Use of Operationally Flexible Robust Optimization in Dynamic Data Driven Application Systems

R. Kania, S. Azarm, and B. Balachandran
Department of Mechanical Engineering
University of Maryland
College Park, MD 20742

InfoSymbiotics/DDDAS Conference
August 9, 2016

Acknowledgements: AFOSR Grant No. FA9550150134
• Goal
 – Observation platform
 – Integrated array of sensors
 – High efficiency
• Target
 – 40 hours of flight
 – 2000-nautical mile range
• Features
 – Atypical designs
 – Thin and flexible wings
 – Joined-wing configuration

SensorCraft Tradeoff

• Extension of performance envelope
• Stability concerns
 – Flutter
 – Aerodynamic buckling
• Interference with surveillance and reconnaissance
Mission Optimization

- Using aeroelastic model, optimize for:
- Objectives – Maximize performance criteria
 - Flight time, range, payload, etc.
- Constraints – Safe operation to avoid
 - Material yield, flutter, buckling
- Uncertainty – Stochastic environment

Example

Variables
- Hardpoints at five locations along fore wing (x_d)
- Six pairs of symmetric flaps (x_{op})
- Uncertain headwind (p)

Objectives
- Maximize payload (f_1)
- Maintain target lift (f_2)

Constraints
- Maintain acceptable stress levels (g)
Conceptual Example

\[x_d: \text{design variable} \]
\[x_{op}: \text{operational variable} \]
\[p: \text{uncertain parameter} \]
\[f: \text{objective function} \]
\[g: \text{constraint function} \]

\[x_{op} = \text{lateral position} \]
\[x_d = \text{vertical position} \]

\[\min_{x_d} f(x_d) = x_d \]

\[g(x_d, x_{op}, p) \leq 0 \]
\[p = p_{\text{min}} \]

\[g(x_d, x_{op}, p) \leq 0 \]
\[p = p_{\text{max}} \]
Optimization With Uncertainty

• **Deterministic Approach**: Optimize design and operational variables for fixed (nominal) realization of uncertain parameters
Deterministic

x_d

p_{max}

p_{min}

p_0

p_{max}
Deterministic
Deterministic

\[x_d \]

\[p_{\text{min}} \quad p_0 \quad p_{\text{max}} \]
Optimization With Uncertainty

• **Deterministic Approach**: Optimize design and operational variables for fixed (nominal) realization of uncertain parameters

• **Robust Approach**: Optimize design and operational variables for all realizations of uncertain parameters
Robust - Discretized

\[x_d \]

\[p_{\text{min}} \quad p_0 \quad p_{\text{max}} \]
Robust - Discretized
Optimization With Uncertainty

• Deterministic Approach: Optimize design and operational variables for fixed (nominal) realization of uncertain parameters

• Robust Approach: Optimize design and operational variables for all realizations of uncertain parameters

• Robust with Operational Flexibility (ROOF) Approach: Optimize design for all realizations of uncertain parameters while using operational variables to mitigate effect of uncertainty
Operational Flexibility - Discretized

Operational Flexibility - Discretized

x_d

p_{min} p_0 p_{max}

Operational Flexibility - Discretized

Operational Flexibility - Discretized

Operational Flexibility - Discretized

Robust - Sequential

x_d

ρ_{min} ρ_0 ρ_{max}

Robust - Sequential

$\rho_{\min} \quad \rho_0 \quad \rho_{\max}$

x_d
Robust - Sequential

Robust - Sequential

x_d

p_{min} p_0 p_{max}

Operational Flexibility - Sequential

\[x_d \]

\[p_{\text{min}} \quad p_0 \quad p_{\text{max}} \]
Operational Flexibility - Sequential

\[x_d \]

\[p_{\min} \quad p_0 \quad p_{\max} \]
Operational Flexibility - Sequential

\[p_{\text{min}} \quad p_0 \quad p_{\text{max}} \]

\[x_d \]
Operational Flexibility - Sequential

\[x_d \]

\[p_{\min} \quad p_0 \quad p_{\max} \]
Basic Aircraft Example

- **Variables**
 - Hardpoints at five locations along wing \(\left(x_d \right) \)
 - Two pairs of symmetric flaps \(\left(x_{op} \right) \)
 - Uncertain headwind \((p) \)

- **Objectives**
 - Maximize payload \((f_1) \)
 - Maintain target lift \((f_2) \)

- **Constraints**
 - Maintain acceptable stress levels \((g) \)
Representative Multi-Objective Results

Pareto Optimality Comparison

- Payload (kg)

- Lift Deviation (N)

-0.3

0 20 40 60 80 100 120

-0.2

-0.25

-0.15

Deterministic Frontier
Flexible Frontier
Robust Frontier Sequential
Flexible Discretized
Robust Discretized
Implementation with DDDAS

- **ROOF assumptions**
 - Interval uncertainty
 - Accurate online knowledge of current state
- **High fidelity aeroelastic models not computationally feasible for online implementation**
- **Have combination of sensor measurements and low fidelity simulations**
Implementation Framework

Offline
- High fidelity aeroelastic simulations
- Predict
 - worst conditions
 - optimal maneuvers
- Determine optimally flexible design

Online
- Design fixed
- Low fidelity simulations
- Sensor data
- Moving window co-Kriging surrogate model
- Determine optimal maneuvers
Concluding Remarks

• Sequential robust optimization with operational flexibility (ROOF) produces less conservative results than standard robust optimization.

• In the DDDAS framework one can take advantage of high and low fidelity simulations online.

• Future work
 – Online training of surrogate models (coKriging)
 – Application to UVLM-FEM aeroelastic simulation
 – Use in online decision support
Co-Kriging

• Expensive – high fidelity data
 • High fidelity simulations
• Cheap – low fidelity data
 • Sensor readings, low fidelity simulations

THE END
Back Up Slides
Aeroelastic Modeling

- Coupled structural modeling (Finite Element) and aerodynamic modeling (Unsteady Vortex Lattice Method)
- Predict aeroelastic effects
 - Aerodynamic forces
 - Internal stress
 - Excitation frequencies
- High fidelity-offline simulations
Optimization Formulations

Deterministic Optimization

Minimize

$$\min_{x_d, x_{op}} f_1(x_d, x_{op}, p), f_2, \ldots, f_n$$

Subject to

$$g_j(x_d, x_{op}, p) \leq 0$$

$$\max_{j \in J} g_j(x_d, x_{op}, p) \leq 0$$

Solve for single expected outcome

- p: (uncertain) parameters
- x_d: design variables
- f: objective function
- g: constraint function

Robust Optimization

Minimize

$$\min_{x_d, x_{op}} E[f_1(x_d, x_{op}, p_i)], E[f_2], \ldots, E[f_n]$$

Subject to

$$g_j(x_d, x_{op}, p_i) \leq 0, \quad \forall i = 1, 2, \ldots, m$$

$$\max_{p \in T} \max_{j \in J} g_j(x_d, x_{op}, p) \leq 0$$

Solve for all possible outcomes

- J: set of constraint indices
- T: set of all discretized p
- x_{op}: operational variables
Robust Optimization

\[
\begin{align*}
\text{minimize} & \quad E[f_1(x_d, x_{op}, p_i)], E[f_2], \ldots, E[f_n] \\
\text{subject to} & \quad g_j(x_d, x_{op}, p_i) \leq 0, \\
& \quad \forall i = 1, 2, \ldots, m \\
& \quad \max_{p \in T} \max_{j \in J} g_j(x_d, x_{op}, p) \leq 0
\end{align*}
\]

Solve for all possible outcomes

Robust Optimization with Operational Flexibility

\[
\begin{align*}
\text{minimize} & \quad E[f_1(x_d, x_{opi}, p_i)], E[f_2], \ldots, E[f_n] \\
\text{subject to} & \quad g_j(x_d, x_{opi}, \theta_i) \leq 0, \\
& \quad \forall i = 1, 2, \ldots, m \\
& \quad \max_{p \in T} \min_{x_{op}} \max_{j \in J} g_j(x_d, x_{op}, p) \leq 0
\end{align*}
\]

Add operational variables and reduce constraints

\[p: \text{(uncertain) parameters}\]
\[x_d: \text{design variables}\]
\[f: \text{objective function}\]
\[g: \text{constraint function}\]

\[J: \text{set of constraint indices}\]
\[T: \text{set of all discretized p}\]
\[x_{op}: \text{operational variables}\]

Sequential ROOF Formulation

Initially, $p_0 \in S_g$

First step:

\[
\begin{align*}
\mathbf{x} &= \mathbf{x}_d, \mathbf{x}_{op1}, \mathbf{x}_{op2}, \ldots, \mathbf{x}_{opn} \quad n = |S_g| \\
\min_{\mathbf{x}} f(\mathbf{x}, p_0) \\
g_i(\mathbf{x}_d, \mathbf{x}_{opi}, p_i) &\leq 0, \forall p_i \in S_g \\
x_d &\in [x^l_d, x^u_d], x_{opi} &\in [x^l_{op}, x^u_{op}]
\end{align*}
\]

Second step:

\[
\max_p \left[\max_k g(x_d, x_{opi}, p) \right], \forall p \in [p^l, p^u]
\]

$k = \text{constraint index}$
Flexibility Visualization

- Increased dimensionality
- Lateral movement
- Can actively satisfy constraints
DDDAS Scheme

Sensor Data → Aeroelastic Model → Model Refinement

Model Refinement → Sensor Data → Forecasted States

Forecasted States → Model Verification → Optimize for Next States

Optimize for Next States → Maneuver/Action