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OUTLINE

• DDDAS Motivations
– Dynamically incorporate data into an executing application

– Dynamically steer the measurement process

• Theoretical Framework for In-situ Learning
– New Sensor: Situational Model Prediction and Learning

• Situational Machine Learning Advancements
– Extracting actionable intelligence from other sensors

– Probabilistic Forecasting via deep neural networks

– Sensor Model Adaptation through density estimation

• Simulation Based Validation

• Field Experiments and Validation: Border Control Application
– New Seismic sensor learning from other seismic sensors in the network

– New Seismic sensor learning from advanced sensors such as camera on a UAV 2



DDDAS: Dynamically steering measurement processes
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Intelligent Transportation Systems

Sensors: Camera, LIDAR, IMU, GPS

• Task: Localization, navigation, safety.

Health Monitoring of Electro-mechanical 
Systems 

• Sensors: Pressure, temperature, speed

• Task: Fault detection and diagnosis

Area surveillance; Robocop:

• Sensors: Seismic, acoustic, PIR, camera, 
radar

• Task: Detect, classify, and track movement

Remote Patient Monitoring System

• Heart rate, respiration, muscle activity, 
blood pressure

• Task: Anomaly detection, Data logging

Social Media

• User Communities

• Strength of communications among users

• Task: Community Detection, Marketing 
Intelligence, etc. 

Data-driven Dynamic System Characterization
• Multiple components interact over a sensing 

infrastructure, often mobile, to perceive the 

evolution of physical dynamic processes, 

Sensing Infrastructure
• Heterogeneous sensors for measurements, 

uncertainty quantification, inferencing, 

prediction & control.

• Sensors require physical interaction with 

sensed phenomena and are subject to a 

number of noise factors

• Relative significance of data varies with 

situational context

• High dimensionality, much redundancy

• Uncontrolled Physical stimuli in the 

Operational Environment affect sensor 

outputs

Dynamically Steering Measurement Models
• To get reliable performance from individually 

less reliable sensors, 

• Circumvent limitations of sensing, situational 

effects, etc. 

• Introducing/replacing sensors.

Social Media



Problem of sequential learning from other sensors

Can a sensor sequentially learn its correct measurement model from other imperfect sensors?

7/31/2017 4

Can surveillance camera 
teach geophones to 

classify targets?



The problem of noisy density estimation
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Given a finite set of observations :

construct an estimate of the underlying probability density 
function :
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Why do we need uncertainty quantification?

62/24/2017

Knowledge of uncertainty in estimation can help to choose better control actions 
and eventually incorporate safety in AI and control systems.
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Machine fault detection for

condition-based maintenance

“Generating a classification result is usually not the end goal (in machine monitoring and medicine).”



where

Learning with Noisy Labels 
• Formulate student-instructor relation as a Bayes network
• Factorize the network based on conditional probabilities:

• If 𝛼𝑖𝑗 invertible, sensors are qualified to be instructors and the density (given noisy labels) may be fed into 

the following recursive density estimator:

*

* E. J. Wegman and H. Davies, “Remarks on some recursive estimators of a probability density,” The Annals of Statistics, pp. 316–327, 1979

𝑐𝑖𝑗
1 - classification performance 𝑝 ෠𝑋1 = 𝑖 𝑋 = 𝑗

𝑤𝑗 - prior probabilities 𝑝(𝑋 = 𝑗)



Multi-layer Multimodal Sensor Network

 We use a 3-tier hierarchy of high-to-

low fidelity sensors, for detecting 

and classifying border crossing 

events.

 Low-fidelity (low-layer) sensors are 

cheap, yet may generate false 

alarms. High-fidelity (high-layer) 

sensors have expensive operating 

costs, yet have high classification 

accuracy.

Hierarchical sensor network



Validation

• Simulation Results

• Field experimental set-up for border control sensor-fence

– Learning from similar sensors

– Learning from an oracle

– Learning from multiple instructors
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FUTURE RESEARCH: Machine Perception and Learning Methods

Current Limitations: LACK SITUATIONAL AWARENESS 

Erik Blasch, J.G. Herrero, L. Snidaro, J. Linas, G. Seetharaman, and K. Palaniappan, “ Overview of 

Contextual Tracking Approaches in Information Fusion” Proceedings of SPIE vol. 87470B  p. 1-11.

MAJOR CONTRIBUTIONS

– Development of the problem of learning from other sensors as a 
sequential learning algorithm using recursive kernel-density 
estimation

– Formulation of a conditional density estimation problem to learn 
measurement models from data

– Statistical Forecasting using deep neural networks for real-time 
situational learning

FUTURE WORK

SELF-ORGANIZING SENSOR NETWORKS

– Develop robust situational awareness to sensor measurement 
models

– Add/replace failed sensors

– Dynamically add data of high relative significance--Building on 
this analytical framework, operate adaptive sensor networks that 
cluster in space-time neighborhoods of emergent hot-spots for 
progressively fine grained sampling, fusion, event classification, 
and prediction.

MULTI-MODAL SITUATION AWARENESS:

Spatial-temporal Environment

Semantic Context

Visual Context

Neural Context

Audio-visual Disambiguation



• Journal Publications:

• S. Phoha, “Grand Challenge: Situational Intelligence using cross-sensory fusion”, Frontiers in Robotics and AI, Sensor Fusion and Machine Perception, August 
2014.

• S. Phoha and E. Blasch, Guest Editors, “Special Issue: Dynamic Data-driven Dynamic Systems (DDDAS) Concepts in Signal Processing”, Springer Journal in Signal 
Processing, May 2017: 1-2.

• N. Virani, S. Phoha, and A. Ray, “Learning from Multiple Imperfect Instructors in Sensor Networks,” in IEEE Trans. on Neural Networks and Learning Systems, 
under review.

• M. Hauser, Y. Fu, S. Xiong, S. Phoha, and A. Ray, “Neural Probabilistic Forecasting of Symbol Sequences with Long Short-Term Memory,” in ASME JDSMC, under 
revision.

• N. Virani, D. K. Jha, Z. Yuan, I. Shekhawat, and A. Ray, “Imitation of Demonstrations using Bayesian Filtering with Nonparametric Data-Driven Models,” in ASME 
JDSMC (Special Issue for Commemorating the life, achievements and impact of Rudolph E. Kalman), in press.

• Conference Papers: 

• M. Hauser, Y. Fu, Y. Li, S. Phoha, and A. Ray, “Probabilistic Forecasting of Symbol Sequences with Deep Neural Networks,” in American Control Conference, 
Seattle, Washington, May 2017.

• N. Virani, D. K. Jha, and A. Ray, “Sequential Hypothesis Tests Using Markov Models of Time-Series Data,” in ACM SIGKDD Conference on Knowledge Discovery 
and Data Mining, Workshop on Machine Learning for Prognostics and Health Management, 2016. (Best Student Paper Award)

• N. Virani, J.-W. Lee, S. Phoha, and A. Ray, “Information-Space Partitioning and Symbolization of Multi-Dimensional Time-Series Data using Density Estimation,”
in American Control Conference, pp. 3328-3333, IEEE, 2016.

• Book Chapters:

• N. Virani, P. Chattopadhyay, S. Sarkar, B. Smith, J.-W. Lee, S. Phoha, and A. Ray, “A Context-aware Multi-layered Sensor Network for Border Surveillance,” in 
Dynamic Data-driven Application Systems, to be edited by F. Darema, Springer, accepted.

• Other DDDAS Related Publications:

• N. Virani, “Learning Data-driven Models for Decision-making in Intelligent Physical Systems,”   Ph.D. dissertation, 2017.

Relevant Publications



Probabilistic Forecasting within DDDAS

Long Short-Term Memory neural networks 
as a DDDAS

• LSTM is implemented to perform state estimation.

• Dynamic input data can write-to and read-from an 
internal memory device designed into the LSTM.

• Measurement process automatically controlled by 
the internal memory state as well as physical system 
state.

Benefits of Probabilistic forecasting

• Can forecast system state before measuring system 
state.

• Can implement control action to steer measurement 
process sooner.

• Prefer to predict probability densities over states, as 
opposed to deterministic values. 

State estimation
(Forward Problem)

Steer 
measurement 

process according 
to outcome

(Inverse Problem)
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• Formulate forecasting in probabilistic sense:  ℎΘ: 𝑋 × 𝑌 → 0,1 without assumption on 
data distribution.

• Nested compositions of affine transformations followed by simple non-linear 
activations.

• 𝑥(𝑙+1) = tanh(𝑊(𝑙)𝑥(𝑙) + 𝑏(𝑙))

• Nested compositions of non-linear coordinate transformations can form very non-
linear coordinates which can organize very non-linear data.

• Goal: Given a past history of data, predict future symbol with softmax probability 
distribution.

• 𝑃 𝑌 = 𝑦𝑖 𝑋 = 𝑥(𝐿−1) =
exp(𝑊𝑖

(𝐿−1)
𝑥(𝐿−1))

σ𝑗 exp(𝑊𝑗
(𝐿−1)

𝑥(𝐿−1))

Feed forward and Long Short-Term Memory networks
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𝑜𝑡

𝐶𝑡−1

ℎ𝑡

𝑖𝑡 = 𝜎(Wixt + Uiht−1 + bi)

෩𝐶𝑡 = tanh(Wc𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)

𝑓𝑡 = 𝜎(Wfxt + Ufht−1 + bf)

𝐶𝑡 = 𝑖𝑡 ∗ ෩𝐶𝑡 + 𝑓𝑡𝐶𝑡−1

𝑜𝑡 = 𝜎(Woxt + Uoht−1 + bf)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)

Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

Algorithm Design



• Three network architectures 
compared.

• Feed forward (FF)
• LSTM
• FF - LSTM

• Intuition:
• LSTM works very well for structured 

time series data such as speech.
• Tested on chaotic time series data 

collected from an experimental 
combustion system (not nearly as 
structured as speech).

• Therefore intuition suggests they 
should all give similar results.

FF

𝑥𝑡

FF

FF

Softmax

𝑃(𝑦𝑡+𝑇|𝑥𝑡)

FF

𝑥𝑡

LSTM

FF

Softmax

FF

𝑥𝑡

FF

FF

Softmax

LSTM

FF

𝑃(𝑦𝑡+𝑇|𝑥𝑡) 𝑃(𝑦𝑡+𝑇|𝑥𝑡)

Feed forward and Recurrent Neural Networks

Algorithm Design



Probabilistic Forecasting

Typical results of probabilistic forecasting



Thorough evaluation of relative performances - Error

LSTM / FF LSTM / LSTM-FF LSTM-FF / FF

2.57% 0.587% 1.99%

Probabilistic Forecasting



Thorough evaluation of relative performances – Weighted Error

LSTM / FF LSTM / LSTM-FF LSTM-FF / FF

3.94% 0.997% 2.98%

Probabilistic Forecasting



In-situ Training and Integration of New Sensors

Having models which forecast measurements is desired when state dynamics occur at a 

faster time scale than model control actions.

Yes, by developing a relationship, defined by the Bayes network, of probabilistic models 

between instructor generated (i.e. noisy) labels and the student’s measurement model. The 

trained neural probablistic forecasting models can act as measurement models to train new 

student model.

 A recursive nonparametric kernel density estimator is used to obtain measurement 

models of new sensors

 Specified sensors are selected to assume roles of instructors

 Typically sensors neighboring the new sensor

 Considered noisy due to imperfect classification performance

 Newly added sensors may assume the roles of students

Can “noisy” sensors train other sensors in variable environments?



Notation

𝒳= 1, 2, … , 𝐿 - Set of hypothesis of random state 𝑋

𝒮 = 1, 2, … ,𝑀 - Set of existing sensors

𝑌𝑠 -Observation from sensor s ∈ 𝒮

෠𝑋𝑠 - Estimated state (label) from sensor s ∈ 𝒮

𝑝 𝑌𝑠 𝑋 - Measurement model

𝒴0- Set of (new) student sensors

𝑦0
𝑡- observation of student sensor at time instant 𝑡

At every time instant, the new sensor has access to:

𝑧𝑡 = 𝑦0
𝑡 , ො𝑥1

𝑡 , ො𝑥2
𝑡 , … , ො𝑥𝑀

𝑡

From {𝑧𝑡}, we can obtain the estimate, Ƹ𝑝(𝑌0|𝑋 = 𝑥), of the measurement model of the new sensor



Learning with Noisy Labels 
via Bayes Network Factorization

Factorize based on conditional probabilities:

𝑐𝑖𝑗
1 - classification performance 𝑝 ෠𝑋1 = 𝑖 𝑋 = 𝑗

𝑤𝑗 - prior probabilities 𝑝(𝑋 = 𝑗)

If 𝐴1 is invertible, existing sensor qualifies to be instructor, and we get following equation:

Student-Instructor Bayes Network



Generalization to Multiple Instructors

Psuedo-inverse to solve for student density given true labels:

Generalize through matrix concatenation 



Sequential Update Rule

𝑛𝑗
𝑡 - number of observations assigned label 𝑗 in 𝑡 time instants

෤𝑝𝑗
𝑡 𝑦; 1 - denotes 𝑝 𝑦 ෠𝑋1 = 𝑗

𝐾 ∙ - kernel function

ℎ 𝑛 - kernel width

𝑑 – dimensionality of observation

* E. J. Wegman and H. Davies, “Remarks on some recursive estimators of a probability density,” The Annals of Statistics, pp. 316–327, 1979

*

Recursive Density Estimator (RDE)



Validation Through Simulation

• Two instructors and one student.

• Instructors have distributions ~𝑁(−1,1) (event 0) and ~𝑁(+1,1) (event 1)

• Student has true distributions ~𝑁(−3,1) (event 0) and ~𝑁(+3,1) (event 1)

• Kullback-Leibler divergence of “intelligent” student closely matches that of “blessed” student.

• Blessed student receives noise-free labels.

• Intelligent student learns from noisy –labels via the aforementioned Bayes network.

Simulation configuration 



Example: DDDAS Border Control 

 Detect and classify targets 

crossing the border using 

fusion of data from a 

multilayered multimodal sensor 

network

 Sensors collocated in a mutual 

space-time neighborhood 

collectively predict the target 

passing through
Targets of interest could be e.g. (a) a 

person walking or (b) a vehicle

Border Control Objective



Border Control Test-bed

Fixed Sensors:

–6 x UGS (Seismic, Acoustic, PIR)

–3 x camera

–2 x radar

–1 x 3D LiDAR

–3 x environmental sensors

Targets:

–Human walking/running

–Human with robot

Test-bed Location: 

Penn Transport. Instit. Test Track, PennState Univ.

Experimental configuration



Multi-layer Multimodal Sensor Network

 We use a 3-tier hierarchy of high-to-

low fidelity sensors, for detecting 

and classifying border crossing 

events.

 Low-fidelity (low-layer) sensors are 

cheap, yet may generate false 

alarms. High-fidelity (high-layer) 

sensors have expensive operating 

costs, yet have high classification 

accuracy.

Hierarchical sensor network



Border control Test-bed

Environmental:

• Wind speed and direction

• Air temperature

• Solar irradiance

• Soil moisture and temperature

Tracking:

• Video

• Acoustic

• Seismic

• PIR

• LiDAR



Experimental Description

Target Detection

• Purpose of this experiment is 
to classify the difference 
between a person (walking or 
running) and a person with a 
robot

Video (instructor 1):

• Off the shelf HOG-SVM 
classifier used.

• Classification accuracy: 93.4%

Seismic (instructor 2):

• Off the shelf PFSA-SVM 
classifier used.

• Classification accuracy: 79.3%

Instructor models

Video

Seismic

Instructor observations



Experimental Results
Seismic only Video only Seismic and video

Single Instructor

Video only instructor results in best 
student measurement model.

Video instructor yields KL-distance of 
2 × 10−2

Seismic instructor yields KL-distance 
of 1 × 10−1

Multiple Instructors

Multimodal video-seismic instructor 
pair similar to single instructors in KL-
distance.

Multiple instructors yields KL-distance 
of 5 × 10−2

KL-Divergence



Student Sensor Performance

Instructor(s) Seismic Video Both

Classification 

Accuracy
68.3% 86.68% 74.1%

Error Reduction 3.33% 31.13% 12.10%

KL-Divergence 1 × 10−1 2 × 10−2 5 × 10−2

Note: Error reduction is calculated with respect to baseline approach, which yielded classification accuracy of 66.1% 

(Baseline approach uses the decision boundary learned from the instructor seismic sensor)

Experimental Results



Motivations

• DDDAS provides flexible 
framework for integrating 
tools from machine learning 
and signal processing into 
control systems to improve 
measurement process.

• Flexible framework allows for 
improvements in accuracy of 
measurement processes.

Neural Probabilistic 
Forecasting

• New formulation to 
probabilistic forecasting with 
no assumptions on data 
distributions.

• Feedforward and Long Short-
Term Memory neural network 
architectures used to test 
formulation.

• Extensive testing performed 
on experimental chaotic data.

Recursive Density 
Estimation –
Theoretical 
Formulation

• Instructor-Student Bayes 
network model.

• Factorized and inverted.

• Recursive density estimator 
gives student density model.

Recursive density 
estimation – Results

• Simulation – Gaussian 
mixture model with K-L 
divergence shows efficacy of 
approach.

• Experiment – Border control 
testbed constructed with 
multimodal sensing network.

• Video and seismic instructor 
successfully generated the 
student seismic measurement 
model.

Summary



Questions?


