# A DDDAS Protocol for Real-Time Large-Scale UAS Flight Coordination

David Sacharny, Thomas C. Henderson and Ejay Guo
University of Utah
September 2020



#### **Problem:**

Coming soon everywhere!
1000's of drones



## How to Manage all these Flights?

#### **FAA-NASA:**

Pairwise deconfliction of all flights in common space-time

The

<u>UAS Traffic Management</u>

(UTM) Problem



# How to Manage all these Flights?

#### **Our Proposal:**

Lane-based
Strategic Deconfliction
(lanes defined by Air
Management Authorities)



# **UTM** and the DDDAS Paradigm

#### Model:

- Lane-Based UTM (System Policies and Structure)
- UAS Behaviors (Onboard and Real-Time Algorithms)

#### Data:

- Schedules
- Contingencies

#### **Metrics:**

- Average Speed
- Average Delay
- Failed Schedules



## **UAS Traffic Management**

FAA-NASA Approach



**USS-UAS** 

- Nominal behaviors
- Contingency behaviors

- **UTM:** structure and rules of airways
- Deconfliction rules
- Airway structure
- Contingency handling

- Lanes
  - One-way
  - Linear (skeleton)
  - Virtual volume (e.g., circular tube along skeleton)
  - Speed constraints
  - Headway constraints
- Roundabouts
  - Defined at intersections
  - Basic units
    - 3-Merge
    - 3-Diverge





3-Merge

3-Diverge

- 3-Merge/Diverge v. Cross Conflict
  - SD Constraint: Trajectories must not violate headway (separation) distance



Strategic bottleneck – can

be designed to maintain

correct separation

**Expanded Constraints** Lane 3 is SD Lane 4 is SD Intersection is SD

> Requires zone constraints to ensure separation at intersection

Lanes versus Free-Flight



Each Aircraft Must Perform a Search in 4D Space

Reusable Paths – Each aircraft only searches in 1D time

- Emergency Protocols
- Contingency Handling
- Lane Creation/Deletion/Modification
- Flight Authorization
- Aircraft Certification
- Strategic Deconfliction

### **Lane-Based UTM**



**Proposed Lane System** 

**NASA-FAA Grid System** 

# Lane Creation e.g., SLC (above roads)



# Strategic Deconfliction: Space-Time Lane Diagram



# **Lane-Based Reservation System**



## Space Time Lane Diagram



# **Strategic Deconfliction: Labels**



### **Examples**



| Labels     | Intervals             | Labels                                  | Intervals          | Labels                                  | Intervals                |
|------------|-----------------------|-----------------------------------------|--------------------|-----------------------------------------|--------------------------|
| 1A,1A      | $[q_1, q_2]$          | 1C,5E                                   | Ø                  | 3B,4C                                   | $q_1, q_1;$              |
| ,          | [41, 42]              | 10,02                                   |                    | 3B,4C                                   | $q_2, q_2$               |
| 1A,1B      | $[q_1,q_2]$           | 1D,1E                                   | Ø                  | 3B.5C                                   | $[q_1, q_1]$             |
| 1A,1C      |                       | 1D,2E                                   | Ø                  | 3B,5D                                   |                          |
|            | $[p_3 - t_s, q_2]$    |                                         | Ø                  |                                         | $[q_1, q_1]$             |
| 1A,1D      | $[q_2, q_2]$          | 1D,3E                                   |                    | 3B,5E                                   | $[q_1,q_1]$              |
| 1A,1E      | Ø                     | 1D,4E                                   | Ø                  | 3C,3C                                   | $[q_1, p_1, <]$          |
|            |                       |                                         |                    | 3C,3C                                   | $p_3 - t_s, q_2, <]$     |
|            |                       |                                         |                    | 3C,3C                                   | $[q_1, p_1, =;$          |
|            |                       |                                         |                    | 3C,3C                                   | $p_2, q_2, =]$           |
|            |                       |                                         |                    | 3C,3C                                   | $[q_1, p_4 - t_s, >;$    |
| -000000000 | W. 170                | Armonia mark                            | 22.00              | 3C,3C                                   | $p_2, q_2, >$            |
| 1A,2A      | $[q_1, q_2]$          | 1D,5E                                   | Ø                  | 3C,3D                                   | $[q_1, p_1;$             |
| (25)       |                       | 337                                     | 50                 | 3C,3D                                   | $q_2, q_2$               |
| 1A.2B      | $[q_1,q_2]$           | 1E,1E                                   | Ø                  | 3C,3E                                   | $[q_1, p_1]$             |
| 1A,2C      | $[p_3 - t_s, q_2]$    | 1E,2E                                   | Ø                  | 3C,4C                                   | $[p_1, p_4 - t_s;$       |
| 111,20     | [P3 08, 42]           | 113,213                                 | 100.0              | 3C,4C                                   |                          |
| 1A,2D      | [a_ a_1               | 1E,3E                                   | Ø                  | 3C,4D                                   | $q_2, q_2$               |
| 1A,2D      | $[q_2,q_2]$           | 1E,5E                                   | V                  |                                         | $[q_1, p_1;$             |
| 14.00      | A.                    | 172 472                                 | 74                 | 3C,4D                                   | $q_2,q_2$                |
| 1A,2E      | Ø                     | 1E,4E                                   | Ø                  | 3C,4E                                   | $[q_1, p_1]$             |
| 1A,3A      | $[p_2, q_2]$          | 1E,5E                                   | Ø                  | 3C,5C                                   | $[q_1, p_4 - t_s]$       |
| 1A,3B      | $[p_2,q_2]$           | 2A,3A                                   | $[p_2,q_2]$        | 3C,5D                                   | $[q_1, p_4 - t_s]$       |
| 1A,3C      | $[p_3 - t_s, q_2, <]$ | 2A,3B                                   | $[p_2, q_2]$       | 3C,5E                                   | $[q_1, p_1, \leq;$       |
| 1A,3C      | $[p_2, q_2, \geq]$    | 2000 2000                               | 20 200             | 3C,5E                                   | $q_1, p_4 - t_s, >];$    |
| 1A,3D      | $[q_2, q_2]$          | 2A,3C                                   | $[p_2, q_2]$       | 3D,3E                                   | $[q_1, p_1]$             |
| 1A,3E      | ů ø                   | 2A,4A                                   | $[q_{2}, q_{2}]$   | 3D,4E                                   | $[q_1, p_1]$             |
| 1A,4A      | $[q_2,q_2]$           | 2A,4B                                   | $[q_2, q_2]$       | 3D.5E                                   | $[q_1, p_1]$             |
| 1A.4B      | $[q_2, q_2]$          | 2A,4C                                   | $[q_2, q_2]$       | 3E,3E                                   | $[q_1, p_1]$             |
| 1A,4C      | $[q_2, q_2]$          | 2A,5A                                   | (42, 42)           | 3E,4E                                   | $[q_1, p_1]$             |
| 1A,4D      |                       | 2A,5B                                   | Ø                  | 3E,5E                                   | F                        |
| 1A,4E      | $[q_2, q_2]$          | 100000000000000000000000000000000000000 | Ø                  |                                         | $[q_1, p_1]$ $\emptyset$ |
|            |                       | 2A,5C                                   | 5751               | 4A,5A                                   |                          |
| 1A,5A      | 0                     | 2A,5D                                   | Ø                  | 4A,5B                                   | Ø                        |
| 1A,5B      | Ø                     | 2A,5E                                   | Ø                  | 4A,5C                                   | Ø                        |
| 1A,5C      | Ø                     | 2B,3C                                   | $p_1, q1;$         | 4A,5D                                   | Ø                        |
|            | 20                    | 2B,3C                                   | $p_2, q_2$         |                                         | 20                       |
| 1A,5D      | Ø                     | 2B,4D                                   | $p_1, q_1;$        | 4A,5E                                   | Ø                        |
| 2000       | 990                   | 2B,4D                                   | $q_2, q_2$         | 100000000000000000000000000000000000000 |                          |
| 1A,5E      | Ø                     | 2B,5E                                   | $[p_1, q_1]$       | 4B,5C                                   | $[q_1, q_1]$             |
| 1B,1C      | $[p_3 - t_s, q_2]$    | 2C,3C                                   | $[p_1, q_1;$       | 4B,5D                                   | $[q_1,q_1]$              |
| 43 E       | THE RESIDEN           | 2C,3C                                   | $p_3 - t_s, q_2$ ] | 389                                     | 5500.765                 |
| 1B,1D      | $[q_2, q_2]$          | 2C,3D                                   | $[p_1, q_1;$       | 4B,5E                                   | $[q_1,q_1]$              |
| 3,12       | [12:12]               | 2C,3D                                   | $q_2, q_2$         | 70                                      | [411,41]                 |
| 1B.1E      | Ø                     | 2C,3E                                   | $[p_1, q_1]$       | 4C.5C                                   | $[q_1, p_4 - t_s]$       |
| 1B,2C      | $[p_3 - t_s, q_2]$    | 2C,4E                                   | $[p_1,q_1]$        | 4C,5D                                   | $[q_1, p_4 - t_s]$       |
| 1B,2D      |                       | 2C,4E                                   |                    | 4C,5E                                   |                          |
|            | $[q_2, q_2]$          |                                         | $[p_1, q_1]$       |                                         | $[q_1, p_4 - t_s]$       |
| 1B,2E      | V)                    | 2D,3E                                   | $p_1, q_1$         | 4D,5E                                   | $q_1, q_2$               |
| 1B,3C      | $[p_3 - t_s, q_2]$    | 2D,4E                                   | $[p_1,q_1]$        | 4E,5E                                   | $[q_1, q_2]$             |
| 1B,3D      | $[q_2, q_2]$          | 2D,5E                                   | $[p_1,q_1]$        | 5A,5A                                   | Ø                        |
| 1B,3E      | Ø                     | 2E,3E                                   | $[p_1,q_1]$        | 5A,5B                                   | Ø                        |
| 1B,4E      | Ø                     | 2E,4E                                   | $[p_1,q_1]$        | 5A,5C                                   | Ø                        |
| 1B,5E      | Ø                     | 2E,5E                                   | $[p_1,q_1]$        | 5A,5D                                   | Ø                        |
| 1C,1C      | $[p_3 - t_s, q_2]$    | 3A,3A                                   | $[p_2, q_2]$       | 5A,5E                                   | Ø                        |
| 1C,1D      | $[q_2, q_2]$          | 3A,3B                                   | $[p_2, q_2]$       | 5B,5C                                   | $[q_1, q_1]$             |
| 1C,1E      | (1- / 1- Ø            | 3A,3C                                   | $[p_2, q_2]$       | 5B,5D                                   | $[q_1, q_1]$             |
| 1C,2C      | $[p_3 - t_s, q_2]$    | 3A,4A                                   | $[q_2, q_2]$       | 5B,5E                                   | $[q_1, q_1]$             |
| 1C,2D      | $[q_2, q_2]$          | 3A.4B                                   | $[q_2, q_2]$       | 5C.5C                                   | $[q_1, p_4 - t_s]$       |
| 1C,2E      | [42, 42]              | 3A,4C                                   | $[q_2, q_2]$       | 5C,5D                                   | $[q_1, p_4 - t_s]$       |
| 1C,3C      | $[p_3 - t_s, q_2]$    | 3A,5A                                   | $[q_2, q_2]$       | 5C,5E                                   | $[q_1, p_4 - t_s]$       |
|            |                       |                                         | Ø                  |                                         |                          |
| 1C,3D      | $[q_2, q_2]$          | 3A,5B                                   |                    | 5D,5E                                   | $q_1, q_2$               |
| 1C,3E      | Ø                     | 3A,5C                                   | Ø                  | 5E,5E                                   | $[q_1,q_2]$              |
| 1C,4E      | Ø                     | 3B,3C                                   | $[q_1,q_1;$        |                                         |                          |
| :          |                       | 3B,3C                                   | $[p_2, q_2]$       |                                         | 55                       |

This is a complete table of all possible proposed flight versus scheduled flights with resulting intervals.

# **Algorithm SD**

# Computational Complexity: (in terms of interval operator, I)

```
Big O: O(f^2)
where f = \sum_{k=1}^{n} f_k
```

```
Algorithm SD (Strategic Deconfliction)
On input:
   lanes: lane sequence for requested flight
   [q_1, q_2]: requested launch interval
   n_c: number of lanes
   flights: flights per lane
   h_t: maximum required headway time
On output:
   Safe time intervals to launch
begin
possible_intervals \leftarrow [q_1, q_2]
for each lane c \in lanes
   time_offset \leftarrow time to get to lane c
   possible_intervals ← possible_intervals + time_offset
  for each flight, f, in lane c
      new_intervals \leftarrow \emptyset
     for each interval in possible_intervals
        [t_1, t_2] \leftarrow \text{interval } i
                 Set_label(+1,1,+1,2, s1,+1,+2, s
        f_{int} \leftarrow get_{interval}(label, t_{f,1}, t_{f,2}, s_f, t_1, t_2, s, h_t)
        Iller intervals / merce(new intervals f int)
     end
   end
   possible_intervals ← new_intervals
end
possible_intervals ← possible_intervals - time to last lane
```

## **Beyond SD: Contingencies!**

If every UAS follows its nominal flight plan:

→ there are no problems!

But, there are contingencies:

"something that might possibly happen in the future, usually causing problems or making further plans and arrangements necessary" (Cambridge Dictionary)

### **Example - Communication Outage**

Lanes give us the ability to deal with contingencies in a deterministic way



# Real-Time Tactical Deconfliction (UAS Behavior)

- Uses the Closest Point of Approach (CPA) method
- "In-between" strategic deconfliction and sensor-based methods



If a flight,  $f_1$ , has a conflict with flight  $f_2$ , then the two flights can be deconflicted as follows:

 $Deconflict\_Pair$ 

```
while conflict (f_1, f_2)
reduce speed, s_1, of f_1
if s_1 < s_{min}
then flight f_1 fails
```

This allows the definition of the Closest Point of Approach Deconfliction (CPAD) algorithm:

#### Algorithm 1: Closest Point of Approach

- 1  $\forall$  active flight, f
- $\mathbf{2}$  if f enters a new lane
- 3 OR a neighboring flight has slowed
- 4 OR f has reduced speed on its own
- 5 then call Deconflict\_Pair for all flights in neighboring lanes
- $\mathbf{6}$  if f has reduced speed
- 7 then f broadcasts this information.

# Real-Time Tactical Deconfliction (UAS Behavior)

- Uses the Closest Point of Approach (CPA) method
- "In-between" strategic deconfliction and sensor-based methods
- Communications are not required
- The Lane Based network enables efficient storage of local lane maps
- Sensors provide a fallback option and a second opinion on the state of the system
- More options to handle nefarious contingencies

If a flight,  $f_1$ , has a conflict with flight  $f_2$ , then the two flights can be deconflicted as follows:

 $Deconflict\_Pair$ 

```
while conflict(f_1, f_2)
reduce speed, s_1, of f_1
if s_1 < s_{min}
then flight f_1 fails
```

This allows the definition of the Closest Point of Approach Deconfliction (CPAD) algorithm:

#### Algorithm 1: Closest Point of Approach

- 1  $\forall$  active flight, f
- $\mathbf{2}$  if f enters a new lane
- 3 OR a neighboring flight has slowed
- 4 OR f has reduced speed on its own
- 5 then call Deconflict\_Pair for all flights in neighboring lanes
- 6 if f has reduced speed
- 7 then f broadcasts this information.

## Approximate Global Deconfliction

- Global deconfliction achieved by each UAS running the CPAD algorithm
- Limited data exhanged between vehicles
- Violations of safe separation only possible in certain contingency scenarios like communication issues
  - Agents can fallback to sensor based tactical deconfliction
  - Contingency information propagates throughout network in affected lanes



## **Experiments - Discrete Event Simulation**



Fig. 1: Set of UAS on Airways during Discrete Event Simulation. Red dots represent UAS in Flight; blue lanes are launch lanes.

- Simulation Parameters:
  - tmax simulation time
  - nf number of flights
  - smax maximum speed allowed
- Simulation process
  - Each new flight selects a sequence of lanes
  - Event triggered by time-of-arrival for each lane
  - Flights advanced in position and speed
- Performance Metrics
  - Total delay (in simulation units)
  - Average Speed
  - Failures to schedule (due to safe-separation constraint)

### Simulation Results

Table 1: Delays and Failures in Experimental Simulations

| $t_{max}$ | $n_f$ | $s_{max}$ | Wait | Fly   | Done  | Fail | Avg Speed | Delays |
|-----------|-------|-----------|------|-------|-------|------|-----------|--------|
| 100       | 100   | 5         | 1    | 18    | 81    | 0    | 4.98      | 2      |
|           |       |           | 2    | 12    | 86    | 0    | 4.98      | 2      |
|           |       |           | 0    | 15    | 85    | 0    | 4.99      | 1      |
|           |       |           | 0    | 11    | 89    | 0    | 4.98      | 2      |
|           |       |           | 1    | 18    | 81    | 0    | 4.96      | 4      |
|           | means |           | 0.8  | 14.8  | 84.4  | 0    | 4.98      | 2.2    |
| 100       | 100   | 9         | 0    | 11    | 89    | 0    | 8.98      | 1      |
|           |       |           | 1    | 8     | 91    | 0    | 8.94      | 2      |
|           |       |           | 0    | 12    | 88    | 0    | 8.99      | 0      |
|           |       |           | 0    | 6     | 94    | 0    | 8.99      | 0      |
|           |       |           | 0    | 11    | 88    | 1    | 8.98      | 0      |
| means     |       | 0.2       | 9.6  | 90    | 0.2   | 8.98 | 0.6       |        |
| 200       | 200   | 5         | 0    | 14    | 186   | 0    | 4.96      | 6      |
|           |       |           | 0    | 11    | 189   | 0    | 4.97      | 8      |
|           |       |           | 0    | 17    | 183   | 0    | 4.98      | 6      |
|           |       |           | 1    | 13    | 186   | 0    | 4.99      | 10     |
|           |       |           | 0    | 6     | 194   | 0    | 4.96      | 9      |
| means     |       | 0.2       | 12.2 | 187.6 | 0     | 4.97 | 8.6       |        |
| 200       | 200   | 9         | 0    | 7     | 193   | 0    | 8.96      | 4      |
|           |       |           | 1    | 6     | 193   | 0    | 8.97      | 2      |
|           |       |           | 0    | 8     | 192   | 0    | 8.97      | 4      |
|           |       |           | 0    | 7     | 193   | 0    | 8.98      | 3      |
|           |       |           | 0    | 4     | 196   | 0    | 8.97      | 2      |
|           | means |           | 0.2  | 6.4   | 193.4 | 0    | 8.97      | 3      |

- Two aspects simulated:
  - tmax:{100,200}, smax:{5,9}
  - nf chosen to launch approximately one flight per minute on average
- Five runs of simulation for each parameter
- Only one flight failed to schedule due to separation constraints
- Average speed near max indicates efficient absorption of contingent events (new flights entering the network)

#### **Contributions**

- DDDAS Paradigm for Unmanned Air Traffic Control
- Real-time conflict/contingency management protocol
- Lane-based model for airspace structure

#### **Future Work**

- Broader experiments that explore lane-configuration
- Sensitivity analysis
- Experiments with real vehicles in flight
- Characterize communication requirements for CPAD protocol