Dynamic Data-Driven Adaptive Observations
in Data Assimilation for Multiscale Systems

AFOSR DDDAS Program Review Meeting, Rome, NY

PI: N. Sri Namachchivaya
Ryne Beeson and Nicolas Perkowski*

Department of Aerospace Engineering & Information Trust Institute
University of Illinois at Urbana-Champaign
Urbana, Illinois, USA

September 19th, 2018

*Applied Mathematics, Humboldt-Universität zu Berlin
Research Objectives

(I) Develop theory for lower-dimensional nonlinear filtering equation in important cases of multi-scale dynamics and correlated signal-sensor noise.

(II) Develop efficient and robust algorithms to solve lower-dimensional recursive nonlinear filtering equations driven by the observations.

(III) Develop an integrated framework that combines the ability to dynamically steer the measurement process, extracting useful information, with nonlinear filtering for inference and prediction of large scale complex systems.
Objectives and Motivation

Previous Efforts; Information Flow, Adaptive Observations

- Namachchivaya, N. Sri; Random dynamical systems: addressing uncertainty, nonlinearity and predictability; Meccanica, (51, 2975-2995); 2016 https://link.springer.com/article/10.1007%2Fs11012-016-0570-4

- Beeson, R., et al., Dynamic Data-Driven Adaptive Observations in a Vortex Flowfield; 9th European Nonlinear Dynamics Conference; Budapest Hungary; June 2017

- Yeong, H.C., et al. Particle Filters with Nudging in Multiscale Chaotic Systems: with Application to the Lorenz-96 Atmospheric Model; Budapest Hungary; June 2017
Two time-scale Problem, Filter Definition

Let \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{Q})\) be a filtered probability space supporting the following SDEs:

\[
\begin{align*}
 dX^e_t &= b(X^e_t, Z^e_t)dt + \sigma(X^e_t, Z^e_t)dW_t & X^e_0 &= x \in \mathbb{R}^m \\
 dZ^e_t &= \frac{1}{\epsilon}f(X^e_t, Z^e_t)dt + \frac{1}{\sqrt{\epsilon}}g(X^e_t, Z^e_t)dV_t & Z^e_0 &= z \in \mathbb{R}^n \\
 dY^e_t &= h(X^e_t, Z^e_t)dt + dU_t & Y^e_0 &= 0 \in \mathbb{R}^d
\end{align*}
\]

Normalized Conditional Measure

The filter is defined as,

\[
\pi^e_t (\varphi(X^e_t, Z^e_t)) \equiv \mathbb{E}_\mathbb{Q} [\varphi(X^e_t, Z^e_t) | y^e_t],
\]

where \(\varphi\) is an integrable function and

\[
y^e_t \equiv \sigma(\{Y^e_s - Y^e_0 | s \in [0, t]\}) \lor \mathcal{N}.
\]
CORRELATED SENSOR NOISE

Typical Atmosphere-Ocean Sensors

1. Drifters
2. Dropsondes
3. Weather Balloons
4. Remote Sensing (Satellite)

Image References

2. https://www.jamstec.go.jp/e/about/press_release/20160129/
Table of Contents

1. Objectives and Motivation
2. Problem Statement and Theoretical Results
3. Homogenized (Reduced Order) Particle Based Methods
4. Numerical Demonstration
5. Summary and Future Efforts
6. Accomplishments and Reporting
7. References
Multiscale Correlated Noise Problem, Filter Definition

Let \((\Omega, \mathcal{F}, \{\mathcal{F}\}_{t \geq 0}, \mathbb{Q})\) be a filtered probability space supporting the following SDEs:

\[
\begin{align*}
 dX_t^e &= \left[b(X_t^e, Z_t^e) + \frac{1}{e} b_1(X_t^e, Z_t^e) \right] dt + \sigma(X_t^e, Z_t^e) dW_t \\
 X_0^e &= x \in \mathbb{R}^m \\
 dZ_t^e &= \frac{1}{e^2} f(X_t^e, Z_t^e) dt + \frac{1}{e} g(X_t^e, Z_t^e) dV_t \\
 Z_0^e &= z \in \mathbb{R}^n \\
 dY_t^e &= h(X_t^e, Z_t^e) dt + \alpha dW_t + \beta dV_t + \gamma dU_t \\
 Y_0^e &= 0 \in \mathbb{R}^d
\end{align*}
\]

Normalized Conditional Measure

The filter is defined as,

\[
\pi_t^e (\varphi(X_t^e, Z_t^e)) \equiv \mathbb{E}_{\mathbb{Q}} [\varphi(X_t^e, Z_t^e) \mid y_t^e],
\]

where \(\varphi\) is an integrable function and

\[
y_t^e \equiv \sigma(\{Y_s^e - Y_0^e \mid s \in [0, t]\}) \vee \mathcal{N}.
\]
Problem Statement and Theoretical Results

Weak Convergence of the Slow Process

Theorem (Pardoux and Veretennikov Theorem 4 [5])

Under appropriate assumptions for b, b_I, σ, f, g, then

$$X^e_s \Rightarrow X^0_s \text{ as } \epsilon \to 0,$$

X^0_s a Markov process with generator

$$\hat{\mathcal{G}} \equiv \sum_{i=1}^{m} \tilde{b}_i(x) \frac{\partial}{\partial x^i} + \frac{1}{2} \sum_{i,j} (\tilde{\sigma}\tilde{\sigma}^*)_{ij}(x) \frac{\partial^2}{\partial x^i \partial x^j},$$

where

$$\tilde{b}(x) \equiv \bar{b}(x) + \sum_{i=1}^{m} \int b_{I,i}(x, z) \frac{\partial}{\partial x^i} g_F^{-1}(-b_I)(x, z)p_\infty(dz; x),$$

$$\tilde{\sigma}\tilde{\sigma}^*(x) \equiv \bar{\sigma}\bar{\sigma}^*(x) + \int b_I(x, z) g_F^{-1}(-b_I)(x, z)^* + g_F^{-1}(-b_I)(x, z)b_I(x, z)^*p_\infty(dz; x)$$

$$\bar{h}(x) \equiv \int h(x, z)p_\infty(dz; x), \quad \bar{b}(x) \equiv \int b(x, z)p_\infty(dz; x), \quad \bar{\sigma}\bar{\sigma}^*(x) \equiv \int \sigma\sigma^*(x, z)p_\infty(dz; x).$$
Therefore if \(\varphi = \varphi(X_t^\epsilon) \), then it would be advantageous to know if

\[
\pi_t^{\epsilon,x} \rightarrow \pi_t^0,
\]

in some appropriate sense, where

Marginal Normalized Conditional Measure

\[
\pi_t^{\epsilon,x}(\varphi) \equiv \int \varphi(x)\pi_t^\epsilon(dx, dz)
\]

Homogenized Normalized Conditional Measure

\[
\pi_t^0(\varphi(X_t^0)) \equiv \mathbb{E}_{\mathcal{Q}} \left[\varphi(X_t^0) \mid y_t^\epsilon \right]
\]

Since \(\dim(\text{supp}(\pi_t^0)) < \dim(\text{supp}(\pi_t^{\epsilon,x})) \) and direct numerical integration of \((X_t^\epsilon, Z_t^\epsilon)\) is tasking when \(\epsilon \ll 1 \).
After Girsanov, Kallianpur-Striebel and with h bounded, defining the unnormalized conditional measures,

$$
\pi_t^\varepsilon(\varphi) = \rho_t^\varepsilon(\varphi)/\rho_t^\varepsilon(1), \quad \pi_t^{\varepsilon,x}(\varphi) = \rho_t^{\varepsilon,x}(\varphi)/\rho_t^{\varepsilon,x}(1), \quad \pi_t^0(\varphi) = \rho_t^0(\varphi)/\rho_t^0(1).
$$

Unnormalized Conditional Measure SDE

$$
d\rho_t^\varepsilon(\varphi) = \rho_t^\varepsilon(\mathcal{G}^\varepsilon \varphi)dt + \rho_t^\varepsilon(h^* \varphi + \partial_x \varphi \sigma \alpha^* + \frac{1}{\varepsilon} \partial_z \varphi \beta^*) dY_t^\varepsilon.
$$

Reduced Order Unnormalized Conditional Measure SDE

$$
d\rho_t^0(\varphi) = \rho_t^0(\mathcal{G} \varphi)dt + \rho_t^0(h^* \varphi + \partial_x \varphi \bar{\sigma} \alpha^*) dY_t^\varepsilon.
$$
Multiscale Slow-Correlated Noise Problem, Result

\[
\begin{align*}
 dX_t^e &= b(X_t^e, Z_t^e)dt + \sigma(X_t^e, Z_t^e)dW_t & X_0^e &= x \in \mathbb{R}^m \\
 dZ_t^e &= \frac{1}{e^t}f(X_t^e, Z_t^e)dt + \frac{1}{\sqrt{e^t}}g(X_t^e, Z_t^e)dV_t & Z_0^e &= z \in \mathbb{R}^n \\
 dY_t^e &= h(X_t^e, Z_t^e)dt + \alpha dW_t + \gamma dU_t & Y_0^e &= 0 \in \mathbb{R}^d
\end{align*}
\]

Theorem

*Under appropriate assumptions, for every \(p \geq 1, T \geq 0, \) there exists \(C > 0, \) such that for every \(\varphi \in C_b^4 \)

\[
(E_Q \left[|\pi_T^{\epsilon,x}(\varphi) - \pi_T^0(\varphi)|^p \right])^{1/p} \leq \sqrt{\epsilon}C\|\varphi\|_{4,\infty}.
\]

*In particular, there exists a metric \(d \) on the space of probability measures, such that \(d \) generates the topology of weak convergence, and such that for every \(T \geq 0 \) there exists \(C > 0, \) such that

\[
E_Q \left[d(\pi_T^{\epsilon,x}, \pi_T^0) \right] \leq \sqrt{\epsilon}C.
\]
Convergence Proof Sketch

Convergence Proof Diagram

\[\pi_t \in \mathcal{P} \rightarrow \rho_t \in \mathcal{M} \rightarrow v_t \in \mathcal{F}(\mathbb{R}^{m+n}, \mathbb{R}) \rightarrow (X_t, Z_t, \theta_t, \eta_t) \in (\mathbb{R}^m, \mathbb{R}^n, \mathbb{R}, \mathbb{R}^{w+v}) \]

Convergence Relations

\[
\mathbb{E} \left[\left| \pi_T^{e,x}(\varphi) - \pi_T^0(\varphi) \right|^p \right] \leq \mathbb{E} \left[\left| \rho_T^{e,x}(\varphi) - \rho_T^0(\varphi) \right|^p \right] = \mathbb{E} \left[\left| \int v_0^e(x, z) - v_0^0(x) Q_0 \, dx, dz \right|^p \right] \\
\leq \mathbb{E} \left[\int \left| v_0^e(x, z) - v_0^0(x) \right|^p Q_0 \, dx, dz \right] = \int \mathbb{E} \left[\left| v_0^e(x, z) - v_0^0(x) \right|^p \right] Q_0 \, dx, dz \\
\leq \int \mathbb{E} \left[\left| \psi_t(x, z) \right|^p \right] Q_0 \, dx, dz + \int \mathbb{E} \left[\left| R_t(x, z) \right|^p \right] Q_0 \, dx, dz
\]

Formal Expansion

\[v_t^e = v_t^0 + \psi_t + R_t \]
Convergence Proof Sketch

Convergence Proof Diagram

\[\pi_t \in \mathcal{P} \rightarrow \rho_t \in \mathcal{M} \rightarrow v_t \in \mathcal{F}(\mathbb{R}^{m+n}, \mathbb{R}) \rightarrow (X_t, Z_t, \theta_t, \eta_t) \in (\mathbb{R}^m, \mathbb{R}^n, \mathbb{R}, \mathbb{R}^{w+v}) \]

Convergence Relations

\[
\mathbb{E} \left[\left| \pi_T^{\epsilon,x}(\varphi) - \pi_T^0(\varphi) \right|^p \right] \leq \mathbb{E} \left[\left| \rho_T^{\epsilon,x}(\varphi) - \rho_T^0(\varphi) \right|^p \right] = \mathbb{E} \left[\left\| v_0^\epsilon(x, z) - v_0^0(x) \mathbb{Q}_0(dx, dz) \right\|^p \right] \\
\leq \mathbb{E} \left[\int \left| v_0^\epsilon(x, z) - v_0^0(x) \right|^p \mathbb{Q}_0(dx, dz) \right] = \int \mathbb{E} \left[\left| v_0^\epsilon(x, z) - v_0^0(x) \right|^p \right] \mathbb{Q}_0(dx, dz) \\
\leq \int \mathbb{E} \left[|\psi_t(x, z)|^p \right] \mathbb{Q}_0(dx, dz) + \int \mathbb{E} \left[|R_t(x, z)|^p \right] \mathbb{Q}_0(dx, dz)
\]

Formal Expansion

\[v_t^\epsilon = v_t^0 + \psi_t + R_t \]
Convergence Proof Sketch

Convergence Proof Diagram

\[
\pi_t \in \mathcal{P} \rightarrow \rho_t \in \mathcal{M} \rightarrow \nu_t \in \mathcal{F}(\mathbb{R}^{m+n}, \mathbb{R}) \rightarrow (X_t, Z_t, \theta_t, \eta_t) \in (\mathbb{R}^m, \mathbb{R}^n, \mathbb{R}, \mathbb{R}^{w+v})
\]

Convergence Relations

\[
\mathbb{E} \left[|\pi_t^{e,x}(\varphi) - \pi_0^{e,x}(\varphi)|^p \right] \leq \mathbb{E} \left[|\rho_t^{e,x}(\varphi) - \rho_0^{e,x}(\varphi)|^p \right] = \mathbb{E} \left[\left| \int v_0^e(x, z) - v_0^0(x) Q_0(dx, dz) \right|^p \right]
\]

\[
\leq \mathbb{E} \left[\int |v_0^e(x, z) - v_0^0(x)|^p Q_0(dx, dz) \right] = \int \mathbb{E} \left[|v_0^e(x, z) - v_0^0(x)|^p \right] Q_0(dx, dz)
\]

\[
\leq \int \mathbb{E} \left[|\psi_t(x, z)|^p \right] Q_0(dx, dz) + \int \mathbb{E} \left[|R_t(x, z)|^p \right] Q_0(dx, dz)
\]

Formal Expansion

\[
\nu_t^e = \nu_t^0 + \psi_t + R_t
\]
Multiscale Noise Problem and Expansion

\[
\begin{align*}
\dot{X}_t^e &= \left[b(X_t^e, Z_t^e) + \frac{1}{\epsilon} b_1(X_t^e, Z_t^e) \right] dt + \sigma(X_t^e, Z_t^e) dW_t \\
\dot{Z}_t^e &= \frac{1}{\epsilon^2} f(X_t^e, Z_t^e) dt + \frac{1}{\epsilon} g(X_t^e, Z_t^e) dV_t \\
\dot{Y}_t^e &= h(X_t^e, Z_t^e) dt + \gamma dU_t
\end{align*}
\]

\[
X_0^e = x \in \mathbb{R}^m, \quad Z_0^e = z \in \mathbb{R}^n, \quad Y_0^e = 0 \in \mathbb{R}^d
\]

\[
u^e = u_0 + u_1 + u_2 + R.
\]

\[
\begin{align*}
\partial_t u_0 &= \left(\bar{G}_S + \bar{G} \right) u_0 + \bar{h} u_0 \partial_t B \\
\partial_t u_1 &= \frac{1}{\epsilon^2} G_F u_1 + \frac{1}{\epsilon} G_I u_0 \\
\partial_t u_2 &= \frac{1}{\epsilon^2} G_F u_2 + (G_S - \bar{G}_S) u_0 + \left(\frac{1}{\epsilon} G_I u_1 - \bar{G} u_0 \right) \\
\partial_t R &= G^e R + \left(\frac{1}{\epsilon} G_I + G_S \right) u_2 + G_S u_1 + \left(h - \bar{h} \right) u_0 \partial_t B + h (u_1 + u_2 + R) \partial_t B.
\end{align*}
\]
Multiscale Correlated Noise Problem, Filter Definition

\[
\begin{align*}
 dX^e_t &= \left[b(X^e_t, Z^e_t) + \frac{1}{\epsilon} b_1(X^e_t, Z^e_t) \right] dt + \sigma(X^e_t, Z^e_t) dW_t \\
 X^e_0 &= x \in \mathbb{R}^m \\
 dZ^e_t &= \frac{1}{\epsilon^2} f(X^e_t, Z^e_t) dt + \frac{1}{\epsilon} g(X^e_t, Z^e_t) dV_t \\
 Z^e_0 &= z \in \mathbb{R}^n \\
 dY^e_t &= h(X^e_t, Z^e_t) dt + \alpha dW_t + \gamma dU_t \\
 Y^e_0 &= 0 \in \mathbb{R}^d \\

 u^e &= u_0 + u_1 + u_2 + R + Q. \\

 \partial_t u_0 &= \left(\overline{g}_S + \overline{g} \right) u_0 + \bar{h} u_0 \partial_t B + \partial_x u_0 \bar{\sigma} \alpha \partial_t B \\
 \partial_t R &= \mathcal{G}^e R + \left(\frac{1}{\epsilon} g_L + g_S \right) u_2 + g_S u_1 + \left(h - \bar{h} \right) u_0 \partial_t B + h (u_1 + u_2 + R) \partial_t B \\
 &\quad + \partial_x u_0 (\sigma - \bar{\sigma}) \alpha \partial_t B + \partial_x (u_1 + u_2) \sigma \alpha \partial_t B \\
 \partial_t Q &= \mathcal{G}^e Q + ((\partial_x R + \partial_x Q) \sigma \alpha + hQ) \partial_t B.
\end{align*}
\]
Table of Contents

1 Objectives and Motivation
2 Problem Statement and Theoretical Results
3 Homogenized (Reduced Order) Particle Based Methods
4 Numerical Demonstration
5 Summary and Future Efforts
6 Accomplishments and Reporting
7 References
Particle Filters [8], [9], [10]

1. \(\{A^j \in \mathbb{R}^{m \times n}\}_{j \in A} \), an ensemble of particles.
2. \(\{w^j\} \), normalized weights: \(\sum_{j \in A} w^j = 1 \).

Approximation of posterior distribution at time \(t_k \)

\[
p(\bar{x}_k|y_k) = \sum_{j \in A} w^j_k \delta_k^i(\bar{x}_k),
\]
1a) At time t_k, set $w_k^j = 1/N, \forall j \in \mathcal{A}$ and

$$p(\xi_k|y_k) = \sum_{j \in \mathcal{A}} w_k^j \delta_k^j (\xi_k).$$

1b) Calculate $\bar{b}, \bar{\sigma}, \bar{h}$.

2) Generate the t_{k+1} prior,

$$p(\xi_{k+1}) = \sum_{j \in \mathcal{A}} w_k^j \delta_{k+1}^j (\xi_{k+1}).$$

3) Collect observation y_{k+1}.

4) Update the weights,

$$w_{k+1}^j \propto w_k^j p(y_{k+1}|\delta_{k+1}^j).$$

5a) If $N_{\text{eff},k} < \delta_{\text{eff}}$, apply (universal) resampling and re-normalize.

5b) Otherwise, re-normalize with l_2 norm.
Homogenized Hybrid Particle Filter

1a) At time t_k, set $w_k^j = 1/N, \forall j \in \mathcal{A}$ and

$$p(\xi_k | y_k) = \sum_{j \in \mathcal{A}} w_k^j \delta_k^j(\xi_k).$$

1b) Calculate $\bar{b}, \bar{\sigma}, \bar{h}$.

2) Generate the t_{k+1} prior,

$$p(\xi_{k+1}) = \sum_{j \in \mathcal{A}} w_k^j \delta_{k+1}^j(\xi_{k+1}).$$

3) Collect observation y_{k+1}.

4) Update the weights using \bar{h},

$$w_{k+1}^j \propto w_k^j p(y_{k+1} | \delta_{k+1}^j).$$

5a) If $N_{\text{eff},k} < \delta_{\text{eff}}$, apply (universal) resampling and re-normalize.

5b) Otherwise, re-normalize with l_2 norm.
Table of Contents

1. Objectives and Motivation
2. Problem Statement and Theoretical Results
3. Homogenized (Reduced Order) Particle Based Methods
4. Numerical Demonstration
5. Summary and Future Efforts
6. Accomplishments and Reporting
7. References
Stochastic FitzHugh-Nagumo [12], [13]

A two-timescale, two-dimensional signal

\[
dX_t^\varepsilon = \left[-(Z_t^\varepsilon)^3 + \sin(\pi t) + \cos(\sqrt{2}\pi t)\right] dt + \sigma dW_t
\]
(4.1)

\[
dZ_t^\varepsilon = -\frac{1}{\varepsilon}(Z_t^\varepsilon - X_t^\varepsilon) dt + \frac{1}{\sqrt{\varepsilon}} dV_t.
\]
(4.2)

And discrete-time observation process,

\[
Y_{t_k}^\varepsilon = X_{t_k}^\varepsilon + \gamma U_{t_k} + \alpha \int_{t_k-1}^{t_k} dW_s,
\]
(4.3)

\[U_{t_k} \sim \mathcal{N}(0, \Delta t), \quad \Delta t \text{ the observation step-size and correlation is model using an extension of Saha and Gustafsson [11].}
\]

For fixed $X_t^\varepsilon = x$, Z_t^ε becomes an Ornstein-Uhlenbeck process; transition density is Gaussian and approaches $\mu_\infty(z; x)$ at an exponential rate. The effective dynamics for X_t^ε is,

\[
dX_t^0 = -(X_t^0)^3 - \frac{3}{2}X_t^0 + \sin(\pi t) + \cos(\sqrt{2}\pi t) + \sigma dW_t.
\]
(4.4)
Likelihood for Correlated Sparse Observations

\[
p(y_k|x_k, x_{k-1}, \ldots, x_{j-1}) \propto \mathcal{N}\left(h(x_k) + \tilde{S}^T\tilde{Q}^{-1}(X_{j-1:k} - f(X_{j-1:k})), R_k - \tilde{S}^T\tilde{Q}^{-1}\tilde{S}\right).
\]
FitzHugh-Nagumo Simulation Results

Filter	PF	HHPF	PF	HHPF
α | 0 | 0 | $\sqrt{0.1}$ | $\sqrt{0.1}$
RMSE | 0.779 | 0.825 | 0.766 | 0.808
Run-Time | 55.68 s | 10.44 s | 56.83 s | 10.42 s
Multiscale Stochastic Lorenz ’96 Model [14], [15], [16], [17]

1. Mid-Latitude Atmospheric Dynamics
2. Linear Dissipation
3. External Forcing F
4. Quadratic Advection-Like Terms (Conserve Total Energy)
5. Chaotic for a wide range of F, h_x, h_z

\[
\begin{align*}
\frac{dX_t^k}{dt} &= (X_t^{k-1} (X_t^{k+1} - X_t^{k-2}) - X_t^k + F + \frac{h_x}{J} \sum_{j=1}^{J} Z_t^{k,j})dt + \sigma_x dW_t^k, \quad k = 1, \ldots, K \\
\frac{dZ_t^{k,j}}{dt} &= \frac{1}{\varepsilon} \left(Z_t^{k,j+1} (Z_t^{k,j-1} - Z_t^{k,j+2}) - Z_t^{k,j} + h_z X_t^k \right) dt + \frac{1}{\sqrt{\varepsilon}} \sigma_z dV_t^j, \quad j = 1, \ldots, J \\
\dot{Y}_t^e &= X_t^e + \sqrt{1 - \alpha^2} U_t^e + \alpha \int_{t_{k-1}}^{t_k} \sigma_x dW_s, \\
U_t^e &\sim \mathcal{N}(0_{K \times 1}, \Delta t \sigma_x \sigma_x^*).
\end{align*}
\]
Lorenz ’96 Simulation Results

In (gray), the X_t^1 marginal density when $\epsilon = 1E-2$ and $\epsilon = 1E-3$.

Transition densities of Z_t^ϵ:

$\mu_{15, \Delta_m} (Z_0^1; X_0 = x, Z_0^\epsilon)$, for randomly generated Z_0^ϵ; the first component is Z_0^1.
Lorenz ’96 Simulation Results

![Graphs showing time series data with error](image)

<table>
<thead>
<tr>
<th>Filter</th>
<th>PF</th>
<th>HHPF</th>
<th>HHPF<sub>c</sub></th>
<th>enKF</th>
<th>henKF</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>14.2018</td>
<td>15.1619</td>
<td>5.6847</td>
<td>2.7767</td>
<td>2.8725</td>
</tr>
<tr>
<td>Run-Time</td>
<td>338 s</td>
<td>35 s</td>
<td>59 s</td>
<td>412 s</td>
<td>30 s</td>
</tr>
<tr>
<td>RMSE</td>
<td>14.2202</td>
<td>15.3279</td>
<td>5.7458</td>
<td>2.9318</td>
<td>2.8172</td>
</tr>
<tr>
<td>Run-Time</td>
<td>315 s</td>
<td>34 s</td>
<td>60 s</td>
<td>400 s</td>
<td>28 s</td>
</tr>
</tbody>
</table>
Presented:

(i) Quantitative rate of convergence for slow signal-sensor correlation case.
(ii) Results toward a quantitative rate of convergence for intermediate case with and without slow signal-sensor correlation.
(iv) Numerical investigations with reduced order (homogenized hybrid) particle based filters with correlated sensor noise.

Future Efforts:

(I) Estimates for intermediate and slow signal-sensor noise correlation.
(II) Development of techniques to address the fast signal-sensor noise correlation problem as well as the full multi-scale correlated noise case.
(III) Develop efficient and robust methods to produce lower-dimensional recursive nonlinear filtering equations driven by the observations; particle filters for the integration of observations with the simulations of large-scale complex systems.
(IV) Develop an integrated framework that combines the ability to dynamically steer the measurement process, extracting useful information, with nonlinear filtering for inference and prediction of large scale complex systems.
Accomplishments:

- Full funding of Hoong Chieh Yeong (2017 Ph.D.), partial funding of Nishanth Lingala (2018 Ph.D.), continuing students: Ryne Beeson (Ph.D.) and Kyle Cochran (M.S.).

Book Chapters:

Journal Articles:

- Yeong, H. C., et al., Particle Filters with Nudging in Multiscale Chaotic Systems: with Application to the Lorenz-96 Atmospheric Model; Submitted Journal of Nonlinear Science

- Lingala, N., Namachchivaya, N. Sri, et al.; Random perturbations of a periodically driven nonlinear oscillator: escape from a resonance zone; Nonlinearity, (30, 4, 1376); 2017

- Namachchivaya, S. N., and Wihstutz, V., Asymptotic Analysis of the Lyapunov Exponent, the Rotation Number and the Invariant Measure for Scalar Stochastic Delay Equations Perturbed by Markovian Noise; Submitted 2018

Conference Proceedings:

- Beeson, R., et al., Reduced Order Nonlinear Filters for Multi-scale Systems with Correlated Sensor Noise; Symposium on Dynamical Systems and Related Fields; Waterloo, Ontario; CA; May 2018

- Beeson, R., et al., Reduced Order Nonlinear Filters for Multi-scale Systems with Correlated Sensor Noise; FUSION 2018; Cambridge, UK; July 2018
References

