

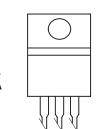
Surface Mount - 50V - 400V > MCR218-2G, MCR218-4G, MCR218-6G

MCR218-2G, MCR218-4G, MCR218-6G

Description


Designed primarily for half-wave ac control applications, such as motor controls, heating controls and power supplies; or wherever half-wave silicon gate-controlled, solid-state devices are needed.

Features


- Glass-Passivated Junctions
- Blocking Voltage to 400 Volts
- TO-220 Construction Low Thermal Resistance, High Heat Dissipation and Durability

Functional Diagram

A O G C

Pin Out

Additional Information

Po

Samples

© 2017 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 08/30/17

Surface Mount - 50V - 400V > MCR218-2G, MCR218-4G, MCR218-6G

Maximum Ratings (T₁ = 25°C unless otherwise noted)

a al Chava stavisti

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (– 40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open) MCR68-2	V _{drm} , V _{rrm}	50	V
On-State RMS Current (180° Conduction Angles; $T_c = 85^{\circ}$ C)	I _{TM (RMS)}	12	А
Peak Discharge Current (Note 2)	I _{TM}	300	А
Average On-State Current (180° Conduction Angles; T _c = 85°C)	I _{T(AV)}	8.0	А
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 125°C)	I _{TSM}	100	А
Circuit Fusing Consideration (t = 8.3 ms)	l²t	40	A ² sec
Forward Peak Gate Current (Pulse Width \leq 1.0 µsec, T _c = 80°C)	I _{gM}	2.0	A
Forward Peak Gate Current (Pulse Width \leq 1.0 $\mu sec, T_c = 85^{\circ}C)$	I _{GM}	20	W
Forward Average Gate Power (t = 8.3 ms, TC = 85°C)	P _{G(AV)}	0.5	W
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C
MountingTorque	_	8.0	in. lb.

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

2. Ratings apply for tw = 1 ms. See Figure 1 for I_{TM} capability for various duration of an exponentially decaying current waveform, tw is defined as 5 time constants of an exponentially decaying current pulse.

Thermal Characteristics					
Rating	Symbol	Value	Unit		
Thermal Resistance, Junction-to-Case	R _{sJC}	2.0	°C/W		
Thermal Resistance, Junction-to-Ambient	R _{sja}	60			
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C		

Electrical Characteristics - **OFF** ($T_1 = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current	$T_J = 25^{\circ}C$	I _{drm} ,	-	-	10	μA
$(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM'} \text{ Gate Open})$	T _J = 125°C	I _{rrm}	-	-	2.0	mA

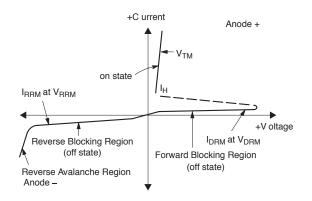
Electrical Characteristics \cdot **ON** (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward On–State Voltage (Note 2) ($I_{TM} = 32$ A)					
(I _{TM} = 24 A) (Note 3) (I _{TM} = 300 A, tw = 1 ms) (Note 4)	V _{TM}	-	- 6.0	2.2	V
Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ V}; \text{ R}_L = 100 \Omega$)		2.0	7.0	30	mA
Gate Trigger Voltage (Continuous dc) ($V_D = 12 \text{ V}; \text{ R}_L = 100 \Omega$)		_	0.65	1.5	V
Gate Trigger Non-Current (Continuous dc) ($V_D = 12 \text{ V}; \text{ R}_L = 100 \Omega$)		0.2	0.40	-	V
Holding Current (V _p = 12 V, Initiating Current = 200 mA, Gate Open))		3.0	15	50	mA
Latch Current ($V_{D} = 12$ V, $I_{G} = 30$ mA)		-	35	80	mA
Gate Controlled Turn-On Time (Note 5) ($V_{D} = Rated V_{DRM'} I_{G} = 150 \text{ mA}$) ($I_{TM} = 24 \text{ A Peak}$)		_	1.0	_	μs

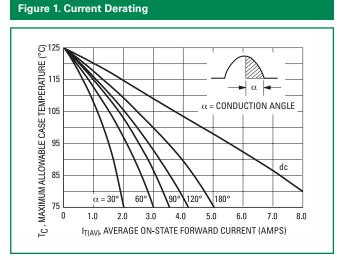
Dynamic Characteristics					
Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate of Rise of Off–State Voltage ($V_D = Rated V_{DRM}$, Exponential Waveform, Gate Open, $T_J = 125^{\circ}C$)	dv/dt	10	_	_	V/µs
Critical Rate of Rise of On–State Current $I_{g} = 150 \text{ A}$ $T_{J} = 125^{\circ}\text{C}$	di/dt	_	-	75	A/µs

3. Pulse duration \leq 300 $\mu s,$ duty cycle \leq 2%.

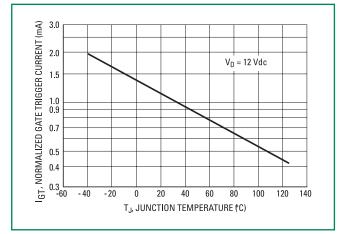
4. Ratings apply for tw = 1 ms. See Figure 1 for I_{TM} capability for various durations of an exponentially decaying current waveform. tw is defined as 5 time constants of an exponentially decaying current pulse.

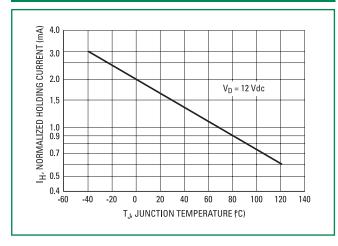

5. The gate controlled turn-on time in a crowbar circuit will be influenced by the circuit inductance.

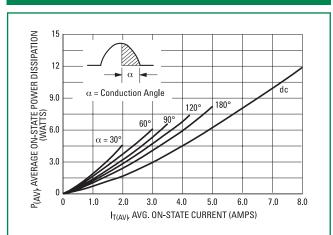
 $Surface\ Mount-50V-400V >\ MCR218-2G,\ MCR218-4G,\ MCR218-6G$


Voltage Current Characteristic of SCR

Symbol	Parameter
V _{drm}	Peak Repetitive Forward Off State Voltage
_{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current




Surface Mount - 50V - 400V > MCR218-2G, MCR218-4G, MCR218-6G


Figure 3. Typical Gate Trigger Current vsTemperature

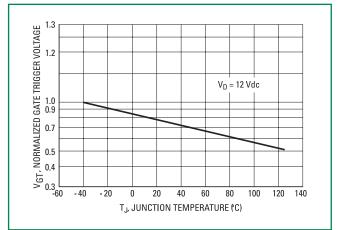
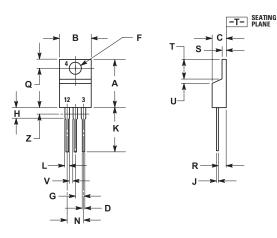
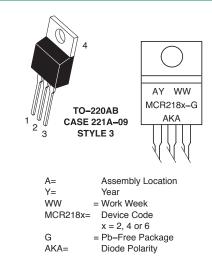

Figure 5. Typical Holding Current vs Temperature

Figure 2. On-State Power Dissipation


Figure 4. Typical Gate Trigger Voltage vs Temperature

Surface Mount - 50V - 400V > MCR218-2G, MCR218-4G, MCR218-6G

Dimensions


D .	Inches		Millim	illimeters	
Dim	Min	Max	Min	Max	
А	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.014	0.022	0.36	0.55	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
V	0.045		1.15		
Z		0.080		2.04	

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Part Marking System

Pin Assignment			
1	Cathode		
2	Anode		
3	Gate		
4	Anode		

Ordering Information					
Device	Package	Shipping			
MCR218-2G					
MCR218-4G	TO-220AB (Pb-Free)	500 Units / Bulk			
MCR218-6G					

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: <u>www.littlefuse.com/disclaimer-electronics</u>