A New Technology: The Dynamic Image of a Forced Breath Compared to a Tidal Breath Uncovers a Physiological Phenomenon in COPD.

Danille Prime MD1, Valeria Santibanez-Brione MD2, Mary O’Sullivan MD1, Natasha Garg MBBS2, Avinash Singh MBBS2, Sagar Shah MD3, Karishma Parekh MD1, Ismini Kourouni MD1, Di Pan MD4, Shoji Kudoh4, Alexander Kagen MD1

1 Division of Pulmonary, Critical Care and Sleep Medicine; 2 Department of Medicine, 3 Department of Radiology, Mount Sinai St. Luke’s, Mount Sinai West, Mount Sinai Beth Israel; 4 Department of Respiratory Medicine, Fukujuji Hospital, Japan

BACKGROUND

• The respiratory cycle is being investigated using a new technology, the dynamic chest x-ray (DCXR).
• This modality provides sequential chest radiographs with high temporal resolution (7.5-30 frames/s) during the respiratory cycle with a low radiation dose (DCXR average < 0.04 mSV compared with static CXR 0.02 mSV) 1, 2
• The DCXR provides a visual display of the moving interactions of lung, muscle, bone, heart and nerve, not captured by pulmonary function testing (PFT).
• In COPD, diaphragm motion is a key element readily visible in the DCXR. We investigated using a new technology, the dynamic image of a forced breath compared to a tidal breath. 95% CI when adjusted for tidal breathing and age.

METHODS

• PFTs and DCXR images from Fukujuji Hospital, Japan were provided and reviewed.
• During dynamic imaging, patients were asked to take 2 tidal breaths followed by a forced inspiration and expiration.
• A ratio of diaphragmatic excursion TB/FB (DETB/FB) was calculated. The relationship between DETB/FB to COPD severity, using each patient’s predicted FEV1% were explored.
• Results were analyzed using multivariate linear regressions using STATA15 software.

RESULTS

• In COPD, tidal diaphragm excursion to forced diaphragm excursion (DETB/FB) was significantly related to the FEV1%.
• Having COPD increases DETB/FB by 0.053 when compared to normals, even after adjusting for gender, age, tidal breathing and forced breathing (p=0.039; 95% CI 0.0027-0.1038).
• It was also noted that for every 1% increase in FEV1%, DETB/FB decreased by 0.0028 (p=0.008; 95% CI -0.0048 to -0.0008) when adjusted for tidal breathing and age.

CONCLUSIONS

• Our data shows a significant inverse relationship between COPD severity and DETB/FB. We interpret this to be a reflection of the expanded effect of dynamic airway collapse and air-trapping on the mobility of the diaphragm in forced versus tidal breathing in COPD. Thus, the ratio of tidal excursion to forced excursion approaches 1 as COPD worsens. Therefore, DETB/FB provides an additional measure of COPD severity that is easily obtained from the DCXR.
• Limitations of this study include: small sample size, lack of ethnic diversity, and an unmatched control group.
• The static CXR does not provide the complete functional picture of the patient’s respiration, even when combined with PFT. Frequently, it is not apparent where in the respiratory cycle the film was obtained and the importance of tidal breathing is not assessed at all.
• This data provides preliminary information for future studies using larger sample size, matched cohorts and varying ethnicities. Future validation of this method would allow for a clinically relevant option to assess COPD severity in the acute setting and for patients unable to perform PFTs.

REFERENCES