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Recent Innovations to Pipeline:

1. Original pipeline evolved from 

5Hz (on Quadcore) to 12 Hz 

(on single board computer –

Atom). Speedups being

2. New navigation algorithms for 

rate estimation - as a byproduct 

[ASME JDMC ]

1. Linear algorithm 

2. Iter. EKF for this purpose 

3. Algorithms for data driven noise 

covariance and outlier rejection. 

[CVPR 2017 paper, Wong 

Dissertation]



Proximity Operation Emulation 

Experiments

Question: Can I perform rate estimation directly from the images 

(with a coregistered range sensor)? 



My PDF 

has three 

modes –

phew!

Mine’s really 

skewed!!

Engineer’s Talk Du Jour …
My uncertainty is worse than yours!

• Image operations
– Image formation

– Feature extraction (complex PAMI algorithms)

– Feature tracking

• Unique challenges 
– Discretization (pixels) – random variables of 

high dimensions

– Underlying physical process is continuous…

How to derive uncertainty from the Data? 

How to rapproache with underlying physics? 



Orbital Express Challenge: Close Range and Long Range

DARPA Spacecraft Servicing Challenge



Features, features everywhere!

Scale space paradigm 

merges frequency and 

spatial domain 

considerations for 

extrema detection

Descriptor is a local 

identification tag to 

make subsequent 

identification possible. 

It was great to have Profs 

Pouha and Zucker talk 

about related decision 

problems yesterday!



KLT Tracker: Summary

I1(x,y) @ t I2(x,y) @ t+

window window

General deformation models

Common use:

Brightness constancy

Least squares estimate of 

displacement



Uncertainty Analysis of KLT Tracker

• Exploit local nature and already computed feature track. 

• Any multiple extrema in the window get thrown out already

• Conjecture: prior pdf for the tracked feature is a Gaussian with statistics proportional to the window size.

• Develop local series expansion for the displacement field

• Compute error statistics from linear error theory. 

• Nonlinear extensions for full mass function propagations can be carried out (typically only of academic interest). 



KLT Sensitivity Calculations



Uncertainty Analysis of the KLT Tracker



Uncertainty Analysis of KLT Tracker



Uncertainty Analysis of KLT

Key Observations

1. When track uncertainty balloons => highly likely we will lose it. 

2. Large motion problems => our constant shift model doesn’t capture 

effectively, so UQ is optimistic in that case. 



Relative Pose Estimation Problem (3D correspondences)

Euclidean transformation:

Cayley transform:

Rearranging equations:

Pose Estimates

Relative pose estimation is a linear 

algebra problem!



Rate Estimation
Over short interval time periods between measurements, let us consider expansion of relative pose 

parameters

Translation vector Rotation parameterization

Cross product matrix: 

Rearranging equation:

Redefining:



Rate Estimation

Note the similarity with relative pose estimation problem. 

Rearranging further, we get

General regression matrix

Least squares solution



Experimental Results: Experiment 1

(a) Left frame 1 (b) Left frame 100 (c) Left frame 200

(d) Right frame 1 (e) Right frame 100 (f) Right frame 200

Fig. 2: 3 out of 200 pair of stereo images input to experiment 1

(a)
(b)

Fig. 3: Views of estimated global 3D map at different view direction and estimated camera pose of the experiment 1.
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Fig. 4: Estimated relative translation of the experiment 1 (solid blue line) and estimated standard deviation bound (red dash

line)
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Relative pose estimates

(a) q̇1 (b) q̇2 (c) q̇3

(d) s q̇1 (e) s q̇2 (f) s q̇3

Fig. 5: (a)-(c)Estimated relativeCRPrateof theexperiment 1 (solid blue line) and (d)-(f) estimated standard deviation bound

(red dash line)
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(d) s ṫx (e) s ṫy (f) s ṫz

Fig. 6: (a)-(c)Estimated relative translation velocity of the experiment 1 (solid blue line) and (d)-(f) estimated standard

deviation bound (red dash line)
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Fig. 7: Views of estimated global 3D map at different view direction and estimated camera pose of the experiment 2.

Pose rates:
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Fig. 6: (a)-(c)Estimated relative translation velocity of the experiment 1 (solid blue line) and (d)-(f) estimated standard
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Fig. 7: Views of estimated global 3D map at different view direction and estimated camera pose of the experiment 2.



Experimental Results: Comparison with an iEKF

(a) q1 (b) q2 (c) q3

(d) tx (e) ty (f) tz

Fig. 16: Comparison of the EKF and pre-filtered estimates. EKF estimates are shown in blue solid line and pre-filtered

estimates are shown in red solid line. Errors are computed relative to ICP estimated translation. The EKF estimated (blue

dash line) and pre-filtered (red dash line) standard deviations are also plotted.

note in passing that it is possible to reduce the pre-filtered error covariance by including more measurements at each frame

and by picking features with lower levels of uncertainty. However such tuning operations are typically difficult to perform in

an approach where automation is desired.

Fig. 17: A comparison of EKF filtered (top) and Pre-EKF filtered (bottom) result from experiment 1. The misalignment in

the maps produced using thepre-filtered estimates indicate better accuracy for EKF solution.

Tab.1 presents the root mean square (RMS) error comparison of EKF and pre-EKF estimated transformation. RMS

errors do not represent element wise performance of both estimators. For instance, the errors in the pre-filtered estimates

show an instantaneous jump around 170sec time in Fig. 16 (b), while the RMS errors do not reflect this deviation due

to averaging. However, a general trend is observed. While the orientation estimates are of the same order of magnitude,

the translational error estimates are improved by a factor of two. This is a remarkable result, since the translation errors

are related to the output residual errors associated with the relative pose measurement model. This result means that a

systematic component of the translation vector is estimated by imposing the platform motion constraints in the estimation

process. Time history of the residual errors incurred by both estimation schemes is plotted in Fig.18. The residual error

time history confirms the assessment that the EKF solution is slightly more accurate and also exhibits a lower amplitude

of high frequency fluctuations in the residual errors. The smoothing effect of the dynamic model therefore pre-conditions

Smoother estimates used as the de-facto ground truth
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Tab.1 presents the root mean square (RMS) error comparison of EKF and pre-EKF estimated transformation. RMS

errors do not represent element wise performance of both estimators. For instance, the errors in the pre-filtered estimates

show an instantaneous jump around 170sec time in Fig. 16 (b), while the RMS errors do not reflect this deviation due

to averaging. However, a general trend is observed. While the orientation estimates are of the same order of magnitude,

the translational error estimates are improved by a factor of two. This is a remarkable result, since the translation errors

are related to the output residual errors associated with the relative pose measurement model. This result means that a

systematic component of the translation vector is estimated by imposing the platform motion constraints in the estimation

process. Time history of the residual errors incurred by both estimation schemes is plotted in Fig.18. The residual error

time history confirms the assessment that the EKF solution is slightly more accurate and also exhibits a lower amplitude

of high frequency fluctuations in the residual errors. The smoothing effect of the dynamic model therefore pre-conditions

• Degenerates to the relative pose estimation when information is 

insufficient

• We have implementations that adapt and provide appropriate 

rate information dependent on information density 

• Iterative EKF implementation based 

upon solution to linear algebra 

problem 

• Covariance improves in state space

• Alignment improves by dynamical 

system constraints

• Weights of both problems depend on 

motion model fidelity



Applications: Photometric Stereo

Normal vector estimates Feature Tracking Process

Estimation error

NOTE: not all surfaces have 

been reconstructed well

View #1View #2

Diffuse Model



Applications: Diffuse Moving Bodies

Feature tracks

Est Neg. Normal

Est Pos. Normal

Diffuse Model

Normal Error

• Estimation error greater in areas where the 

relative motion doesn’t add different 

illumination conditions

• Feature track uncertainties enable UQ of 

3D reconstruction.



Photometric Stereo and Mapping 

Normal vector estimates Feature Tracking Process

Estimation error

NOTE: not all surfaces have been reconstructed well

View #2

Diffuse Model
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Fig. 29: A side to side comparison of empirically scaled estimate Apollo surface

(front) to trueobject surface(back) with measurement rendered with Torrance Spar-

row model

(a) True positivenormal Map (b) Estimate positive normal map

Fig. 30: A comparison of true positive normal map and estimated positive normal

map

(a) True negative normal Map (b) Estimate negative normal map

Fig. 31: A comparison of true negative normal map and estimated negative normal

map

Natural space objects such as asteroid generally have a relatively diffuse sur-

face, while carrying weak directional reflection properties like specular reflection.

Oren-Nayar model [28] is a diffuse model that is developed to model such weak

Specular Model/Reconstruction

Specular object



Conclusions

• An approach for uncertainty quantification of KL tracker is developed

• Really useful in various applications – since this approach derives 

uncertainties from data. Many field robotics applications. 

• Integration with guidance, navigation and control. 

• Applications involving autonomous aerial refueling, ship landing, planetary 

exploration, asteroid tracking, debris imaging and satellite servicing. 

Current LASR work.


