

Buy

TS5A3166-Q1

SCDS357A-JULY 2014-REVISED DECEMBER 2014

TS5A3166-Q1 0.9-Ω SPST Analog Switch

1 Features

- Qualified for Automotive Applications
- Isolation in Powered-Off Mode, $V_{+} = 0$
- Low ON-State Resistance (0.9 Ω)
- Control Inputs are 5.5 V Tolerant
- Low Charge Injection
- Low Total Harmonic Distortion (THD)
- 1.65-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

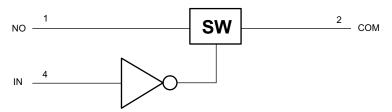
2 Applications

Tools &

Software

- **Cell Phones** •
- **PDAs** •
- Radar System •
- Infotainment System
- Portable Instrumentation •
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- **Communication Circuits** ٠
- Modems
- Hard Drives
- **Computer Peripherals**
- Wireless Terminals and Peripherals •
- Microphone Switching Notebook Docking ٠

Description 3


The TS5A3166-Q1 is a single-pole single-throw (SPST) analog switch that is designed to operate from 1.65 V to 5.5 V. The device offers a low ONstate resistance. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TS5A3166-Q	SC70 (5)	2.00 mm × 1.25 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic 4

Table of Contents

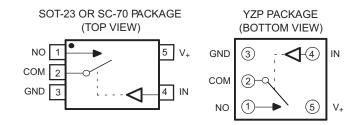
1	Feat	ures 1
2	Арр	lications 1
3	Dese	cription 1
4	Sim	plified Schematic1
5	Revi	sion History 2
6	Pin	Configuration and Functions 3
7	Spe	cifications 3
	7.1	Absolute Maximum Ratings 3
	7.2	ESD Ratings 3
	7.3	Recommended Operating Conditions 4
	7.4	Thermal Information 4
	7.5	Electrical Characteristics for 5-V Supply 5
	7.6	Electrical Characteristics for 3.3-V Supply7
	7.7	Electrical Characteristics for 2.5-V Supply 9
	7.8	Electrical Characteristics for 1.8-V Supply 11
	7.9	Typical Characteristics 13
8	Para	meter Measurement Information 15

5 Revision History

Changes from Original (July 2014) to Revision A Initial release of full document. 1

9	Deta	iled Description	18
	9.1	Overview	18
	9.2	Functional Block Diagram	19
	9.3	Feature Description	19
	9.4	Device Functional Modes	19
10	Арр	lication and Implementation	20
	10.1	Application Information	20
	10.2	Typical Application	
11	Pow	er Supply Recommendations	22
12	Lay	put	22
	12.1		
	12.2	Layout Example	22
13	Dev	ice and Documentation Support	23
	13.1	Trademarks	
	13.2		
	13.3	Glossary	23
14	Mec	hanical, Packaging, and Orderable	
		mation	23

2


XAS STRUMENTS

www.ti.com

Page

6 Pin Configuration and Functions

Pin Functions

Р	PIN I/O		DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
NO	1	10	Normally closed
COM	2	IO	Common
GND	3	GND	Digital ground
IN	4	Input	Digital control pin to connect COM to NO
V+	5	Power	Power Supply

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V+	Supply voltage range ⁽³⁾	-0.5	6.5	V	
V _{NO} V _{COM}	Analog voltage range ⁽³⁾⁽⁴⁾⁽⁵⁾		-0.5	V ₊ + 0.5	V
Ι _Κ	Analog port diode current	V _{NO} , V _{COM} < 0	-50		mA
I _{NO}	On-state switch current		-200	200	س ۸
ICOM	On-state peak switch current ⁽⁶⁾	$V_{NO,} V_{COM} = 0$ to V_{+}	-400	400	mA
VI	Digital input voltage range ⁽³⁾⁽⁴⁾		-0.5	6.5	V
I _{IK}	Digital clamp current	V ₁ < 0	-50		mA
l+	Continuous current through V ₊			100	mA
I _{GND}	Continuous current through GND		-100		mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

(3) All voltages are with respect to ground, unless otherwise specified.

(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(5) This value is limited to 5.5 V maximum.

(6) Pulse at 1-ms duration < 10% duty cycle.

7.2 ESD Ratings

			VALUE	UNIT
V		Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	±1000	V

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{I/O}	Input/output voltage	0	5.5	V
V ₊	Supply voltage	0	5.5	V
VI	Control Input Voltage	0	5.5	V
T _A	Operating free-air temperature	-40	125	°C

7.4 Thermal Information

		TS5A3166-Q1	
	THERMAL METRIC ⁽¹⁾	DCK	UNIT
		5 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	283.1	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	92.2	
$R_{\theta JB}$	Junction-to-board thermal resistance	60.8	°C/W
ΨJT	Junction-to-top characterization parameter	1.7	
Ψ_{JB}	Junction-to-board characterization parameter	60.0	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics for 5-V Supply⁽¹⁾

 $V_{+} = 4.5 \text{ V}$ to 5.5 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

	SVMDO	TEST CONDITIONS		т у		85°C			125°C			
PARAMETER	SYMBOL TEST CONDITIONS T _A		V,	MIN	TYP	MAX	MIN	TYP	MAX	UNIT		
Analog Switch					·							
Analog signal range	V _{COM} , V _{NO}					0		V ₊	0		V+	V
Peak ON	_	$0 \le V_{NO} \le V_+,$	Switch ON,	25°C	4 5 \/		0.8	1.1		0.8	1.1	0
resistance	r _{peak}	$I_{COM} = -100 \text{ mA},$	See Figure 13	Full	- 4.5 V			1.2			1.44	Ω
ON-state	r	V _{NO} = 2.5 V,	Switch ON,	25°C	- 4.5 V		0.7	0.9		0.7	0.9	Ω
resistance	r _{on}	$I_{COM} = -100 \text{ mA},$	See Figure 13	Full	4.5 V			1			1.2	12
ON-state		$0 \le V_{NO} \le V_+,$ $I_{COM} = -100 \text{ mA},$	- Switch ON,	25°C			0.15			0.15		
resistance flatness	r _{on(flat)}	V _{NO} = 1 V, 1.5 V,	See Figure 13	25°C	4.5 V		0.09	0.15		0.09	0.15	Ω
namess		2.5 V, I _{COM} = -100 mA,		Full				0.15			0.18	
		$V_{NO} = 1 V,$		25°C		-20	4	20	-80	4	80	
NO OFF leakage current	I _{NO(OFF)}	$\label{eq:VCOM} \begin{array}{l} V_{COM} = 4.5 \ \text{V}, \\ \text{or} \\ V_{NO} = 4.5 \ \text{V}, \\ V_{COM} = 1 \ \text{V}, \end{array}$	Switch OFF, See Figure 14	Full	5.5 V	-100		100	-400		400	nA
		V _{NO} = 0 to 5.5 V,		25°C	<u></u>	-5	0.4	5	-5	0.4	5	
	I _{NO(PWROFF)}	$V_{COM} = 5.5 V \text{ to } 0,$		Full	0 V	-15		15	-30		30	μA
		$V_{COM} = 1 V,$		25°C		-20	4	20	-80	4	80	
COM OFF leakage current	I _{COM(OFF)}	$\label{eq:VNO} \begin{split} V_{\text{NO}} &= 4.5 \text{ V},\\ \text{or}\\ V_{\text{COM}} &= 4.5 \text{ V},\\ V_{\text{NO}} &= 1 \text{ V}, \end{split}$	Switch OFF, See Figure 14	Full	5.5 V	-100		100	-400		400	nA
current	I _{COM(PWROF}	V _{COM} = 5.5 V to 0,		25°C	0.1/	-5	0.4	5	-5	0.4	5	
	F)	$V_{NO} = 0$ to 5.5 V,		Full	0 V	-15		15	-30		30	μA
		$V_{NO} = 1 V,$		25°C		-2	0.3	2	-80	0.3	80	
NO ON leakage current	I _{NO(ON)}	$\label{eq:V_COM} \begin{array}{l} V_{\text{COM}} = \text{Open},\\ \text{or}\\ \text{V}_{\text{NO}} = 4.5 \text{ V},\\ \text{V}_{\text{COM}} = \text{Open}, \end{array}$	Switch ON, See Figure 15	Full	5.5 V	-20		20	-400		400	nA
		$V_{COM} = 1 V,$		25°C		-2	0.3	2	-80	0.3	80	
COM ON leakage current	I _{COM(ON)}	$\label{eq:VNO} \begin{array}{l} V_{\text{NO}} = \text{Open},\\ \text{or}\\ V_{\text{COM}} = 4.5 \text{ V},\\ V_{\text{NO}} = \text{Open}, \end{array}$	Switch ON, See Figure 15	Full	5.5 V	-20		20	-400		400	nA
Digital Control In	puts (IN)				•	-					1	
Input logic high	VIH			Full		2.4		5.5	2.4		5.5	V
Input logic low	VIL			Full		0		0.8	0		0.8	V
Input leakage		V = 55 V cr 0		25°C	- 5.5 V	-2	0.3	2				n ^
current	I _{IH} , I _{IL}	$V_1 = 5.5 V \text{ or } 0$		Full	5.5 V	-20		20	-400		400	nA

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Electrical Characteristics for 5-V Supply⁽¹⁾ (continued)

V_{\star} = 4.5 V to 5.5 V, T_{A} = –40°C to 85°C (unless otherwise noted)

DADAMETER	0)///	TEST CONDITIONS	-		85°C			125°C				
PARAMETER	SYMBOL	TEST CONDITIONS		T _A	V.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Dynamic												-
			0 – 25 pF	25°C	5 V	2.5	4.5	7	2.5	4.5	7	
Turn-on time	t _{ON}		C _L = 35 pF, See Figure 17	Full	4.5 V to 5.5 V	1.5		7.5	1.5		7.5	ns
			0 25 55	25°C	5 V	6	9	11.5	6	9	11.5	
Turn-off time	t _{OFF}	$V_{COM} = V_+,$ R _L = 50 Ω,	C _L = 35 pF, See Figure 17	Full	4.5 V to 5.5 V	4		12.5	4		12.5	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 20	25°C	5 V		1			1		рС
NO OFF capacitance	C _{NO(OFF)}	$V_{NO} = V_{+} \text{ or GND},$ Switch OFF,	See Figure 16	25°C	5 V		19			19		pF
COM OFF capacitance	C _{COM(OFF)}	$V_{COM} = V_+ \text{ or GND},$ Switch OFF,	See Figure 16	25°C	5 V		18			18		pF
NO ON capacitance	C _{NO(ON)}	$V_{NO} = V_{+} \text{ or GND},$ Switch ON,	See Figure 16	25°C	5 V		35.5			35.5		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 16	25°C	5 V		35.5			35.5		pF
Digital input capacitance	CI	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	5 V		2			2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	5 V		200			200		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, See Figure 19	25°C	5 V		-64			-64		dB
Total harmonic distortion	THD		f = 20 Hz to 20 kHz, See Figure 21	25°C	5 V		0.005			0.005		%
Supply												
Positive supply		$V_1 = V_2$ or GND,	Switch ON or	25°C	5.5 V		0.01	0.1		0.01	0.1	
current	I+	$v_1 = v_+$ or GIND,	OFF	Full	5.5 V			0.5			0.8	μA

7.6 Electrical Characteristics for 3.3-V Supply⁽¹⁾

 $V_{+} = 3 \text{ V}$ to 3.6 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

DADAMETED	EVMBOL			T _A V ₊	85°C			125°C			UNIT	
PARAMETER SYMBOL		TEST CON	TEST CONDITIONS		V.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Analog Switch												
Analog signal range	V _{COM} , V _{NO}					0		V+	0		V+	V
Peak ON resistance	r _{peak}	$0 \le V_{NO} \le V_+,$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 13	25°C Full	3 V		1.1	1.5 1.7		1.1	1.5 2.07	Ω
		$V_{NO} = 2 V,$	Switch ON,	25°C			1	1.7		1	1.4	
ON-state resistance	r _{on}	$I_{COM} = -100 \text{ mA},$	See Figure 13	Full	3 V			1.5			1.8	Ω
ON-state resistance		$0 \le V_{NO} \le V_+,$ $I_{COM} = -100 \text{ mA},$	Switch ON,	25°C			0.3			0.3		
flatness	r _{on(flat)}	V _{NO} = 2 V, 0.8 V,	See Figure 13	25°C	3 V		0.09	0.15		0.09	0.15	Ω
		$I_{COM} = -100 \text{ mA},$		Full				0.15			0.18	
NO OFF leakage current		$V_{NO} = 1 V,$ $V_{COM} = 3 V,$		25°C	_	-2	0.5	2	-2	0.5	2	
	I _{NO(OFF)}	$v_{COM} = 3 V$, or $V_{NO} = 3 V$, $V_{COM} = 1 V$,	Switch OFF, See Figure 14	Full	3.6 V	-20		20	-360		360	nA
		$V_{NO} = 0 \text{ to } 3.6 \text{ V},$ $V_{COM} = 3.6 \text{ V to } 0,$		25°C	- 0 V	-1	0.1	1	-1	0.1	1	μA
	I _{NO(PWROFF)}		Full	0 0	-5		5	-27		27	۳^	
		$V_{COM} = 1 V,$		25°C	_	-2	0.5	2	-72	0.5	72	72
COM OFF leakage current	I _{COM(OFF)}	$\label{eq:VNO} \begin{array}{l} V_{NO} = 3 \ V, \\ or \\ V_{COM} = 3 \ V, \\ V_{NO} = 1 \ V, \end{array}$	Switch OFF, See Figure 14	Full	3.6 V	-20		20	-360		360	nA
	ICOM(PWROF	V _{COM} = 3.6 V to 0,		25°C	0 V	-1	0.1	1	-2	0.1	2	μA
	F)	$V_{NO} = 0$ to 3.6 V,		Full	0.0	-5		5	-27		27	μΛ
		$V_{NO} = 1 V,$ $V_{COM} = Open,$		25°C	=	-2	0.2	2	-72		72	
NO ON leakage current	I _{NO(ON)}	$v_{COM} = Open,$ or $V_{NO} = 3 V,$ $v_{COM} = Open,$	Switch ON, See Figure 15	Full	3.6 V	-20		20	-360		360	nA
		$V_{COM} = 1 V,$		25°C		-2	0.2	2	-72		72	
COM ON leakage current	I _{COM(ON)}	$V_{NO} = Open,$ or $V_{COM} = 3 V,$ $V_{NO} = Open,$	Switch ON, See Figure 15	Full	3.6 V	-20		20	-360		360	nA
Digital Control Input	s (IN)											
Input logic high	V _{IH}			Full		2		5.5	2		5.5	V
Input logic low	V _{IL}			Full		0		0.8	0		0.8	V
Input leakage	I _{IH} , I _{IL}	V ₁ = 5.5 V or 0		25°C	3.6 V	-2	0.3	2				nA
current	'IH, 'IL	vi = 0.0 v 0i 0		Full	0.0 V	-20		20	-360		360	10.0

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

Electrical Characteristics for 3.3-V Supply⁽¹⁾ (continued)

$V_{+} = 3 V \text{ to } 3.6$	V. $T_{A} = -40^{\circ}C$ to 85	5°C (unless otherwise noted	(b
$v_{+} = 0 + 10 + 0.0$			

	0)////	TEAT ANY		-			85°C					
PARAMETER	SYMBOL	TEST CONI	DITIONS	T _A	V.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Dynamic		1										
			0 25 55	25°C	3.3 V	2	5	10	2	5	10	
Turn-on time	t _{ON}	$V_{COM} = V_+, \\ R_L = 50 \ \Omega,$	C _L = 35 pF, See Figure 17	Full	3 V to 3.6 V	1.5		11	1.5		11	ns
				25°C	3.3 V	6.5	9	12	6.5	9	12	
Turn-off time	t _{OFF}	$V_{COM} = V_+, \\ R_L = 50 \ \Omega,$	C _L = 35 pF, See Figure 17	Full	3 V to 3.6 V	4		13	4		13	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 21	25°C	3.3 V		1			1		рС
NO OFF capacitance	C _{NO(OFF)}	$V_{NO} = V_+ \text{ or GND},$ Switch OFF,	See Figure 16	25°C	3.3 V		19			19		pF
COM OFF capacitance	C _{COM(OFF)}	$V_{COM} = V_{+} \text{ or GND},$ Switch OFF,	See Figure 16	25°C	3.3 V		18			18		pF
NO ON capacitance	C _{NO(ON)}	$V_{NO} = V_+ \text{ or GND},$ Switch ON,	See Figure 16	25°C	3.3 V		36			36		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_{+} \text{ or GND},$ Switch ON,	See Figure 16	25°C	3.3 V		36			36		pF
Digital input capacitance	CI	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	3.3 V		2			2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	3.3 V		200			200		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, See Figure 19	25°C	3.3 V		-64			-64		dB
Total harmonic distortion	THD		f = 20 Hz to 20 kHz, See Figure 21	25°C	3.3 V		0.01			0.01		%
Supply		,										
Positive supply		$V_1 = V_2$ or GND,	Switch ON or	25°C	3.6 V		0.01	0.1		0.01	0.1	
current	I+	$v_1 = v_+$ or GND,	OFF	Full	3.0 V			0.25			0.7	μA

7.7 Electrical Characteristics for 2.5-V Supply⁽¹⁾

 $V_{+} = 2.3 \text{ V}$ to 2.7 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

DADAMETER	SYMPO	TEST CON		Ŧ	v		85°C			125°C		UNIT
PARAMETER	SYMBOL	TEST CON	DITIONS	T _A	V.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Analog Switch												-
Analog signal range	V _{COM} , V _{NO}				2.3 V	0		V+	0		V+	V
Peak ON resistance	r _{peak}	$0 \le V_{NO} \le V_+,$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 13	25°C Full	2.3 V		1.8	2.4 2.6		1.8	2.4 3.1	Ω
ON-state resistance	r _{on}	$V_{NO} = 2 V,$	Switch ON,	25°C	2.3 V		1.2	2.0		1.2	2.1	Ω
ON-State resistance	on	$I_{COM} = -100 \text{ mA},$	See Figure 13	Full	2.5 V			2.4			2.88	32
ON-state resistance		$\begin{array}{l} 0 \leq V_{\rm NO} \leq V_{+}, \\ I_{\rm COM} = -100 \ {\rm mA}, \end{array}$	Switch ON,	25°C			0.7			0.7		
flatness	r _{on(flat)}	V _{NO} = 2 V, 0.8 V,	See Figure 13	25°C	2.3 V		0.4	0.6		0.4	0.6	Ω
		$I_{COM} = -100 \text{ mA},$		Full				0.6			0.72	
		V _{NO} = 1 V,		25°C		-5	0.3	5	-64	0.3	64	
NO OFF leakage current	I _{NO(OFF)}	$V_{COM} = 3 V,$ or $V_{NO} = 3 V,$ $V_{COM} = 1 V,$	Switch OFF, See Figure 14	Full	2.7 V	-50		50	-320		320	nA
		$V_{NO} = 0$ to 3.6 V,		25°C	0 V	-2	0.05	2	-2	0.05	2	
	I _{NO(PWROFF)}	$V_{NO} = 0 \text{ to } 3.6 \text{ V}, \ V_{COM} = 3.6 \text{ V to } 0,$		Full	0 V	-15		15	-24		24	μA
		$V_{COM} = 1 V,$		25°C		-5	0.3	5	-64	0.3	64	
COM OFF leakage current	I _{COM(OFF)}	$ \begin{array}{l} V_{NO}=3 \ V, \\ or \\ V_{COM}=3 \ V, \\ V_{NO}=1 \ V, \end{array} $	Switch OFF, See Figure 14	Full	2.7 V	-50		50	-320		320	nA
	I _{COM(PWROF}	V _{COM} = 3.6 V to 0,		25°C	0.1/	-2	0.05	2	-2	0.05	2	
	F)	$V_{NO} = 0$ to 3.6 V,		Full	0 V	-15		15	-24		24	μA
		$V_{NO} = 1 V,$		25°C		-2	0.3	2	-64		64	
NO ON leakage current	I _{NO(ON)}	$V_{COM} = Open,$ or $V_{NO} = 3 V,$ $V_{COM} = Open,$	Switch ON, See Figure 15	Full	2.7 V	-20		20	-320		320	nA
		$V_{COM} = 1 V,$		25°C		-2	0.3	2	-64	0.3	64	
COM ON leakage current	I _{COM(ON)}	$V_{NO} = Open,$ or $V_{COM} = 3 V,$ $V_{NO} = Open,$	Switch ON, See Figure 15	Full	2.7 V	-20		20	-320		320	nA
Digital Control Input	s (IN1, IN2)											
Input logic high	V _{IH}			Full		1.8		5.5	1.8		5.5	V
Input logic low	V _{IL}			Full		0		0.6	0		0.6	V
Input leakage		V ₁ = 5.5 V or 0		25°C	2.7 V	-2	0.3	2				
current	I _{IH} , I _{IL}	$v_{\rm I} = 5.5 \ v \ 01 \ 0$		Full	2.1 V	-20		20	-320		320	nA

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

Electrical Characteristics for 2.5-V Supply⁽¹⁾ (continued)

$V_{+} = 2.3 \text{ V to } 2.7$	V. $T_{\wedge} = -40^{\circ}C$ to	85°C (unless otherwise note	d)
$V_{+} = 2.0 + 10 - 2.0$	$\mathbf{r}, \mathbf{r}_{A} = \mathbf{r}_{A} \mathbf{c} \mathbf{c} \mathbf{c}$		α)

DADAMETER	0/4/201	TEAT OON	-			85°C			UNIT			
PARAMETER	SYMBOL	TEST CON	DITIONS	T _A	V.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Dynamic								ı			1	
			0 05 - 5	25°C	2.5 V	2	6	10	2	6	10	
Turn-on time	t _{ON}		C _L = 35 pF, See Figure 17	Full	2.3 V to 2.7 V	1		12	1		12	ns
				25°C	2.5 V	4.5	8	10.5	4.5	8	10.5	
Turn-off time	t _{OFF}		C _L = 35 pF, See Figure 17	Full	2.3 V to 2.7 V	3		15	3		15	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 21	25°C	2.5 V		4			4		рС
NO OFF capacitance	C _{NO(OFF)}	$V_{NO} = V_+ \text{ or GND},$ Switch OFF,	See Figure 16	25°C	2.5 V		19.5			19.5		pF
COM OFF capacitance	C _{COM(OFF)}	$V_{COM} = V_+ \text{ or GND},$ Switch OFF,	See Figure 16	25°C	2.5 V		18.5			18.5		pF
NO ON capacitance	C _{NO(ON)}	$V_{NO} = V_+ \text{ or GND},$ Switch ON,	See Figure 16	25°C	2.5 V		36.5			36.5		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_{+} \text{ or GND},$ Switch ON,	See Figure 16	25°C	2.5 V		36.5			36.5		pF
Digital input capacitance	CI	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	2.5 V		2			2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	2.5 V		150			150		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, See Figure 19	25°C	2.5 V		-62			-62		dB
Total harmonic distortion	THD		f = 20 Hz to 20 kHz, See Figure 21	25°C	2.5 V		0.02			0.02		%
Supply												
Positive supply		$V_1 = V_+$ or GND,	Switch ON or	25°C	2.7 V		0.001	0.02		0.001	0.02	
current	I+	$v_1 = v_+$ or GND,	OFF	Full	2.1 V			0.25			0.6	μA

7.8 Electrical Characteristics for 1.8-V Supply⁽¹⁾

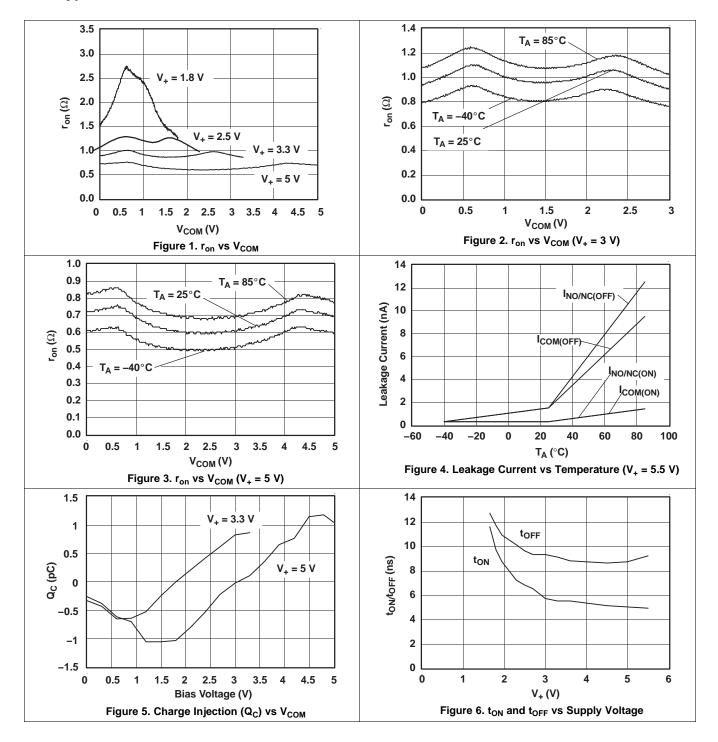
 V_{\star} = 1.65 V to 1.95 V, T_{A} = –40°C to 85°C (unless otherwise noted))

PARAMETER	SYMBOL	TEST CON		т	V,		85°C		125°C			UNIT
PARAMETER	STNIBUL	TEST CONL	DITIONS	T _A	v ₊	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Analog Switch												
Analog signal range	V _{COM} , V _{NO}					0		V+	0		V+	V
Peak ON resistance	r _{peak}	$0 \le V_{NO} \le V_+,$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 13	25°C	1.65 V		4.2	25		4.2	25	Ω
				Full			1.0	30		1.0	36	
ON-state resistance	r _{on}	$V_{NO} = 2 V,$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 13	25°C Full	1.65 V		1.6	3.9 4.0		1.6	3.9 4.8	Ω
ON state assistance		$0 \le V_{NO} \le V_+,$ $I_{COM} = -100 \text{ mA},$	Quitab ON	25°C			2.8			2.8		
ON-state resistance flatness	r _{on(flat)}	V _{NO} = 2 V, 0.8 V,	Switch ON, See Figure 13	25°C	1.65 V		4.1	22		4.1	22	Ω
		$I_{COM} = -100 \text{ mA},$		Full	-			27			32.4	
		V _{NO} = 1 V,		25°C		-5		5	-58		58	
NO OFF leakage current	I _{NO(OFF)}	$ \begin{array}{l} V_{COM} = 3 \ V, \\ or \\ V_{NO} = 3 \ V, \\ V_{COM} = 1 \ V, \end{array} $	Switch OFF, See Figure 14	Full	1.95 V	-50		50	-320		320	nA
		$V_{NO} = 0$ to 3.6 V,		25°C	0 V	-2		2	-2		2	•
	I _{NO(PWROFF)}	$V_{COM} = 3.6 V \text{ to } 0,$		Full	0 V	-10		10	-22		22	μA
		$V_{COM} = 1 V,$		25°C		-5		5	-58		58	
COM OFF leakage current	I _{COM(OFF)}	$\label{eq:VNO} \begin{array}{l} V_{NO} = 3 \ V, \\ or \\ V_{COM} = 3 \ V, \\ V_{NO} = 1 \ V, \end{array}$	Switch OFF, See Figure 14	Full	1.95 V	-50		50	-320		320	nA
	I _{COM(PWROF}	V _{COM} = 0 to 3.6 V,		25°C	0 V	-2		2	-2		2	
	F)	$V_{NO} = 3.6 V \text{ to } 0,$		Full	0.0	-10		10	-22		22	μA
		$V_{NO} = 1 V$,	-	25°C	-	-2		2	-58		58	
NO ON leakage current	I _{NO(ON)}	$V_{COM} = Open,$ or $V_{NO} = 3 V,$ $V_{COM} = Open,$	Switch ON, See Figure 15	Full	1.95 V	-20		20	-320		320	nA
		$V_{COM} = 1 V,$		25°C		-2		2	-58		58	
COM ON leakage current	I _{COM(ON)}	$V_{NO} = Open,$ or $V_{COM} = 3 V,$ $V_{NO} = Open,$	Switch ON, See Figure 15	Full	1.95 V	-20		20	-320		320	nA
Digital Control Input	s (IN1, IN2)											
Input logic high	V _{IH}			Full		1.5		5.5	1.5		5.5	V
Input logic low	VIL			Full		0		0.6	0		0.6	V
Input leakage	I _{IH} , I _{IL}	V ₁ = 5.5 V or 0		25°C	1.95 V	-2	0.3	2				nA
current	'IH, 'IL	vi = 0.0 v 0i 0		Full	1.00 V	-20		20	-320		320	103

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

TEXAS INSTRUMENTS

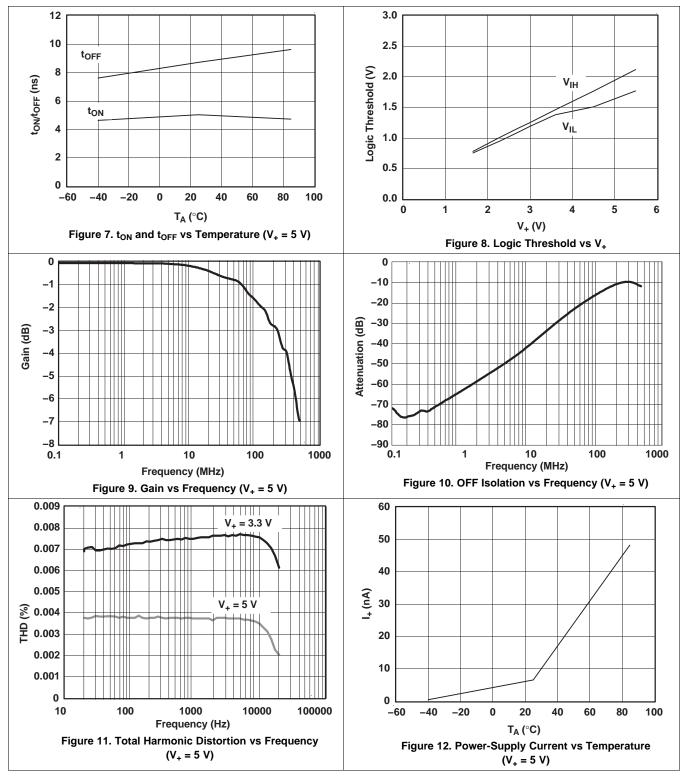
www.ti.com


Electrical Characteristics for 1.8-V Supply⁽¹⁾ (continued)

DADAMETED	OVMEN	TEST CONDITIONS		-	v		85°C		125°C			LINUT
PARAMETER	SYMBOL	TEST CON	DITIONS	TA	V.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Dynamic	1	1										
			0 25 55	25°C	1.8 V	3	9	18	3	9	18	
Turn-on time	t _{ON}		C _L = 35 pF, See Figure 17	Full	1.65 V to 1.95 V	1		20	1		20	ns
			C ₁ = 35 pF,	25°C	1.8 V	5	10	15.5	5	10	15.5	
Turn-off time	t _{OFF}		$G_L = 35 \text{ pF},$ See Figure 17	Full	1.65 V to 1.95 V	4		18.5	4		18.5	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 21	25°C	1.8 V		2			2		рС
NO OFF capacitance	C _{NO(OFF)}	$V_{NO} = V_{+} \text{ or GND},$ Switch OFF,	See Figure 16	25°C	1.8 V		19.5			19.5		pF
COM OFF capacitance	C _{COM(OFF)}	$V_{COM} = V_+ \text{ or GND},$ Switch OFF,	See Figure 16	25°C	1.8 V		18.5			18.5		pF
NO ON capacitance	C _{NO(ON)}	$V_{NO} = V_+ \text{ or GND},$ Switch ON,	See Figure 16	25°C	1.8 V		36.5			36.5		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_{+} \text{ or GND},$ Switch ON,	See Figure 16	25°C	1.8 V		36.5			36.5		pF
Digital input capacitance	Cı	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	1.8 V		2			2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	1.8 V		150			150		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, See Figure 19	25°C	1.8 V		-62			-62		dB
Total harmonic distortion	THD		f = 20 Hz to 20 kHz See Figure 21	25°C	1.8 V		0.055			0.055		%
Supply		*			• •							
Positive supply			Switch ON or	25°C	1.95 V		0.001	0.01		0.001	0.01	
current	I ₊	$V_1 = V_+ \text{ or GND},$	OFF	Full	1.95 V			0.15			0.6	μA

V_{\star} = 1.65 V to 1.95 V, T_{A} = –40°C to 85°C (unless otherwise noted))

7.9 Typical Characteristics



TS5A3166-Q1 SCDS357A – JULY 2014–REVISED DECEMBER 2014

www.ti.com

Typical Characteristics (continued)

8 Parameter Measurement Information

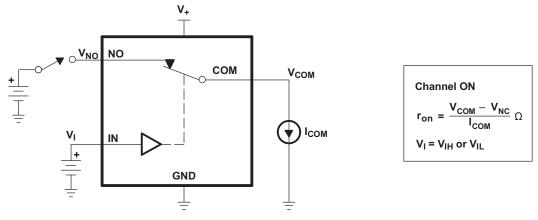


Figure 13. ON-State Resistance (ron)

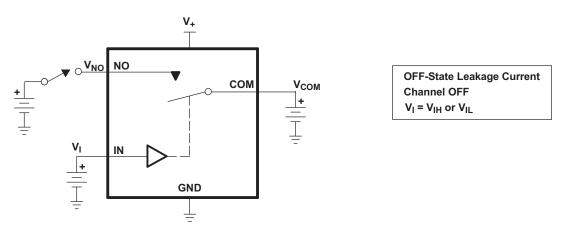
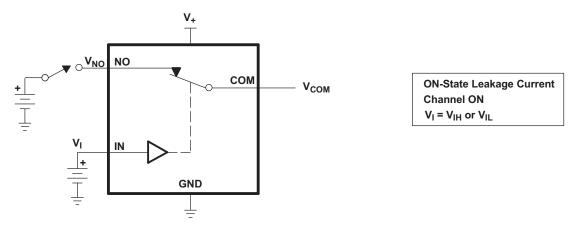
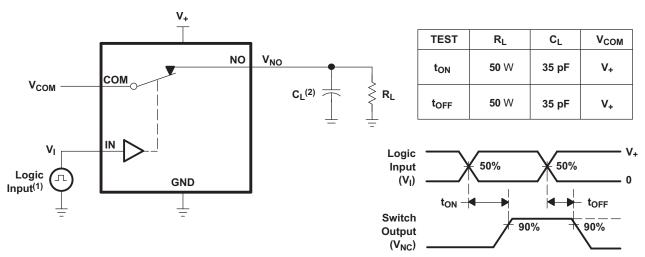
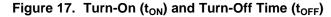
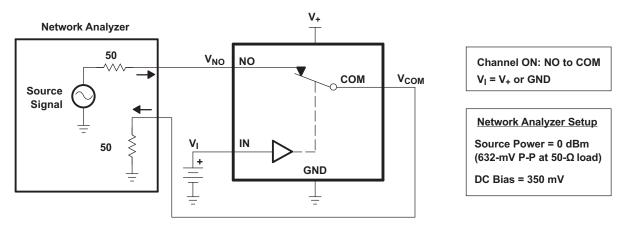


Figure 14. OFF-State Leakage Current (I_{COM(OFF)}, I_{NO(OFF)}, I_{COM(PWROFF)}, I_{NO(PWR(FF)})


Figure 15. ON-State Leakage Current (I_{COM(ON)}, I_{NO(ON)})


Parameter Measurement Information (continued) V+ V_{NO} NO Capacitance V_{BIAS} = V₊ or GND Meter $V_I = V_{IH} \text{ or } V_{IL}$ ⊖ V_{COM} СОМ Capacitance is measured at NO, V_{BIAS} COM, and IN inputs during ON $\mathbf{v}_{\mathbf{l}}$ IN and OFF conditions. GND

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- (2) C_L includes probe and jig capacitance.

16

ISTRUMENTS

EXAS

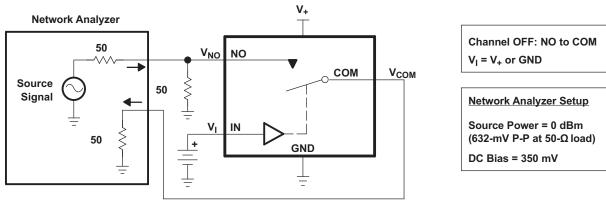
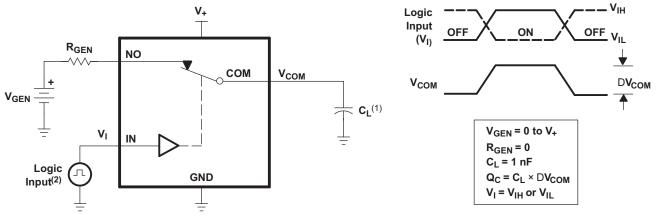
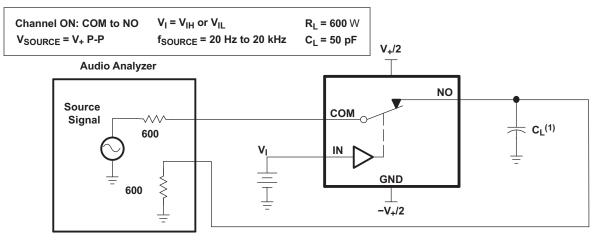




Figure 19. OFF Isolation (O_{ISO})

- (1) C_L includes probe and jig capacitance.
- (2) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.

Figure 20. Charge Injection (Q_c)

(1) C_L includes probe and jig capacitance.

9 Detailed Description

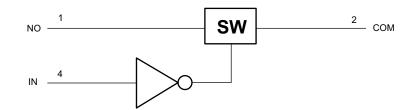

9.1 Overview

Table 1. Parameter Description

SYMBOL	DESCRIPTION
V _{COM}	Voltage at COM
V _{NO}	Voltage at NO
r _{on}	Resistance between COM and NO ports when the channel is ON
r _{peak}	Peak on-state resistance over a specified voltage range
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions
INO(PWROFF)	Leakage current measured at the NO port during the power-down condition, $V_{+} = 0$
I _{COM(OFF)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the OFF state under worst- case input and output conditions
I _{COM(PWROFF)}	Leakage current measured at the COM port during the power-down condition, $V_{+} = 0$
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the ON state and the output (NO) open
V _{IH}	Minimum input voltage for logic high for the control input (IN)
V _{IL}	Maximum input voltage for logic low for the control input (IN)
VI	Voltage at the control input (IN)
I _{IH} , I _{IL}	Leakage current measured at the control input (IN)
t _{ON}	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON.
t _{OFF}	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF.
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance, and ΔV_{COM} is the change in analog output voltage.
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
C _{COM(OFF)}	Capacitance at the COM port when the corresponding channel (COM to NO) is OFF
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NO) is ON
CI	Capacitance of control input (IN)
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NO to COM) in the OFF state.
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
THD	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
I+	Static power-supply current with the control (IN) pin at V ₊ or GND

9.2 Functional Block Diagram

9.3 Feature Description

Table 2.	Summary	/ Of	Characteristics ⁽¹⁾
	Gainnar		onulationstios

Configuration	Single Pole Single Throw (SPST)
Number of channels	1
ON-state resistance (r _{on})	0.9 Ω
ON-state resistance flatness (ron(flat))	0.15 Ω
Turn-on/turn-off time (t _{ON} /t _{OFF})	7.5 ns/12.5 ns
Charge injection (Q _C)	1 pC
Bandwidth (BW)	200 MHz
OFF isolation (O _{ISO})	–64 dB at 1 MHz
Total harmonic distortion (THD)	0.005%
Leakage current (I _{COM(OFF)})	±4 nA
Power-supply current (I ₊)	0.5 μΑ
Package option	5-pin DSBGA, SOT-23, or SC-70

(1) $V_+ = 5 V, T_A = 25^{\circ}C$

9.4 Device Functional Modes

Table 3. Function Table

IN	NO TO COM, COM TO NO
L	OFF
Н	ON

TEXAS INSTRUMENTS

www.ti.com

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

SPST analog switch is a basic component that could be used in any electrical system design. The following are some basic applications that utilize the TS5A3166, more detailed applications may be found in the *Typical Application* section.

- 1. Gain-control circuit for amplifier
 - (a) Additional details are available in the *Typical Application* section.
- 2. Improve lock time of a PLL by changing the time constant
 - (a) Example Diagram:

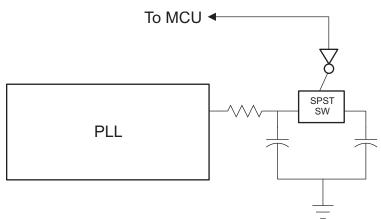


Figure 22. Improved Lock Time Circuit Simplified Block Diagram

- 1. Improve power consumption for PLL
 - (a) Example Diagram:

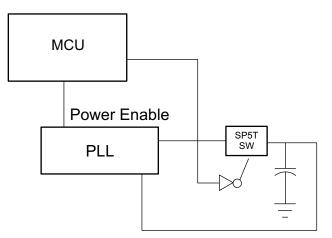


Figure 23. PLL Improved Power Consumption Simplified Block Diagram

10.2 Typical Application

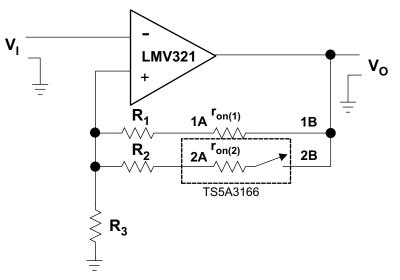
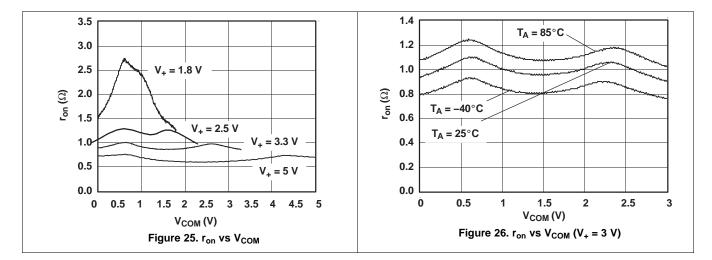


Figure 24. Gain-Control Circuit for OP Amplifier

10.2.1 Design Requirements

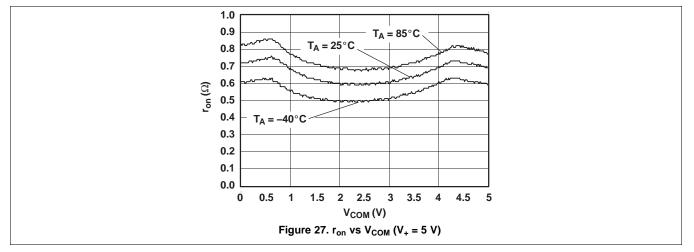

Place a switch in series with the input of the op amp. Since the op amp input impedance is very large, a switch on $r_{on(1)}$ is irrelevant.

10.2.2 Detailed Design Procedure

By choosing values of R1 and R2, such that $Rx >> r_{on(x)}$, r_{on} of TS5A3166 can be ignored. The gain of op amp can be calculated as follow:

Vo / VI = 1+ R / R3	(1)
$R = (R1 + r_{on(1)}) (R2 + r_{on(2)})$	(2)

10.2.3 Application Curves



TS5A3166-Q1 SCDS357A – JULY 2014–REVISED DECEMBER 2014

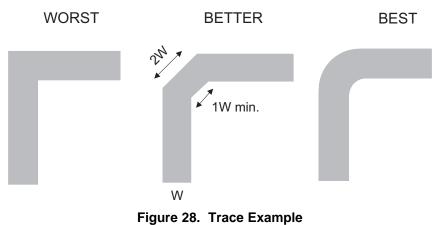
INSTRUMENTS

EXAS

Typical Application (continued)

11 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*.


Each Vcc terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1 μ F bypass capacitor is recommended. If there are multiple Vcc terminals then a 0.01 μ F or 0.022 μ F capacitor is recommended for each power terminal. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1 μ F and 1 μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results

12 Layout

12.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This upsets the transmission line characteristics, especially the distributed capacitance and self-inductance of the trace — resulting in the reflection. It is a given that not all PCB traces can be straight, and so they will have to turn corners. Below figure shows progressively better techniques of rounding corners. Only the last example maintains constant trace width and minimizes reflections.

12.2 Layout Example

13 Device and Documentation Support

13.1 Trademarks

All trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TS5A3166QDCKRQ1	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	SIU	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

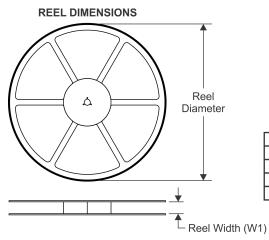
OTHER QUALIFIED VERSIONS OF TS5A3166-Q1 :

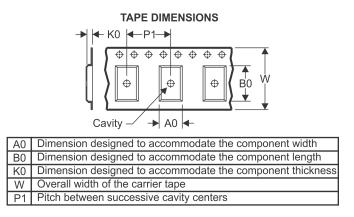
PACKAGE OPTION ADDENDUM

10-Dec-2020

Catalog: TS5A3166

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

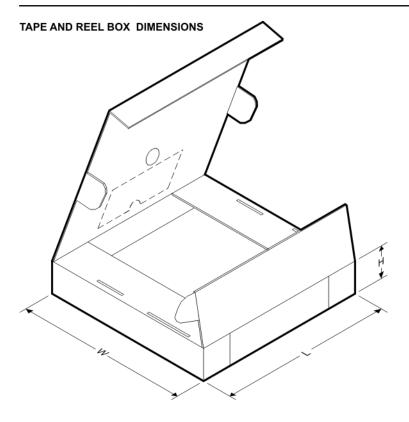

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

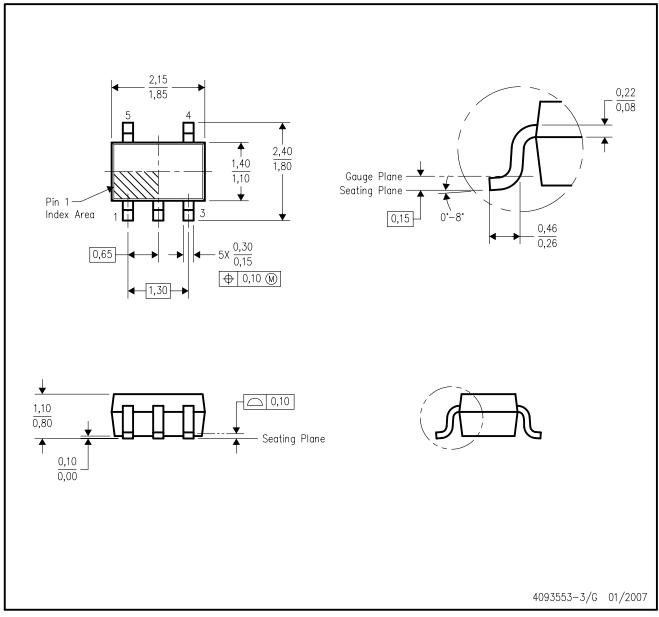

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A3166QDCKRQ1	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

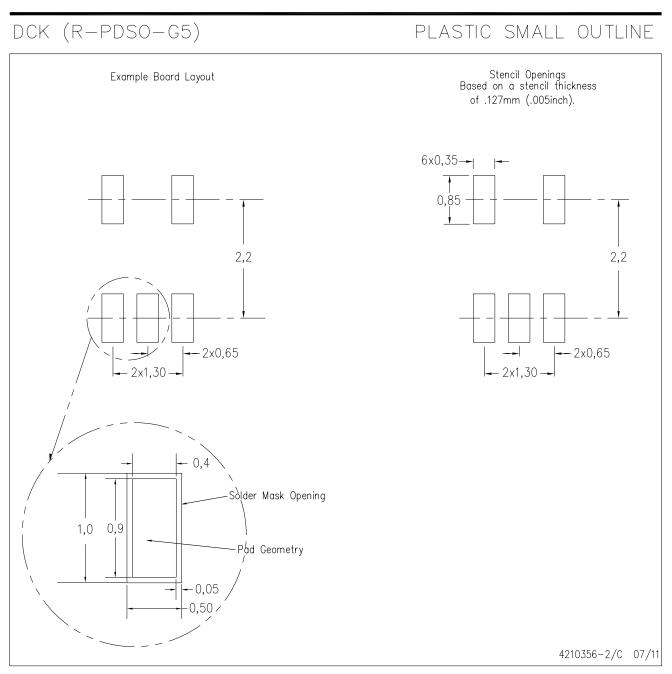
24-Apr-2020



*All dimensions are nominal

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TS5A3166QDCKRQ1	SC70	DCK	5	3000	180.0	180.0	18.0	

DCK (R-PDSO-G5)


PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AA.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated