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Motivation

• Deep Reinforcement Learning

• AlphaGO, Humanoid motion, Quadruped...

Figure: Deep RL Successes
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Motivation

• Extend to Partially Observed Systems?

• Can we extend to very large scale systems such as those
governed by PDEs, for instance, Materials Process Design?

• Application of the DDDAS paradigm in RL.

Initial State Φ
0

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Initial State (b) Target

S. Chakravorty Separation Principle



Motivation
Preliminaries

The Curse of Dimensionality
Remedies for the COD
A Separation Principle

Reinforcement Learning
Conclusion
References

Outline

• Preliminaries

• The Curse of Dimensionality (COD)

• Remedies for the COD

• A Separation Principle

• Reinforcement Learning

• Conclusion
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Preliminaries

• Control dependent transition density p(x′/x, u) and a cost
function c(x, u).

• Stochastic Optimal Control Problem/ Markov Decision
Problem (MDP):

JT (x0) = min
ut(.)

E[
T∑
t=0

c(xt, ut(xt)) + g(xT )].

• Dynamic Programming Equation:

JN (x) = min
u
{c(x, u) + E[JN−1(x

′)]}, J0(x) = g(x),

u∗N (x) = arg min
u
{c(x, u) + E[JN−1(x

′)]}.
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Preliminaries

• Sensing uncertainty given by measurement likelihood p(z/x)
→ Partially Observed/ Belief Space Problem (POMDP):

JT (b0) = min
ut(.)

E[

T∑
t=0

c(bt, ut(bt)) + g(bT )],

JN (b) = min
u
{c(b, u) + E[JN−1(b

′)])}, J0(b) = g(b).

• b(x) denotes the “belief state” / pdf of the state governed by
the recursive Bayesian Filtering equation.
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The Curse of Dimensionality

• Richard Bellman, the discoverer of MDPs and the DP
equation, also coined the term “the Curse of Dimensionality”.

• Refers to the phenomenon that the complexity of the DP
problem increases exponentially in the dimension of the state
space of the problem!

• Naively speaking, discretizing the DP equation on a grid with
K intervals:

JN (xi) ≈ min
u
{c(xi, u) +

∑
j

p(xj/xi, u)JN−1(xj)]},

we have to solve a nonlinear recursion with Kd variables.
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ADP/ RL
MPC

ADP/ RL

• Approximate Dynamic Programming (ADP)/
Reinforcement Learning (RL) techniques [1].

• Policy Evaluation step in policy iteration for discounted DP:
we want to evaluate the cost-to-go under a given policy µ(.),
say Jµ(.).

• Assume that the cost-to-go can be linearly parametrized in
terms of some “smart” basis functions
{φ1(x), φ2(x)..., φK(x)}: Jµ(x) =

∑N
i=1 αiφi(x).
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ADP/ RL
MPC

ADP/ RL

• Policy Evaluation reduces to solving the linear equation for
the co-efficients αi of the cost-to-go function:

[I − βL]ᾱ = c̄, where c̄ = [ci],

ci =

∫
c(x, µ(x))︸ ︷︷ ︸

cµ(x)

φi(x)dx, i = 1, 2, · · ·N ;

Lij =

∫ ∫
pµ(x′/x)φi(x

′)φj(x)dx′dx, i, j = 1 · · ·N.

• The integrals above can either be evaluated analytically, for
instance, using quadratures, or via Monte Carlo sampling
trajectories {xt} as in RL: Lij ≈ 1

M

∑M−1
t=0 φi(xt+1)φj(xt).
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ADP/ RL
MPC

ADP/ RL

• The issue is that the number of samples required to get a
“good” estimate of Lij , and hence the cost-to-go, is still
exponential in the dimension of the problem.

• This is due to the fact that a sparse basis Φ is usually never
known a priori → the number of basis functions is still
exponential in the dimension of the problem.

• The set of learning experiments is largely done using
heuristics.
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ADP/ RL
MPC

MPC

• Model Predictive Approach: rather than solve the DP
problem backward in time, these approaches explore the
reachable space forward in time from a given state [2, 3, 4].

• As shown in the seminal paper [2], these methods are no
longer subject to exponential complexity in dimension of the
problem.
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ADP/ RL
MPC

MPC

• However, the method scales as (|A||C|)D where D is the
depth of the lookahead tree, |A| is the number of actions and
|C| is the number of children from every action required for a
good estimate of the cost-to-go.

• May be infeasible for continuous state, observation and action
space problems.
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ADP/ RL
MPC

MPC

• Model Predictive Control [5]: rather than solve the DP
problem, it solves the deterministic open loop (noise-less)
problem at every time step:

JT (x0) = min
ut

T∑
t=0

c(xt, ut) + g(xT ).

• Can be shown to coincide with DP solution in deterministic
systems.

• However, for systems with uncertainty, the MPC approach is
heuristic since the optimization above needs to be over
control policies ut(.), and not a control sequence ut.

• MPC approaches typically fully observed.
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Basic Idea
Belief Space Generalization

A Separation Principle

• Let the transition function be described by the following state
space model:

xt = f(xt−1, ut−1, εwt−1),

where wt is a white noise sequence, and ε > 0 is a “small”
parameter.

• Let the feedback law be of the form ut(xt) = ūt +Ktδxt,
where δxt = xt − x̄t, x̄t = f(x̄t−1, ūt−1, 0), and Kt is some
linear time varying feedback gain.
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Basic Idea
Belief Space Generalization

Basic Idea

• Let the cost of the nominal trajectory (plan) be given by J̄T
and let the sample stochastic cost be given by JT (ω).

• Main Result: Given ε is sufficiently small, JT = J̄T + δJ ,
and E[δJ ] = 0.

• This implies E(JT ) = J̄T , for any nominal control sequence,
which in turn implies that this is true also for the optimal
sequence.

• Hence, in the small noise case, optimizing the open loop
sequence ūt, and wrapping a (linear) feedback law around it
subsequently is near optimal (coincides with DP)!
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Basic Idea
Belief Space Generalization

Basic Idea

• Separation Principle: We may design the open loop optimal
law, without considering feedback, since it does not affect the
stochastic optimal cost, and hence, the design of the open
loop and the closed loop in Stochastic Optimal Control can be
separated.

• Unlike MPC, the design considers the feedback, but shows
that it is decoupled from the open loop design.
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Basic Idea
Belief Space Generalization

Basic Idea

• Practically, it means that we do not have to replan at every
time step as in MPC.

nominal	trajectory	

Actual	Trajectory	

Domain	of	A3rac4on	of	
nominal	feedback	design	

Replanning	Triggered		
when	actual	trajectory	deviates		
too	much	from	nominal	

(d) Replanning
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Figure: Replanning is typically a very rare event (O( 1
ε ) time steps)
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Basic Idea
Belief Space Generalization

Belief Space Generalization (T-LQG)

• Belief Space Generalization (T-LQG): Let the observation
model be given by, zk = h(xk) + vk.

• Assume belief is Gaussian.

• The open loop plan optimizes the nominal, or most likely,
evolution of the Gaussian belief, (µt, Pt), in particular, it may
optimize some measure of the nominal covariance evolution
obtained by setting wk, vk = 0.
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Basic Idea
Belief Space Generalization

Belief Space Generalization (T-LQG)

• The closed loop is designed to track the nominal belief where
ut(xt) = ūt +Kt(x̂t − µt), Kt is the feedback gain, x̂t is an
estimate of the state from a Kalman filter with gain Lt.

• Ricatti equations for Kt and Lt are decoupled due to the
“Separation Principle” of Linear Control theory: reduces
complexity of feedback design from O(d4) to O(d2).

• Belief space Planning → Separation2!

• Answer to Feldbaum’s dual control in the small noise case.
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Basic Idea
Belief Space Generalization

Belief Space Generalization (T-LQG)

Figure: Youbot base in a complex environment. Solid lines: optimized
planned trajectories; dashed lines: optimization initialization trajectories.
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Separation based RL
PDE Constrained Motion Planning

Separation based RL

• Reinforcement Learning (RL) “learns” a feedback policy for an
unknown nonlinear system from experiments. Access only to a
forward generative black-box model.

• The Separation Principle suggests a novel path to accomplish
RL.

• The open loop plan → optimizing the control sequence → a
series of gradient descent steps → a sequence of linear
problems.

• The closed loop design → identifying a linear time varying
(LTV) system around the optimized nominal trajectory.
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Separation based RL
PDE Constrained Motion Planning

Separation based RL

• Linear Systems are completely determined by their impulse
responses.

• This implies we can specify an exact sequence of experiments
to perform in order to “learn” the feedback law.

• Allows us to scale to extremely large scale problems: partially
observed Partial Differential Equation (PDE) constrained
problems.
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Separation based RL
PDE Constrained Motion Planning

Separation based RL

Step 1. Open-Loop Trajectory Optimization in Belief
Space
Given b0, solve the deterministic open loop belief state
optimization problem (access only to state simulator):

{ūk}N−1k=0 =argmin
{uk}

J̄({bk}, {uk}),

s.t. bk+1 = τ(bk, uk, ȳk+1),

Experiments: δJ̄ given
δuk, for all k.
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Separation based RL
PDE Constrained Motion Planning

Separation based RL

Step 2. Linear Time-varying System Identification
Linearize the system around ({µ̄k},{ūk}) (Only conceptually).

δxk+1 = Akδxk +Bk(δuk + wk), δyk = Ckδxk + vk,

Experiments: δyn given an input δuk, for all k, n.
Identified deviation system (using time-varying ERA):

δak+1 = Âkδak + B̂k(δuk + wk), δyk = Ĉkδak + vk,

where δak ∈ <nr , δxk ∈ <nx , and nr � nx.

Step 3. Closed Loop Controller Design
Standard LQG controller can be designed for the
A(.), B(.), C(.) (or) can learn controller/ estimator directly.
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Separation based RL
PDE Constrained Motion Planning

Burgers Equation

Consider the optimal boundary control problem for the Burgers
equation (a 1-d analog of the Navier-Stokes equation):

∂U

∂t
+ U

∂U

∂x
= µ

∂2U

∂x2
,

U(x, t): states, µ: viscosity.
Boundary control: U(0, t) = u1(t), U(L, t) = u2(t).
Initial condition: U(., 0) = U0,
Control Objective: U(., t) = −0.8, t ∈ [7s, 8s].
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Separation based RL
PDE Constrained Motion Planning

Burgers Equation

System Parameters:

System Dimension Inputs Outputs Identified LTV
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Separation based RL
PDE Constrained Motion Planning

Burgers Equation

Run 100 Monte Carlo Simulations.

(a) Comparison of Closed
Loop Belief Trajectory

(b) Comparison of
Estimation Error

Online Controller and Estimator Complexity Reduction: O(106).
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Separation based RL
PDE Constrained Motion Planning

Materials Process Design

Allen-Cahn Phase Field Model:
1

K

∂φ

∂t
= ∇2f(φ, T )− Ug′(φ),

φ(x, t): phase field variable, T (x, t): temperature controller
K,U : constant
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Conclusion

• The Separation Principle greatly simplifies Stochastic Optimal
Control design in a decoupled open loop-closed loop fashion.

• Rigorously generalizes MPC to (partially observed) Stochastic
Control problems.

• Allows us to propose a novel RL algorithm that specifies an
exact set of experiments to design a feedback plan for a given
black-box system.

• Allows us to scale RL to very large scale and partially
observed problem: Generalized Motion Planning problems
governed by PDEs.

• RL approach needs noise-less simulations.

• Multi-Agent system implications.
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