inputs
● Non-transparent
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Problem:
● Computation of a significance level along with each 

decision
● Well-calibrated
● Limited false alarms
● Real-time
● Sequential inputs
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Overview of the approach

Real-time assurance monitor
● Distance learning using triplet network
● Inductive Conformal Prediction (ICP) based on 

distance learning

Decision Making
● Significance level estimation to minimize 

monitoring alarms
● Feedback-loop design
● Evaluation on the GTSRB dataset
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Triplet Network
Structure:

● A  triplet  network  is  composed  using  three  
copies  of  the same  neural  network  with  shared  
parameters.

● The last layer of each of the 3 DNNs produce an 
embedding representation of each input.

● The Euclidean distance between embeddings is a 
measure of similarity.

Training:
● We form triplets of input data, an anchor input x, a 

positive input x+ that belong to the same class as x 
and a negative input x- of a different class.

● The training aims in minimizing the euclidean 
distance between embeddings of the same class 
and maximizing the Euclidean distance of 
embeddings belonging in different classes.

● Faster training by mining sample triplets such that 

Distance deep metric learning using Triplet 
network:
Estimate the similarity of different inputs

E. Hoffer and N. Ailon. Deep metric learning using triplet network. In International Workshop on Similarity-Based 
Pattern Recognition, pages 84–92. Springer, 2015. 4



Inductive Conformal Prediction

● Split the training set into
● The proper training set
● The calibration set

● Use the proper training set to train the LEC
● For each example in the calibration set

● Calculate the nonconformity scores using a 
nonconformity function

● For each test example, 
● Calculate the nonconformity score
● Compute the p-value as the fraction of 

calibration examples that are equally or more 
conforming.

● Compute a set predictor with a given 
confidence based on the p-values.
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Nonconformity measure:
A function which measures how different is a test 
example from the training data set

Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. Journal of Machine Learning 
Research, 9(Mar), 371-421.
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Triplet-Based ICP
● Learn representations of the input data that 

can be used to compute the similarity 
between test examples and examples in the 
training data set

● A nonconformity function computes how 
similar a test input is to the training set.

● It is natural to define the nonconformity 
functions in the embedding space created by 
the trained triplet network

● Using the triplet all the input data points  
(proper training, calibration and testing) are 
mapped to representations    ,               . 

● The Euclidean distance    computed in the 
embedding space is a measure of similarity.

Nonconformity Function definition:

k-Nearest Neighbors
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p-value:



Select the significance level

Given a test example    with an unknown label    , ICP 
forms a set |Γε|of possible labels   so that 

A candidate label    is added to the set Γε if 

Select ε to minimize cases of                   :

● Given a validation set, we compute the 
number of set predictions with multiple 
classes for different values of ε.

● We select the lowest ε value that 
doesn’t produce any set of multiple 
classes.
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Optimal significance level



Decision Making

● The ICP framework works well when inputs are IID.
● Individual inputs of a sequence might be of low quality leading to               
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Feedback-loop for querying the sensors

● Taking into account a number of sequential inputs can improve the perception 
information.

● A feedback-loop is utilized that reduces the incorrect predictions for low 
quality individual inputs by requiring               with an identical single label for 
k consecutive sensor measurements.
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EVALUATION
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10%

Experimental Setup
GTSRB Dataset
Task:
Traffic Sign Recognition on images captured by vehicle camela.

Image size: 96x96

43 different classes
Sequence duration: 30 frames
Dataset:
888 sequences in the training set
88 sequences in test set (test 1)

12630 IID signs
Testing using IID signs (test 2)

Augmented Training
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90%
Proper Training 80%
Calibration 20%



Classification Accuracy of triplet network
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The triplet network can be used for point predictions when combined with a k-Nearest 
Neighbors classifier in the embedding space

Classification Accuracy:

Confirming the basic hypothesis of machine learning that the  training  and  testing  data  sets  
should  consist  of  IID  samples

Early frames are responsible for the 
larger error-rate in the sequences



ICP Performance
● ICP is applied on single inputs to compare the performance when inputs are:

○ part of a sequence (test 1)
○ IID (test 2)
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ICP on individual frames:

The computed significance level bounds 
the error-rate only for the IID data

● ε is computed using the augmented calibration data

Optimal significance level



Feedback-loop Performance
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Improving the prediction accuracy using the feedback loop:

Error-rate with respect to the chosen 
significance level for different values of k

Number of frames required for a 
decision with respect to the chosen 
significance level for different values of k

k can be chosen 
accordingly to control the 
tradeoff between accuracy 
and decision time

Execution Time: 1ms
Total Memory=Proper training set representations + Triplet network= 74.4 MB



Illustrative example

Parameters:
ε=0.004
k=5
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Conclusion
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● Assurance monitor in DDDAS
● Inductive Conformal Prediction framework
● Embedding representations learning using a triplet network
● Significance level computation to minimize multiple predictions
● Feedback-loop querying new sensor inputs when a confident 

decision cannot be made
● Evaluation on the GTSRB dataset

○ Baseline ICP works only for IID data
○ The feedback-loop improves the ICP performance on sequences
○ Real-time

● Future work
○ Design the feedback loop based on the p-values


