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Problem:

Coming soon
everywhere!

1000’s of
drones




How to Manage all these Flights?

Schedule Flights:

FAA'NASA: |+ USS 1: Green Lines

N USS 2: Blue Lines
Proposed Flight:
* USS 3: Red Dashed Line

Pairwise deconfliction
of all flights in common
space-time

The '
UAS Traffic Management g i
(UTM) Problem




How to Manage all these Flights?

Our Proposal:

Lane-based

Strategic Deconfliction
(lanes defined by Air
Management Authorities)



https://docs.google.com/file/d/1P7VxxS2cyG9Nm0sf6RJiVrSlVKpCste0/preview

UTM and the DDDAS Paradigm

Model:
- Lane-Based UTM (System Policies and
Structure)

- UAS Behaviors (Onboardand T S g
| : ystem Policies
Real-Time Algorithms) “Applies to”

. i ! Update UTM Policies
Data: : s

= SChEdUIES Metrics

- Contingencies
Metrics: Real System

Metrics Metrics

Agent Behavior
Simulation

- Average Speed
- Average Delay
- Failed Schedules

Update Agent Behavior Model



UAS Traffic Management
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* Nominal behaviors
* Contingency behaviors

* Deconfliction rules
* Airway structure
* Contingency handling



UTM Structure & Policies

*Lanes
* One-way
* Linear (skeleton)
* Virtual volume (e.g., circular tube along skeleton)
* Speed constraints
* Headway constraints

Lane 1

e Roundabouts

* Defined at intersections s
* Basic units ’/L‘/:/

* 3-Merge

* 3-Diverge

3-Merge 3-Diverge



UTM Structure & Policies

* 3-Merge/Diverge v. Cross Conflict

- SD Constraint: Trajectories must not violate headway (separation) distance

Expanded Constraints

Lane 3

Expanded Constraints
Lane 3is SD

Lane 3is SD

Lane 4 is SD

Intersection is SD

Lane
Lane 2
<y

i
Strategic bottleneck — can Requires zone constraints
be designed to maintain to ensure separation at
correct separation

intersection



UTM Structure & Policies

e Lanes versus Free-Flight

Free-Flight Lanes
Each Aircraft Must Perform Reusable Paths — Each
a Search in 4D Space aircraft only searches in 1D

time



UTM Structure & Policies

* Emergency Protocols

* Contingency Handling

* Lane Creation/Deletion/Modification
* Flight Authorization

* Aircraft Certification

* Strategic Deconfliction



Lane-Based UTM
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Lane Creation
e.g., SLC (above roads)



https://docs.google.com/file/d/1S-EgICFT9hZWxsVVyo9tzDddk6zauM9g/preview

Strategic Deconfliction:
Space-Time Lane Diagram

tsZ - th ts2 tsZ =+ th

»1 t'y tg—tn tg tg + iy (b) Proposed Flights .



Lane-Based Reservation System

»
¥
)

Scheduled Flights
---------- Possible Flight

Third Lane in Sequence

Second Lane in Sequence

First Lane in Sequence
(i.e., launch lane)
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corridor length

Space Time Lane Diagram

Proposed Flight
Time Interval

q4 q3
q1 q2

(a)

time

Existing Flight

/

Ps tiz P3

P1 tix P2
\/ .

Headway Times

time
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Strategic Deconfliction: Labels

Label: A B C D E
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TABLE 11
ENUMERATION OF ALL POSSIBLE SCHEDULED FLIGHTS VS REQUESTED
LAUNCH TIMES INTERACTIONS.

Labels Intervals || Labels Intervals || Labels Intervals
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1B.1D [g2. 2] 4BSE lg1.q1)
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1B.2C {1);; - ’_.,.llgl 4C.5D ?q].p; - !J
1B.2D [g2. g2 4C5E [q1,pa —ts
1B.2E 0 4D.SE q, qz}
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Algorithm SD

Computational Complexity:
(in terms of interval operator, 1)

Big O: O(f?)
where f = Y2_,

of lops<Yp—1 frx + 2ix fi fj

Algorithm SD (Strategic Deconfliction)
On input:
lanes: lane sequence for requested flight
[q1, q2]: requested launch interval
n.. number of lanes
flights: flights per lane
hy: maximum required headway time
On output:
Safe time intervals to launch
begin
possible_intervals < [g;. 2]
for each lane ¢ € lanes
time_offset < time to get to lane ¢
possible_intervals < possible_intervals + time_offset
for each flight, f, in lane ¢
new_intervals « ()
for each interval in possible_intervals
[t1,t2] + interval i

end
end
possible_intervals <— new_intervals
end

possible_intervals «+ possible_intervals - time to last lane
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Beyond SD: Contingencies!

If every UAS follows its nominal flight plan:
—»there are no problems!
But, there are contingencies:

“something that might possibly happen in the future, usually causing
problems or making further plans and arrangements necessary”
(Cambridge Dictionary)

20



Example - Communication Outage

Lanes give us the
ablllty to deal with Emergency Landing
contingencies in a

deterministic way

Conflicts

Communication Disrupted

T &

Contingency Rou te
(103)
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Real-Time Tactical Deconfliction (UAS
Behavior)

e Uses the Closest Point of Approach (CPA) method
* “In-between” strategic deconfliction and sensor-based methods

If a flight, f1, has a conflict with flight f,, then the two flights can be decon-
flicted as follows:

Deconflict_Pair
P>= Q>
while conflict(f;,f2)
reduce speed, s, of f;
if 51 < Smin
then flight f; fails

This allows the definition of the Closest Point of Approach Deconfliction (CPAD)
algorithm:

Pl P(tmin)

Algorithm 1: Closest Point of Approach

V active flight, f
if f enters a new lane
OR . a neighboring flight has slowed
OR f has reduced speed on its own
then call Deconflict_Pair for all flights in neighboring lanes
if f has reduced speed
then f broadcasts this information.

Q;

b B =T B VE R VR




Real-Time Tactical Deconfliction (UAS

Behavior)

e Uses the Closest Point of Approach (CPA) method
* “In-between” strategic deconfliction and sensor-based methods

Communications are not required

The Lane Based network enables efficient storage of
local lane maps

Sensors provide a fallback option and a second
opinion on the state of the system

More options to handle nefarious contingencies

If a flight, f1, has a conflict with flight f,, then the two flights can be decon-
flicted as follows:

Deconflict_Pair

while conflict(f;,f2)
reduce speed, s, of f;
if 51 < Smin
then flight f; fails

This allows the definition of the Closest Point of Approach Deconfliction (CPAD)
algorithm:

Algorithm 1: Closest Point of Approach

V active flight, f
if f enters a new lane
OR . a neighboring flight has slowed
OR f has reduced speed on its own
then call Deconflict_Pair for all flights in neighboring lanes
if f has reduced speed

o s W N

™7 then f broadcasts this infonm

e _




Approximate Global Deconfliction

Contingency information
propogated efficiently through
lanes

* Global deconfliction achieved by each
UAS running the CPAD algorithm

* Limited data exhanged between
vehicles

*VViolations of safe separation only
possible in certain contingency
scenarios like communication issues

* Agents can fallback to sensor based
tactical deconfliction

» Contingency information propagates
throughout network in affected lanes



Experiments - Discrete Event Simulation

* Simulation Parameters:

* tmax - simulation time

129 T EOSe——aoann
B A, A _’;.—‘.s?r"‘lnf;-;-cz‘j:,‘} ﬂ__'_‘ —5Y .
B T e o * nf - number of flights
8 Ml | * smax - maximum speed allowed
£°F | | Lo 4 e Simulation process
N 4 [ ‘ .
e Each new flight selects a sequence of lanes
2~
" e Event triggered by time-of-arrival for each lane
2 ; | | me * Flights advanced in position and speed
40 30 20 1 ‘ v m 10 = H
Y Axis L X Axis * Performance Metrics

» Total delay (in simulation units)

Fig. 1: Set of UAS on Airways during Discrete Event Simulation. Red dots rep-
resent UAS in Flight: blue lanes are launch lanes.

* Average Speed

* Failures to schedule (due to safe-separation

constraint)



Simulation Results

Table 1: Delays and Failures in Experimental Simulations

t?ll(l..l‘

nf Smax

Wait Fly Done Fail Avg Speed Delays

100 100 5 1 18 8 0 4.98 2
2 12 8 0 4.98 2

0 15 8 0 4.99 1

0 11 89 0 4.98 2

1 18 8 0 4.96 4

means 0.814.8 84.4 0 4.98 2:2
100 100 9 0 11 8 0 8.98 1
1 8 91 O 8.94 2

0 12 88 0 8.99 0

0 6 94 0 8.99 0

0 11 88 1 8.98 0

means 0.2 9.6 90 0.2 8.98 0.6
200 200 5 0 14 186 0O 4.96 6
0 11 189 0 4.97 8

0 17 183 0 4.98 6

1 13 186 0 4.99 10

0 6 194 0 4.96 9

means 0.212.2187.6 0 4.97 8.6
200 200 9 0 7 193 0 8.96 4
1 6 193 0 8.97 2

0 8 192 0 8.97 4

0 7 193 0 8.98 3

0 4 196 O 8.97 2

means 0.2 641934 0 8.97 3

* Two aspects simulated:
* tmax:{100,200}, smax:{5,9}

* nf chosen to launch approximately one flight
per minute on average

* Five runs of simulation for each
parameter

* Only one flight failed to schedule due to
separation constraints

* Average speed near max indicates
efficient absorption of contingent events
(new flights entering the network)



Contributions

* DDDAS Paradigm for Unmanned Air Traffic Control
* Real-time conflict/contingency management protocol
* Lane-based model for airspace structure



Future Work

* Broader experiments that explore lane-configuration
 Sensitivity analysis

* Experiments with real vehicles in flight

* Characterize communication requirements for CPAD protocol



