

Uncertainty Quantification of Feature Tracking Algorithms

Manoranjan Majji,

Land, Air and Space Robotics Laboratory, Texas A&M University

Puneet Singla,

Penn State, State College, PA.

I would like to acknowldege the following colleagues for their contributions in various stages: Xue Iuan Wong, Austin Probe, Abhay Masher, Jeremy Davis and James Doebbler.

Land Air and Space Robotics

ratory

Sensing Systems iGPS

Localization System

Vicon

Motion Capture System

Phase Space

Motion Capture System

LASR developed during FY2006-2011 via AF, NASA, TAMU & IC Investments

Computational Vision

3D Imaging/Sensing

Ground-Based Robotics

Quad-Rotor Aerial Robotics

Robotics Lab Facility Specs:

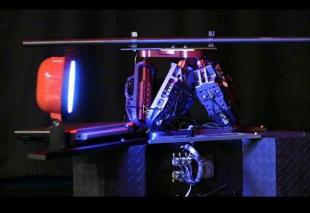
- 3 Independent Metrology Systems
- Mm Precision Navigation (100HZ)
- **2000** sq. ft. Flat Floor

- Real Time Information Fusion & Control
- Reconfigurable Wireless Comm.

Land Air & Space Robotics Laboratory

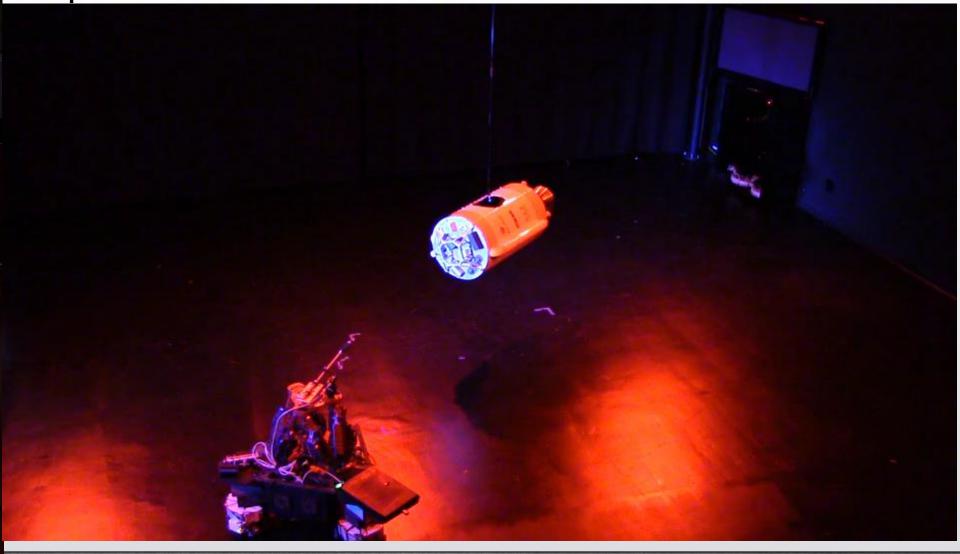
Recent Innovations to Pipeline:

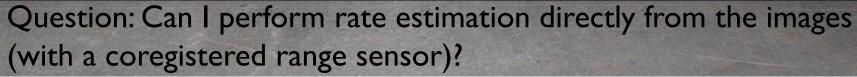
- Original pipeline evolved from 5Hz (on Quadcore) to 12 Hz (on single board computer – Atom). Speedups being
- 2. New navigation algorithms for rate estimation as a byproduct [ASME JDMC]
 - I. Linear algorithm
 - 2. Iter. EKF for this purpose
- Algorithms for data driven noise covariance and outlier rejection. [CVPR 2017 paper, Wong Dissertation]

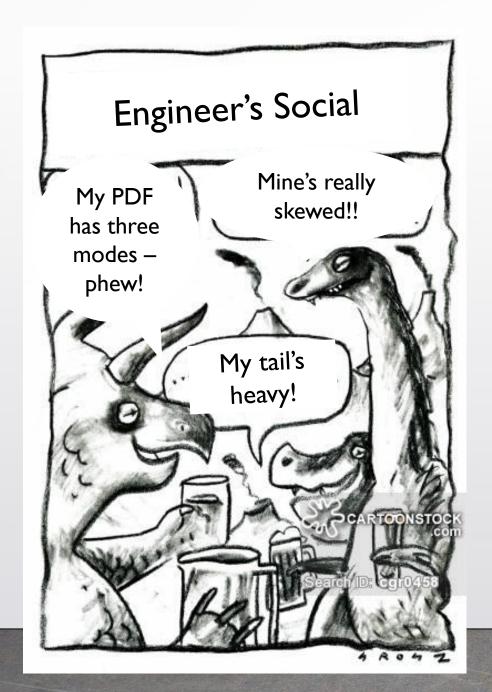


Proximity Operation Emulation Experiments

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY







Engineer's Talk Du Jour ... My uncertainty is worse than yours!

Image operations

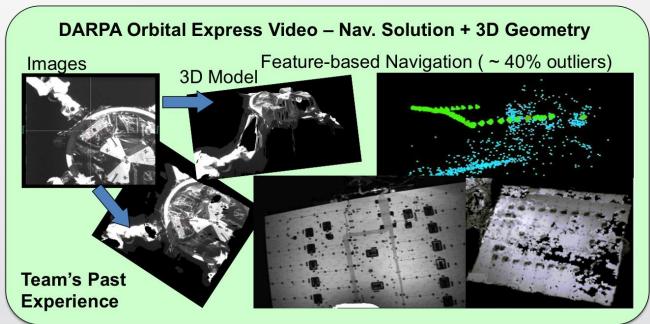
- Image formation
- Feature extraction (complex PAMI algorithms)
- Feature tracking

Unique challenges

- Discretization (pixels) random variables of high dimensions
- Underlying physical process is continuous...

How to derive uncertainty from the Data? How to rapproache with underlying physics?

Orbital Express Challenge: Close Range and Long Range



Features, features everywhere!

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY

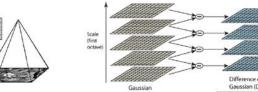
Land Air & Space Robotics Laboratory

1. Scale Space Extrema Detection

Find extrema in (x,y) and scale space (k) of the Gaussian blurred image operator:

$$H(x,y,k\sigma) = G(x,y,k\sigma)*I(x,y)$$

SIFT Uses Difference of Gaussian Approx



SURF Uses Derivative Approximations of Gaussians in form of Box Filters

4. Feature Descriptor Vector

SIFT:

SURF:

Uses Interest Point Gradient
Magnitude and orientation
and feature texture gradient
distribution in region
surrounding Keypoints

Uses Haar Wavelet Responses for Feature Vector calculation

3. Texture Gradient Estimate

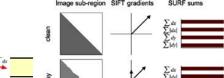
SIFT Uses Interest Point Gradient
Magnitude and orientation

$$m(x,y) = \sqrt{\frac{\left(H(x+1,y)-H(x-1,y)\right)^2}{+\left(H(x,y+1)-H(x,y-1)\right)}}$$

$$\theta(x,y) = \tan^{-1}\left(\frac{H(x+1,y)-H(x-1,y)}{H(x,y+1)-H(x,y-1)}\right)$$

SURF Uses Haar Wavelet Response (Box Filter version)

Image sub-region SIFT gradients



2. Keypoint Localization

SIFT &

- 1. Determinant of Hessian/Trace of Hessian Measures $H_{_{\mathbf{XY}}}$
- 2. Weak maxima suppression

SURF

3. Gauss Newton Search in 3D (x, y, k) to refine

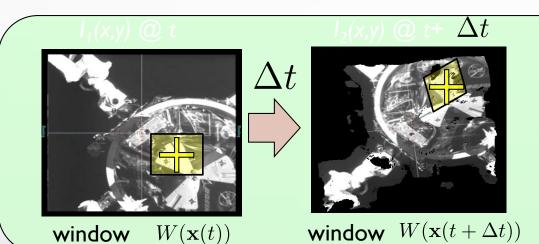
Scale space paradigm merges frequency and spatial domain considerations for extrema detection

Descriptor is a local identification tag to make subsequent identification possible.

It was great to have Profs Pouha and Zucker talk about related decision problems yesterday!

KLT Tracker: Summary

Land Air & Space Robotics Laboratory



General deformation models

$$\mathbf{x}(t + \Delta t) = \mathbf{h}(\mathbf{x}(t + \Delta t))$$

Common use:

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \mathbf{d}$$

$$\mathbf{x}(t + \Delta t) = A\mathbf{x}(t) + \mathbf{d}$$

$$I(\mathbf{x}(t+\Delta t),t) = I(\mathbf{x}(t),t) + \nabla I^T \mathbf{d} + I_t \qquad \min \ E(\mathbf{d}) = \sum_{W(\mathbf{x})} \left[\nabla I^T \mathbf{d} + I_t \right]^2$$
 Brightness constancy

$$\sum_{W(\mathbf{x})} \nabla I \left[\nabla I^T \mathbf{d} + I_t \right] = 0 \qquad \left[\begin{array}{cc} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{array} \right] \mathbf{d} = - \left[\begin{array}{cc} \sum I_x I_t \\ \sum I_y I_t \end{array} \right]$$

$$A\mathbf{d}=B$$
 $\hat{\mathbf{d}}=(A^TA)^{-1}A^TB$ Least squares estimate of displacement

Uncertainty Analysis of KLT Tracker

Land Air & Space Robotics Laboratory

- Exploit local nature and already computed feature track.
 - Any multiple extrema in the window get thrown out already
- Conjecture: prior pdf for the tracked feature is a Gaussian with statistics proportional to the window size.

Develop local series expansion for the displacement field

$$\hat{\mathbf{d}} = \mathbf{d} + \begin{bmatrix} \partial \mathbf{d} \\ \partial \mathbf{x} \end{bmatrix}_{\hat{\mathbf{d}}} \delta \mathbf{x} + HOT$$

Compute error statistics from linear error theory.

$$E(\delta \mathbf{d}\delta \mathbf{d}^{T}) = \left[\frac{\partial \mathbf{d}}{\partial \mathbf{x}}\right]_{\hat{\mathbf{d}}} P_{\mathbf{x}} \left[\frac{\partial \mathbf{d}}{\partial \mathbf{x}}\right]_{\hat{\mathbf{d}}} + HOT$$

Nonlinear extensions for full mass function propagations can be carried out (typically only of academic interest).

KLT Sensitivity Calculations

$$\begin{bmatrix} \sum_{t=1}^{1} I_{x}^{2} & \sum_{t=1}^{1} I_{y} \\ \sum_{t=1}^{1} I_{y} & \sum_{t=1}^{1} I_{y}^{2} \end{bmatrix} \mathbf{d} = -\begin{bmatrix} \sum_{t=1}^{1} I_{x} I_{t} \\ \sum_{t=1}^{1} I_{y} I_{t} \end{bmatrix}$$
 $A\mathbf{d} = B$

$$A\mathbf{d} = B$$

$$A\left[\frac{\partial \mathbf{d}}{\partial \mathbf{x}}\right] = \begin{bmatrix} B_u - A_u \mathbf{d} & \vdots & B_v - A_v \mathbf{d} \end{bmatrix}$$

$$\left[\frac{\partial \mathbf{d}}{\partial \mathbf{x}}\right] = (A^T A)^{-1} \left[B_u - A_u \mathbf{d} \quad \vdots \quad B_v - A_v \mathbf{d} \right]$$

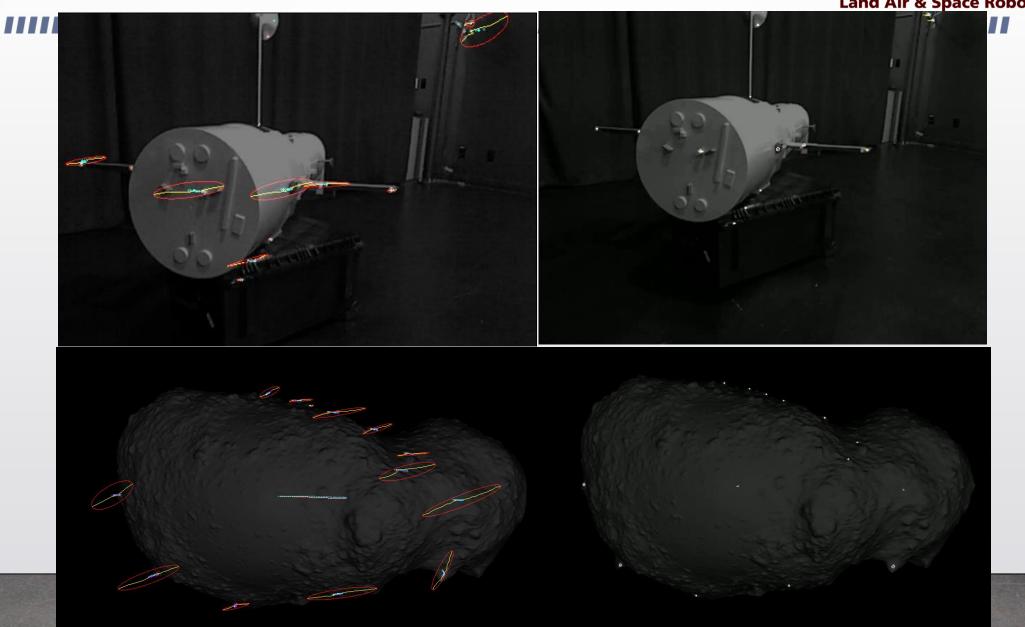
$$A_u = \sum \begin{bmatrix} 2I_x I_{xx} & I_{xx} I_y + I_x I_{xy} \\ I_{xx} I_y + I_x I_{xy} & 2I_y I_{xy} \end{bmatrix} \quad B_u = \sum \begin{bmatrix} I_{xx} I_t \\ I_{xy} I_t \end{bmatrix}$$

$$A_v = \sum \begin{bmatrix} 2I_x I_{xy} & I_{xy} I_y + I_x I_{yy} \\ I_{yx} I_y + I_x I_{yy} & 2I_y I_{yy} \end{bmatrix} \qquad B_v = \sum \begin{bmatrix} I_{xy} I_t \\ I_{yy} I_t \end{bmatrix}$$

Uncertainty Analysis of the KLT Tracker

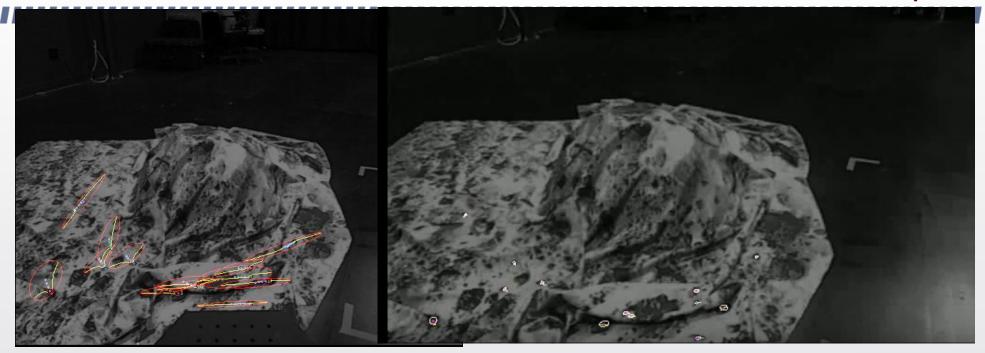
AEROSPACE ENGINEERING

EXAS A&M UNIVERSITY

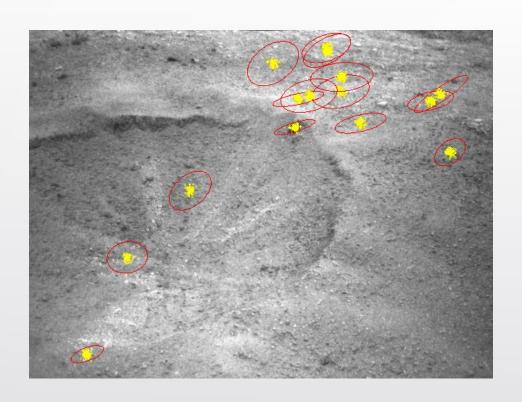


Uncertainty Analysis of KLT Tracker

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY



Uncertainty Analysis of KLT

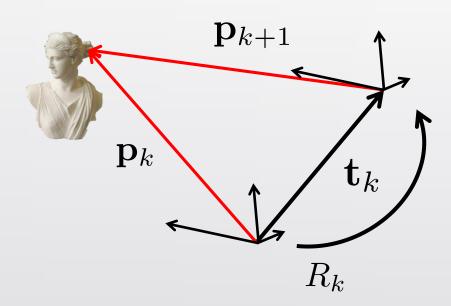


Key Observations

- I. When track uncertainty balloons => highly likely we will lose it.
- 2. Large motion problems => our constant shift model doesn't capture effectively, so UQ is optimistic in that case.

Land Air & Space Robotics Laboratory

Relative Pose Estimation Problem (3D correspondences)



Relative pose estimation is a linear algebra problem!

Euclidean transformation:

$$\mathbf{p}_{k+1} = R_k \mathbf{p}_k + \mathbf{t}_k$$

Cayley transform:

$$R = (I + [\tilde{\mathbf{q}}])^{-1}(I - [\tilde{\mathbf{q}}]) = (I - [\tilde{\mathbf{q}}])(I + [\tilde{\mathbf{q}}])^{-1}$$

Rearranging equations:

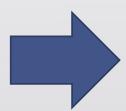
$$(I+Q(\mathbf{q}_k))\mathbf{p}_{k+1} = (I-Q(\mathbf{q}_k))\mathbf{p}_k + (I+Q(\mathbf{q}_k))\mathbf{t}_k$$

$$\mathbf{b}_k = [ilde{\mathbf{a}}_k]\mathbf{q}_k + \mathbf{t}_k'$$

$$\mathbf{b}_k = \mathbf{p}_{k+1} - \mathbf{p}_k$$

$$\mathbf{a}_k = \mathbf{p}_{k+1} + \mathbf{p}_k$$

$$egin{array}{c|c} \mathbf{b}_k^1 & \mathbf{b}_k^2 \\ \vdots & \mathbf{b}_l^m \end{array} = egin{array}{c|c} [ilde{\mathbf{a}}^1] & I_3 \\ [ilde{\mathbf{a}}^2] & I_3 \\ \vdots & \vdots \\ [ilde{\mathbf{a}}^m] & I_3 \end{array} egin{array}{c} \mathbf{q}_k \\ \mathbf{t}_k' \end{aligned}$$



Pose Estimates

$$\begin{bmatrix} \mathbf{q}_k \\ \mathbf{t}_k' \end{bmatrix} = B^{\dagger}$$

 $egin{array}{c|c} \mathbf{b}_k^1 & \\ \mathbf{b}_k^2 & \\ \vdots & \\ \mathbf{b}^m \end{array}$

Rate Estimation

Over short interval time periods between measurements, let us consider expansion of relative pose parameters

Translation vector

$$\mathbf{t} = \mathbf{a}_1 + \mathbf{a}_2 \Delta t + \frac{1}{2} \mathbf{a}_3 \Delta t^2$$

Cross product matrix:

Rotation parameterization

$$\mathbf{q} = \mathbf{b}_1 + \mathbf{b}_2 \Delta t + \frac{1}{2} \mathbf{b}_3 \Delta t^2$$

$$\tilde{\mathbf{q}} = Q(\mathbf{b}_1) + Q(\mathbf{b}_2)\Delta t + \frac{1}{2}Q(\mathbf{b}_3)\Delta t^2$$

Rearranging equation:
$$(I+g)$$

Redefining:
$$\mathbf{c}_i = (I + Q(\mathbf{q}))\mathbf{a}_i$$

$$(I + Q(\mathbf{b}_1) + Q(\mathbf{b}_2)\Delta t + \frac{1}{2}Q(\mathbf{b}_3)\Delta t^2)\mathbf{p}_{k+1} = (I - Q(\mathbf{b}_1) - Q(\mathbf{b}_2)\Delta t - \frac{1}{2}Q(\mathbf{b}_3)\Delta t^2)\mathbf{p}_k$$
$$+ (I + Q(\mathbf{q}))(\mathbf{a}_1 + \mathbf{a}_2\Delta t + \frac{1}{2}\mathbf{a}_3\Delta t^2)$$

$$(I + Q(\mathbf{b}_1) + Q(\mathbf{b}_2)\Delta t + \frac{1}{2}Q(\mathbf{b}_3)\Delta t^2)\mathbf{p}_{k+1} = (I - Q(\mathbf{b}_1) - Q(\mathbf{b}_2)\Delta t - \frac{1}{2}Q(\mathbf{b}_3)\Delta t^2)\mathbf{p}_k + \mathbf{c}_1 + \mathbf{c}_2\Delta t + \frac{1}{2}\mathbf{c}_3\Delta t^2$$

Rate Estimation

Rearranging further, we get

$$\mathbf{p}_{k+1} - \mathbf{p}_k = -(Q(\mathbf{b}_1) + Q(\mathbf{b}_2)\Delta t + \frac{1}{2}Q(\mathbf{b}_3)\Delta t^2)(\mathbf{p}_{k+1} + \mathbf{p}_k) + \mathbf{c}_1 + \mathbf{c}_2\Delta t + \frac{1}{2}\mathbf{c}_3\Delta t^2$$

Note the similarity with relative pose estimation problem.

$$\zeta_{k,k+1} = \left[Q(\rho_{k,k+1}), Q(\rho_{k,k+1}) \Delta t, \frac{1}{2} Q(\rho_{k,k+1}) \Delta t^2, I_{3\times 3}, I_{3\times 3} \Delta t, \frac{1}{2} I_{3\times 3} \Delta t^2 \right]$$

General regression matrix

$$\Xi = H\mathbf{x}$$

$$\Xi = \begin{bmatrix} \zeta_{k-1,k} \\ \zeta_{k-2,k} \\ \zeta_{k-3,k} \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_3 \end{bmatrix}^T$$

Least squares solution

$$\mathbf{x} = (H^T W H)^{-1} H^T W \Xi$$

$$H = \begin{bmatrix} Q(\rho_{k-1,k}), & Q(\rho_{k-1,k})\Delta t, & \frac{1}{2}Q(\rho_{k-1,k})\Delta t^{2}, & I_{3\times3}, & I_{3\times3}\Delta t, & \frac{1}{2}I_{3\times3}\Delta t^{2} \\ Q(\rho_{k-2,k}), & Q(\rho_{k-2,k})(2\Delta t), & \frac{1}{2}Q(\rho_{k-2,k})(2\Delta t)^{2}, & I_{3\times3}, & I_{3\times3}(2\Delta t), & \frac{1}{2}I_{3\times3}(2\Delta t)^{2} \\ Q(\rho_{k-3,k}), & Q(\rho_{k-3,k})(3\Delta t), & \frac{1}{2}Q(\rho_{k-3,k})(3\Delta t)^{2}, & I_{3\times3}, & I_{3\times3}(3\Delta t), & \frac{1}{2}I_{3\times3}(3\Delta t)^{2} \end{bmatrix}$$

Land Air & Space Robotics Laboratory

Experimental Results: Experiment 1

(a) Left frame 1

(d) Right frame 1

(b) Left frame 100

(e) Right frame 100

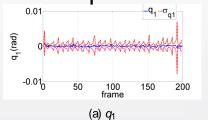


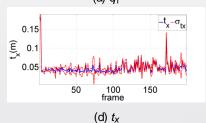
(c) Left frame 200

(f) Right frame 200

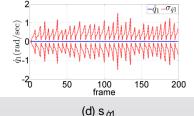
(a)

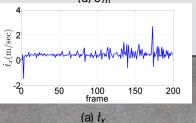
Relative pose estimates



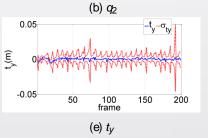


Pose rates:



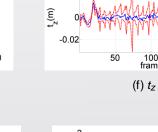


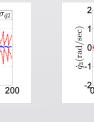
x 10⁻³
15
15
10
50
100
150
200

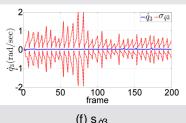


(e) s &

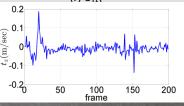
(b) t_v





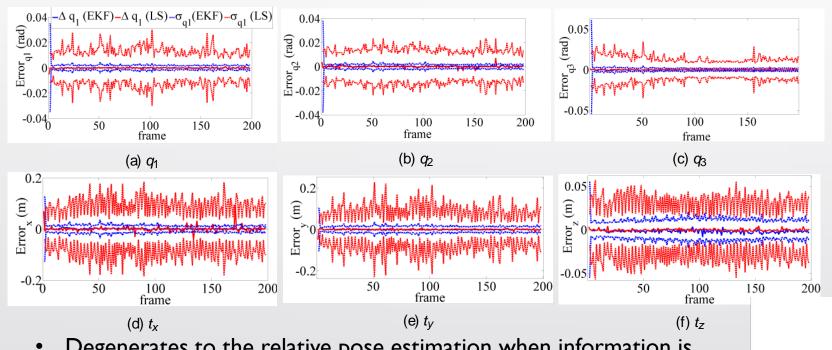


(c) q_3



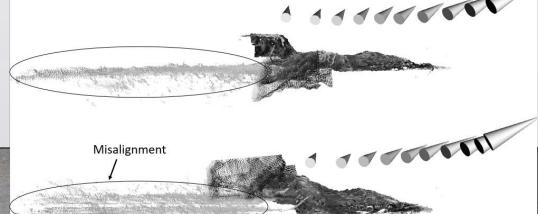
(c) t₇

Experimental Results: Comparison with an iEKF

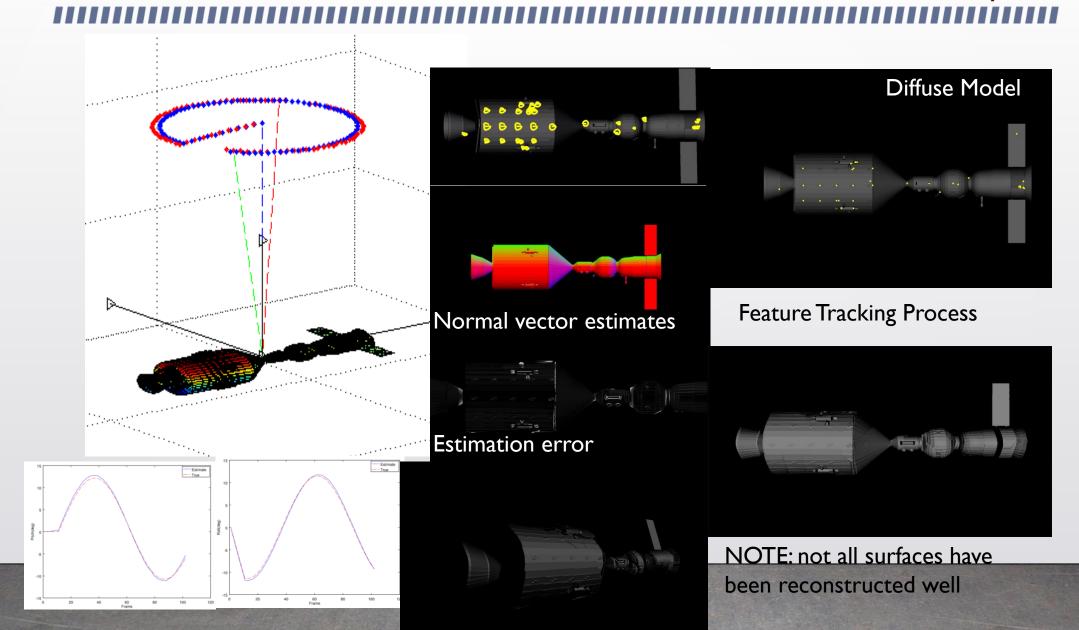


- Degenerates to the relative pose estimation when information is insufficient
- We have implementations that adapt and provide appropriate rate information dependent on information density

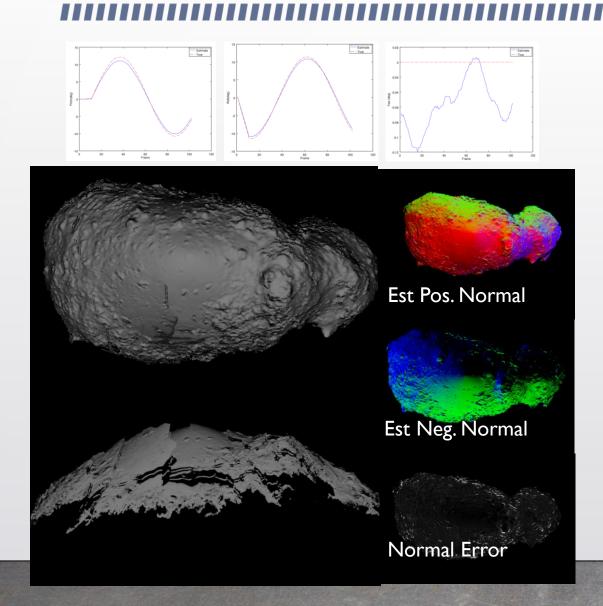
- Iterative EKF implementation based upon solution to linear algebra problem
- Covariance improves in state space
- Alignment improves by dynamical system constraints
- Weights of both problems depend on motion model fidelity

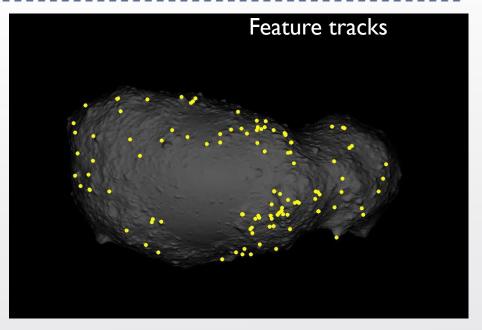


Applications: Photometric Stereo



Applications: Diffuse Moving Bodies

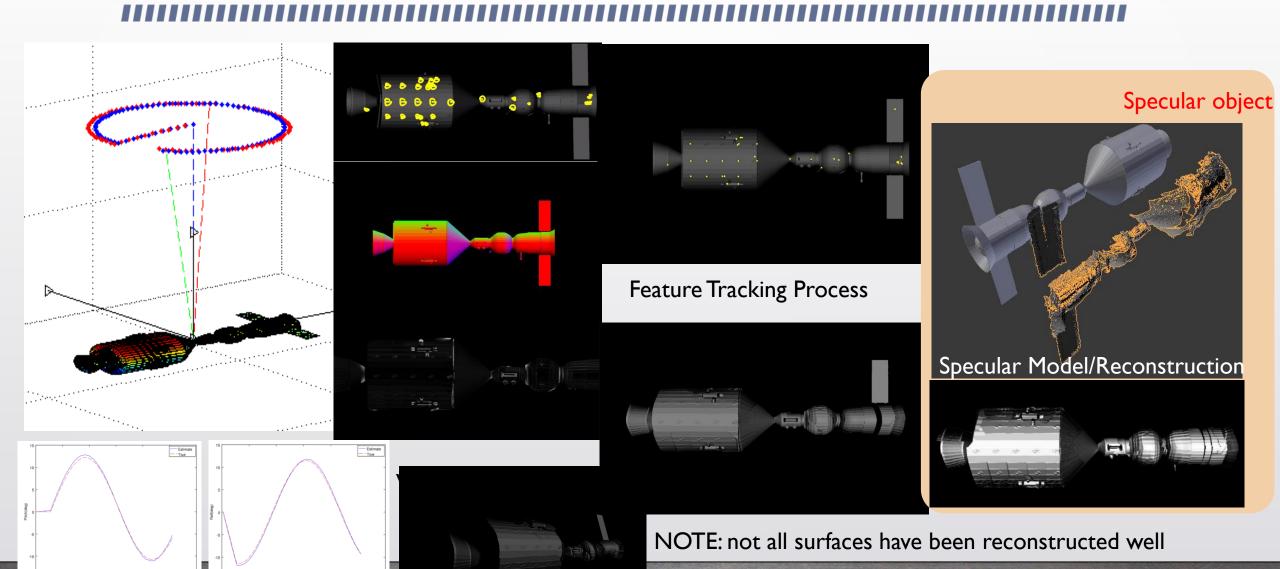




- Estimation error greater in areas where the relative motion doesn't add different illumination conditions
- Feature track uncertainties enable UQ of 3D reconstruction.

Photometric Stereo and Mapping

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY



Conclusions

- An approach for uncertainty quantification of KL tracker is developed
- Really useful in various applications since this approach derives uncertainties from data. Many field robotics applications.
- Integration with guidance, navigation and control.
- Applications involving autonomous aerial refueling, ship landing, planetary exploration, asteroid tracking, debris imaging and satellite servicing.
 Current LASR work.