Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

General Description

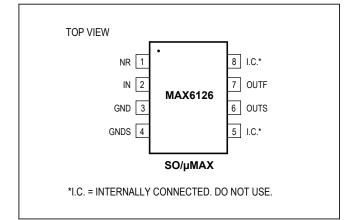
The MAX6126 is an ultra-low-noise, high-precision, lowdropout voltage reference. This family of voltage references feature curvature-correction circuitry and high-stability, laser-trimmed, thin-film resistors that result in 3ppm/°C (max) temperature coefficients and an excellent ±0.02% (max) initial accuracy. The proprietary low-noise reference architecture produces a low flicker noise of $1.3 \mu V_{P-P}$ and wideband noise as low as 60nV/VHz (2.048V output) without the increased supply current usually found in low-noise references. Improve wideband noise to 35nV/vHz and AC power-supply rejection by adding a 0.1µF capacitor at the noise reduction pin. The MAX6126 series mode reference operates from a wide 2.7V to 12.6V supply voltage range and load-regulation specifications are guaranteed to be less than 0.025Ω for sink and source currents up to 10mA. These devices are available over the automotive temperature range of -40°C to +125°C.

The MAX6126 typically draws 380μ A of supply current and is available in 2.048V, 2.500V, 2.800V, 3.000V, 3.300V, 3.600V, 4.096V, and 5.000V output voltages. The MAX6126 also feature dropout voltages as low as 200mV. Unlike conventional shunt-mode (two-terminal) references that waste supply current and require an external resistor, the MAX6126 offers supply current that is virtually independent of supply voltage and does not require an external resistor. The MAX6126 is stable with 0.1µF to 10µF of load capacitance.

The MAX6126 is available in the tiny 8-pin $\mu\text{MAX}^{\texttt{R}}$, as well as 8-pin SO packages.

Applications

- High-Resolution A/D and D/A Converters
- ATE Equipment
- High-Accuracy Reference Standard
- Precision Current Sources
- Digital Voltmeters
- High-Accuracy Industrial and Process Control


 μ MAX is a registered trademark of Maxim Integrated Products, Inc.

Ordering Information

Benefits and Features

- Ultra-Low 1.3µV_{P-P} Noise (0.1Hz to 10Hz, 2.048V Output)
- Ultra-Low 3ppm/°C (max) Temperature Coefficient
- ±0.02% (max) Initial Accuracy
- Wide (V_{OUT} + 200mV) to 12.6V Supply Voltage Range
- Low 200mV (max) Dropout Voltage
- 380µA Quiescent Supply Current
- 10mA Sink/Source-Current Capability
- Stable with $C_{LOAD} = 0.1 \mu F$ to $10 \mu F$
- Low 20ppm/1000hr Long-Term Stability
- 0.025Ω (max) Load Regulation
- 20µV/V (max) Line Regulation
- Force and Sense Outputs for Remote Sensing

Pin Configuration

Ordering Information continued at end of data sheet.

PART	TEMP RANGE	PIN- PACKAGE	OUTPUT VOLTAGE (V)	MAXIMUM INITIAL ACCURACY (%)	MAXIMUM TEMPCO (-40°C to +85°C (ppm/°C)
MAX6126AASA21+	-40°C to +125°C	8 SO	2.048	0.02	3
MAX6126BASA21+	-40°C to +125°C	8 SO	2.048	0.06	5
MAX6126A21+	-40°C to +125°C	8 µMAX	2.048	0.06	3

+Denotes a lead(Pb)-free/RoHS-compliant package.

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Absolute Maximum Ratings

(All voltages referenced to GND)
GNDS0.3V to +0.3V
IN0.3V to +13V
OUTF, OUTS, NR0.3V to the lesser of (V _{IN} + 0.3V) or +6V
Output Short Circuit to GND or IN
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
8-Pin μMAX (derate 4.5mW/°C above +70°C)362mW

8-Pin SO (derate 5.88mW/°C above +70°C)......471mW

Operating Temperature Range	-40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics—MAX6126_21 (V_{OUT} = 2.048V)

(V_{IN} = 5V, C_{LOAD} = 0.1μ F, I_{OUT} = 0, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL		CONDITI	ONS	MIN	TYP	MAX	UNITS		
OUTPUT										
Output Voltage	Vout	T _A = +25°C				2.048		V		
			A grade	SO	-0.02		+0.02			
Output Valtage Assuracy		Referred to	B grade	SO	-0.06		+0.06	%		
Output Voltage Accuracy		V _{OUT} , T _A = +25°C	A grade	μΜΑΧ	-0.06		+0.06			
		14 20 0	B grade	μMAX	-0.1		+0.1			
			A grade	SO		0.5	3			
		T _A = -40°C to +85°C	B grade	SO		1	5			
			A grade	μΜΑΧ		1	3	ppm/°C		
Output Voltage Temperature	TCV/au		B grade	μMAX		2	7			
Coefficient (Note 1)	TCV _{OUT}	T _A = -40°C to +125°C	A grade	SO	1		5			
			B grade SO			2	10			
			A grade µMAX			2	5			
			B grade µMAX			3	12			
Line Regulation	ΔV _{OUT} /	2.7V ≤ V _{IN} ≤	T _A = +25°C			2	20	µV/V		
Line Regulation	ΔV _{IN}	12.6V	$T_{A} = -40$)°C to +125°C			40	μν/ν		
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤	I _{OUT} ≤ 10	mA		0.7	25	μV/mA		
	Δl _{OUT}	Sinking: -10m/	A ≤ I _{OUT} ≤	≤ 0		1.3	25	μν/ΠΑ		
OUT Short-Circuit Current		Short to GND				160		mA		
COT Short-Circuit Current	OUT Short-Circuit Current					20		IIIA		
Thermal Hystoresia (Nets 2)	ΔV _{OUT} /	_{DUT} / SO				25		0000		
Thermal Hysteresis (Note 2)		μΜΑΧ				80		ppm		
Long-Term Stability	ΔV _{OUT} /	1000br at T	000hr at T _A = +25°C			20		ppm/		
	time		- 120 0	μMAX		100		1000hr		

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Electrical Characteristics—MAX6126_21 (V_{OUT} = 2.048V) (continued)

(V_{IN} = 5V, C_{LOAD} = 0.1μ F, I_{OUT} = 0, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS							
		f = 0.1Hz to 10Hz			1.3		μV _{P-P}
Noise Voltage	eout	$f = 1 \text{ kHz}, C_{\text{NR}} = 0$			60		nV/√Hz
		$f = 1 \text{ kHz}, C_{NR} = 0$ $f = 1 \text{ kHz}, C_{NR} = 0.1 \mu \text{F}$ To V _{OUT} = 0.01% of final value C _{NR} = 0 $C_{NR} = 0.1 \mu \text{F}$ AD No sustained oscillations		35			
Turn On Sottling Time		To V _{OUT} = 0.01% of	C _{NR} = 0		0.8		
Turn-On Settling Time	t _R	final value	C _{NR} = 0.1µF		20		ms
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillation	าร		0.1 to 10		μF
INPUT							
Supply Voltage Range	V _{IN}	Guaranteed by line-reg	ulation test	2.7		12.6	V
Quiescent Supply Current	I _{IN}	T _A = +25°C		380	550		
Quiescent Supply Current		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			725	μA	

Electrical Characteristics—MAX6126_25 (VOUT = 2.500V)

(VIN = 5V, CLOAD = 0.1μ F, IOUT = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS	
OUTPUT								
Output Voltage	Vout	T _A = +25°C	T _A = +25°C		2.500		V	
			A grade SO	-0.02		+0.02		
Output Voltage Assurage		Referred to V _{OUT} , T _A = +25°C	B grade SO	-0.06		+0.06	0/	
Output Voltage Accuracy			A grade µMAX	-0.06		+0.06	%	
			B grade µMAX	-0.1		+0.1		
			A grade SO		0.5	3		
		T _A = -40°C to +85°C	B grade SO		1	5		
			A grade µMAX		1	3	ppm/°C	
Output Voltage Temperature	TOV		B grade µMAX		2	7		
Coefficient (Note 1)	TCV _{OUT}		A grade SO		1	5		
		$T_A = -40^{\circ}C$ to	B grade SO		2	10		
		+125°C	A grade µMAX		2	5		
			B grade µMAX		3	12	1	
Line Degulation	ΔV _{OUT} /	2.7 (-1) - 12.6 (-1)	T _A = +25°C		3	20		
Line Regulation	ΔV _{IN}	$2.7V \le V_{IN} \le 12.6V$	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			40	- μV/V	
Lood Pogulation	ΔV _{OUT} /	Sourcing: $0 \le I_{OUT} \le$		1	25	u) //m A		
Load Regulation	ΔI _{OUT}	Sinking: -10mA ≤ I _{OL}	Sinking: $-10\text{mA} \le I_{OUT} \le 0$			25	µV/mA	

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Electrical Characteristics—MAX6126_25 (V_{OUT} = 2.500V) (continued)

(V_{IN} = 5V, C_{LOAD} = 0.1μ F, I_{OUT} = 0, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	UNITS	
Dropout Voltage (Note 2)		A = -0.19	I _{OUT} = 5mA		0.06	0.2	V	
Dropout Voltage (Note 3)	VIN - VOUT	ΔV _{OUT} = 0.1%	I _{OUT} = 10mA		0.12	0.4] V	
OUT Short-Circuit Current	laa	Short to GND			160		mA	
COT Short-Circuit Current	ISC	Short to IN			20		ША	
Thermal Hystoresia (Note 2)	ΔV _{OUT} /	SO			35		222	
Thermal Hysteresis (Note 2)	cycle	μΜΑΧ			80		ppm	
Long Torm Stability	ΔV _{OUT} /	1000br at T = 125°C	SO		20		ppm/	
Long-Term Stability	time	1000hr at T _A = +25°C	μΜΑΧ		100		1000hr	
DYNAMIC CHARACTERISTICS		·						
		f = 0.1Hz to 10Hz		1.45		μV _{P-P}		
Noise Voltage	eout	f = 1kHz, C _{NR} = 0	75			m)///		
		f = 1kHz, C _{NR} = 0.1µF		45			- nV/√Hz	
Turn On Sottling Time	+	To V _{OUT} = 0.01% of	C _{NR} = 0		1		ma	
Turn-On Settling Time	t _R	final value	C _{NR} = 0.1µF		20		ms	
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillation	S		0.1 to 10		μF	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by line-regulation test		2.7		12.6	V	
Quiescent Supply Current	l	T _A = +25°C		380	550			
Quiescent Supply Current	IIN	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			725	- μΑ		

Electrical Characteristics—MAX6126_28 (V_{OUT} = 2.800V)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
OUTPUT								
Output Voltage	V _{OUT}	T _A = +25°C	T _A = +25°C				V	
Output Voltage Accuracy		Referred to V _{OUT} ,	A grade µMAX	-0.06		+0.06	%	
Output Voltage Accuracy		T _A = +25°C	B grade µMAX	-0.10		+0.10	70	
		$T_A = -40^{\circ}C$ to	A grade µMAX		1	3	ppm/°C	
Output Voltage Temperature Coefficient (Note 1)	TCV _{OUT}	+85°C	B grade µMAX		2	7		
		$T_A = -40^{\circ}C$ to	A grade µMAX		2	5		
		+125°C	B grade µMAX		3	12		
	ΔV _{OUT} /		T _A = +25°C		3.5	23		
Line Regulation	ΔV _{IN}	$3.0V \le V_{IN} \le 12.6V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			45	μV/V	
Lood Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 10mA			1.3	28	u)//m /	
Load Regulation	ΔV_{IN}	Sinking: $-10mA \le I_{OUT} \le 0$			2.4	28	µV/mA	
		A = -0.1%	I _{OUT} = 5mA		0.06	0.2	V	
Dropout Voltage (Note 3)	VIN - VOUT	ΔV _{OUT} = 0.1%	I _{OUT} = 10mA		0.12	0.4		

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Electrical Characteristics—MAX6126_28 (V_{OUT} = 2.800V) (continued)

(V_{IN} = 5V, C_{LOAD} = 0.1μ F, I_{OUT} = 0, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	COND	ΙΤΙΟ	NS	MIN	TYP	MAX	UNITS
		Short to GND				160		mA
OUT Short-Circuit Current	I _{SC}	Short to IN				20		
Thermal Hysteresis (Note 2)	ΔV _{OUT} / cycle	μΜΑΧ				80		
Long-Term Stability	ΔV _{OUT} / time	1000hr at T _A = +25°C		μΜΑΧ		100		ppm/ 1000hr
DYNAMIC CHARACTERISTICS								
		f = 0.1Hz to 10Hz				1.45		μV _{P-P}
Noise Voltage	e _{OUT}	f = 1kHz, C _{NR} = 0				75		nV/√Hz
		f = 1kHz, C _{NR} = 0.1µF				45		
Turn On Cattling Time	1	To V _{OUT} = 0.01% of	C _{NR} = 0			1		
Turn-On Settling Time	t _R	final value	C _N	_R = 0.1µF		20		ms
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillation	ons			0.1 to 10		μF
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by line-regulation test		3.0		12.6	V	
Quieseent Sunnhy Current	_	T _A = +25°C				380 550		
Quiescent Supply Current	I _{IN}	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$					725	- μΑ

Electrical Characteristics—MAX6126_30 (V_{OUT} = 3.000V)

(VIN = 5V, CLOAD = 0.1μ F, IOUT = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
OUTPUT							
Output Voltage	V _{OUT}	T _A = +25°C			3.000		V
			A grade SO	-0.02		+0.02	
		Referred to V _{OUT} , T _A = +25°C	B grade SO	-0.06		+0.06	%
Output Voltage Accuracy			A grade µMAX	-0.06		+0.06	
			B grade µMAX	-0.1		+0.1	
		$T_A = -40^{\circ}C$ to	A grade SO		0.5	3	
			B grade SO		1	5	
		+85°C	A grade µMAX		1	3	
Output Voltage Temperature	TOV		B grade µMAX		2	7	
Coefficient (Note 1)	TCV _{OUT}		A grade SO		1	5	ppm/°C
		$T_A = -40^{\circ}C$ to	B grade SO		2	10	
		+125°C	A grade µMAX		2	5]
			B grade µMAX		3	12	

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Electrical Characteristics—MAX6126_30 (V_{OUT} = 3.000V) (continued)

(V_{IN} = 5V, C_{LOAD} = 0.1μ F, I_{OUT} = 0, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	COND	TIONS	MIN	TYP	MAX	UNITS	
Line Regulation	ΔV _{OUT} /	2 2)/ <)/ < 12 6)/	T _A = +25°C		4	25		
Line Regulation	ΔV _{IN}		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			50	μV/V	
	ΔV _{OUT} /	Sourcing: $0 \le I_{OUT} \le 1$	0mA		1.5	30	u)//mA	
Load Regulation	ΔI _{OUT}	Sinking: -10mA ≤ I _{OUT}	· ≤ 0		2.8	30	µV/mA	
Dropout Voltage (Note 3)		ΔV _{OUT} = 0.1%	I _{OUT} = 5mA		0.06	0.2	v	
	VIN - VOUT	ΔvOUT - 0.1%	I _{OUT} = 10mA		0.11	0.4	v	
OUT Short-Circuit Current	laa	Short to GND			160		mA	
	Isc	Short to IN		20		MA		
Thermal Hysteresis (Note 2)	ΔV _{OUT} /	SO			20		ppm	
	cycle	μΜΑΧ		80		ppm		
Long-Term Stability	ΔV _{OUT} /	1000hr at T _A = +25°C	SO		20		ppm/	
Long-Term Stability	time	1000111 at 1 _A = +25 C	μΜΑΧ	100		1000hr		
DYNAMIC CHARACTERISTICS								
		f = 0.1Hz to 10Hz		1.75			μV _{P-P}	
Noise Voltage	eout	f = 1kHz, C _{NR} = 0	90			nV/√Hz		
		f = 1kHz, C _{NR} = 0.1µF			55			
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillation	ns		0.1 to 10		μF	
Turn On Sottling Time		To V _{OUT} = 0.01% of	C _{NR} = 0		1.2		ma	
Turn-On Settling Time	^t R	final value	C _{NR} = 0.1µF		20		ms	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by line-re	gulation test	3.2		12.6	V	
Quiaccont Supply Current	L	T _A = +25°C		380	550			
Quiescent Supply Current	I _{IN}	T _A = -40°C to +125°C			- μΑ			

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Electrical Characteristics—MAX6126_33 (V_{OUT} = 3.300V)

PARAMETER	SYMBOL	CON	DITIONS	5	MIN	TYP	MAX	UNITS	
OUTPUT	•	J							
Output Voltage	V _{OUT}	T _A = +25°C				3.300		V	
			A grade	e SO	-0.02		+0.02		
		Referred to V _{OUT} ,	B grad	e SO	-0.06		+0.06		
Output Voltage Accuracy		T _A = +25°C	A grade	e μMAX	-0.06		+0.06	%	
			B grad	e µMAX	-0.1		+0.1		
			A grade	e SO		0.5	3		
		$T_A = -40^{\circ}C$ to	B grad	e SO		1	5	1	
		+85°C	A grade	e µMAX		1	3		
Output Voltage Temperature	TCV _{OUT}		B grad	e µMAX		2	7		
Coefficient (Note 1)			A grade	e SO		1	5	ppm/°C	
		$T_A = -40^{\circ}C$ to	B grad	e SO		2	10	1	
		+125°C	A grade	e µMAX		2	5	1	
			B grad	e µMAX		3	12		
Line Devulation	ΔV _{OUT} /		$T_{A} = +2$	25°C		11	35	35	
Line Regulation	ΔV _{IN}	$3.5V \le V_{IN} \le 12.6V$	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$				70	μV/V	
Land Damilation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤	10mA			2	40		
Load Regulation	ΔI _{OUT}	Sinking: -10mA ≤ I _{OI}				5	40	µV/mA	
Dropout Voltage (Note 3)	V _{IN} - V _{OUT}		I _{OUT} =	5mA		0.06	0.2		
		ΔV _{OUT} = 0.1%	I _{OUT} =	10mA		0.12	0.4	V	
		Short to GND				160			
OUT Short-Circuit Current	Isc	Short to IN				20		mA	
	ΔV _{OUT} /	SO				20			
Thermal Hysteresis (Note 2)	cycle	μΜΑΧ				80		ppm	
Lang Tarm Ctability	ΔV _{OUT} /	1000hr at T = 105%	0	SO		20		ppm/	
Long-Term Stability	time	1000hr at T _A = +25°	C	μΜΑΧ		100		1000hr	
DYNAMIC CHARACTERISTICS									
		f = 0.1Hz to 10Hz				1.95		μV _{P-P}	
Noise Voltage	eout	f = 1kHz, C _{NR} = 0				100		m)///	
		f = 1kHz, C _{NR} = 0.1	١F			60		nV/√Hz	
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillat	No sustained oscillations			0.1 to 10		μF	
		To V _{OUT} = 0.01% C _{NR} = 0			1.2				
Turn-On Settling Time	^t R	of final value $C_{NR} = 0.1 \mu F$			20		ms		
INPUT									
Supply Voltage Range	V _{IN}	Guaranteed by line-r	egulation	n test	3.5		12.6	V	
Quiescent Supply Current		$T_A = +25^{\circ}C$				380	550		
Quiescent Supply Current	I _{IN}	$T_A = -40^{\circ}C \text{ to } +125^{\circ}$	С				725	- μΑ	

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Electrical Characteristics—MAX6126_36 (V_{OUT} = 3.600V)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
OUTPUT								
Output Voltage	V _{OUT}	T _A = +25°C			3.6		V	
			A grade SO	-0.02		+0.02	- %	
		Referred to V _{OUT} ,	B grade SO	-0.06		+0.06		
Output Voltage Accuracy		T _A = +25°C	A grade µMAX	-0.06		+0.06		
			B grade µMAX	-0.1		+0.1		
			A grade SO		0.5	3		
		T = 40°C to 105°C	B grade SO		1	5	-	
		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	A grade µMAX		1	3		
Output Voltage Temperature	TOV		B grade µMAX		2	7	/°C	
Coefficient (Note 1)	TCV _{OUT}		A grade SO		1	5	ppm/°C	
		$T_A = -40^{\circ}C$ to	B grade SO		2	10	-	
		+125°C	A grade µMAX		2	5		
			B grade µMAX		3	12		
Line Degulation	ΔV _{OUT} / ΔV _{IN}	3.8V ≤ V _{IN} ≤ 12.6V	T _A = +25°C		12	40	μV/V	
Line Regulation			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			80		
Load Regulation	ΔV _{OUT} / ΔI _{OUT}	Sourcing: 0 ≤ I _{OUT} ≤ 10mA			2	50	μV/mA	
		Sinking: -10mA ≤ I _{OL}	king: -10mA ≤ I _{OUT} ≤ 0		6	50		
Dreneut Valtere (Nete 2)	V _{IN} - V _{OUT}	ΔV _{OUT} = 0.1%	I _{OUT} = 5mA		0.05	0.2	V	
Dropout Voltage (Note 3)			I _{OUT} = 10mA		0.11	0.4	V	
OUT Short-Circuit Current		Short to GND			160			
COT Short-Circuit Current	Isc	Short to IN			20		mA	
Thermal Hysteresis (Note 2)	ΔV _{OUT} /	SO			20			
memiai hystelesis (Note 2)	cycle	μΜΑΧ			80		ppm	
Long-Term Stability	ΔV _{OUT} /	1000hr at T _A = +25°C	SO		20		ppm/	
Long-Term Stability	time	1000111 at 1A = +25 C	μΜΑΧ		100		1000hr	
DYNAMIC CHARACTERISTICS								
		f = 0.1Hz to 10Hz			2.1		μV _{P-P}	
Noise Voltage	e _{OUT}	f = 1kHz, C _{NR} = 0			110		nV/√Hz	
		f = 1kHz, C _{NR} = 0.1µ	F		66			
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillat	ions		0.1 to 10		μF	
Turn-On Settling Time	+_	To V _{OUT} = 0.01% of	C _{NR} = 0		1.6		ma	
	n-On Settling Time t _R final val		C _{NR} = 0.1µF		20		ms	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by line-re	egulation test	3.8		12.6	V	
Quiescent Supply Current	lu.	T _A = +25°C			380	550		
Quiescent Suppry Current	I _{IN}	T _A = -40°C to +125°C	C			725	μA	

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Electrical Characteristics—MAX6126_41 (V_{OUT} = 4.096V)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS	
OUTPUT	•							
Output Voltage	V _{OUT}	T _A = +25°C			4.096		V	
			A grade SO	-0.02		+0.02	- %	
		Referred to V _{OUT} ,	B grade SO	-0.06		+0.06		
Output Voltage Accuracy		T _A = +25°C	A grade µMAX	-0.06		+0.06		
			B grade µMAX	-0.1		+0.1		
			A grade SO		0.5	3		
		$T_A = -40^{\circ}C$ to	B grade SO		1	5		
		+85°C	A grade µMAX		1	3		
Output Voltage Temperature	TOV		B grade µMAX		2	7		
Coefficient (Note 1)	TCV _{OUT}		A grade SO		1	5	ppm/°C	
		$T_A = -40^{\circ}C$ to	B grade SO		2	10]	
		+125°C	A grade µMAX		2	5	-	
			B grade µMAX		3	12		
Line Regulation	ΔV _{OUT} / ΔV _{IN}		T _A = +25°C		4.5	30	μV/V	
Line Regulation		$4.3 V \le V_{IN} \le 12.6 V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			60		
Land Domilation	ΔV _{OUT} /	Sourcing: $0 \le I_{OUT} \le 10$ mA			2	40	μV/mA	
Load Regulation	ΔI _{OUT}	Sinking: $-10mA \le I_{OUT} \le 0$			5	40		
Dropout Voltage (Note 3)	V _{IN} - V _{OUT}	$A_{1}(- 0.10)$	I _{OUT} = 5mA		0.05	0.2	V	
		ΔV _{OUT} = 0.1%	I _{OUT} = 10mA		0.1	0.4	V	
OUT Short Circuit Current		Short to GND			160		m ^	
OUT Short-Circuit Current	Isc	Short to IN			20		mA	
Thermal Hysteresis (Note 2)	ΔV _{OUT} /	SO			20		nnm	
memial hystelesis (Note 2)	cycle	μΜΑΧ			80		ppm	
Long-Term Stability	ΔV _{OUT} /	1000hr at T _A = +25°C	SO		20		ppm/ 1000hr	
Long-Term Stability	time	100011 at 1A = +23 C	μΜΑΧ		100			
DYNAMIC CHARACTERISTICS								
		f = 0.1Hz to 10Hz			2.4		μV _{P-P}	
Noise Voltage	eOUT	f = 1kHz, C _{NR} = 0			120		nV/√Hz	
		f = 1kHz, C _{NR} = 0.1µ	F		80			
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillat	ions		0.1 to 10		μF	
Turn-On Settling Time	t _R	To V _{OUT} = 0.01% of	C _{NR} = 0		1.6		ms	
	Ч. К	final value	C _{NR} = 0.1µF		20		1115	
INPUT	-j	1						
Supply Voltage Range	V _{IN}	Guaranteed by line-re	egulation test	4.3		12.6	V	
Quiescent Supply Current	I _{IN}	T _A = +25°C			380	550	- μΑ	
Galeboont Supply Surrent	'IN	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	2			725	μΑ	

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Electrical Characteristics—MAX6126_50 (V_{OUT} = 5.000V)

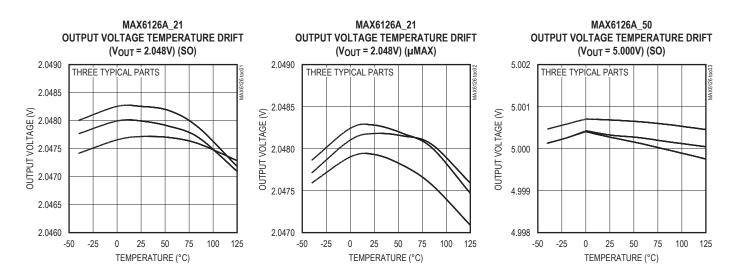
PARAMETER	SYMBOL	COND	DITIONS	MIN	TYP	MAX	UNITS	
OUTPUT								
Output Voltage	V _{OUT}	T _A = +25°C			5.000		V	
		$T_{A} = +25^{\circ}C$	A grade SO	-0.02		+0.02	- %	
Output Valtage Assures			B grade SO	-0.06		+0.06		
Output Voltage Accuracy			A grade µMAX	-0.06		+0.06		
			B grade µMAX	-0.1		+0.1		
			A grade SO		0.5	3		
		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	B grade SO		1	5		
		$ 1_{A}40 C 10 + 65 C$	A grade µMAX		1	3		
Output Voltage Temperature	TCV		B grade µMAX		2	7	nnm/°C	
Coefficient (Note 1)	TCV _{OUT}	T _A = -40°C to +125°C	A grade SO		1	5	− ppm/°C − −	
			B grade SO		2	10		
			A grade µMAX		2	5		
			B grade µMAX		3	12		
Line De mulation	ΔV _{OUT} / ΔV _{IN}	$5.2V \le V_{IN} \le 12.6V$	T _A = +25°C		3	40	μV/V	
Line Regulation			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			80		
Lood Regulation	ΔV _{OUT} /	Sourcing: $0 \le I_{OUT} \le 1$	10mA		2.5	50	u\//mA	
Load Regulation	ΔI _{OUT}	Sinking: -10mA \leq I _{OUT} \leq 0			6.5	50	µV/mA	
Dranaut Valtaga (Nata 2)	V _{IN} - V _{OUT}	ΔV _{OUT} = 0.1%	I _{OUT} = 5mA		0.05	0.2	- V	
Dropout Voltage (Note 3)			I _{OUT} = 10mA		0.1	0.4		
OUT Short-Circuit Current		Short to GND			160			
COT Short-Circuit Current	I _{SC}	Short to IN	Short to IN		20		- mA	
Thermal Hysteresis (Note 2)	ΔV _{OUT} /	SO			15			
mermai Hysteresis (Note 2)	cycle	μΜΑΧ			80		ppm	
Long Torm Stability	ΔV _{OUT} /	$1000 \text{ br at } T_{1} = 125^{\circ} \text{ C}$	SO		20		ppm/ 1000hr	
Long-Term Stability	time	1000hr at T _A = +25°C	μMAX		100			
DYNAMIC CHARACTERISTICS								
		f = 0.1Hz to 10Hz			2.85		μV _{P-P}	
Noise Voltage	e _{OUT}	$f = 1 kHz, C_{NR} = 0$			145		nV/√Hz	
		$f = 1 \text{ kHz}, C_{\text{NR}} = 0.1 \mu \text{F}$			95			
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillation		0.1 to 10		μF		

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Electrical Characteristics—MAX6126_50 (V_{OUT} = 5.000V) (continued)

(V_{IN} = 5.5V, C_{LOAD} = 0.1 μ F, I_{OUT} = 0, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

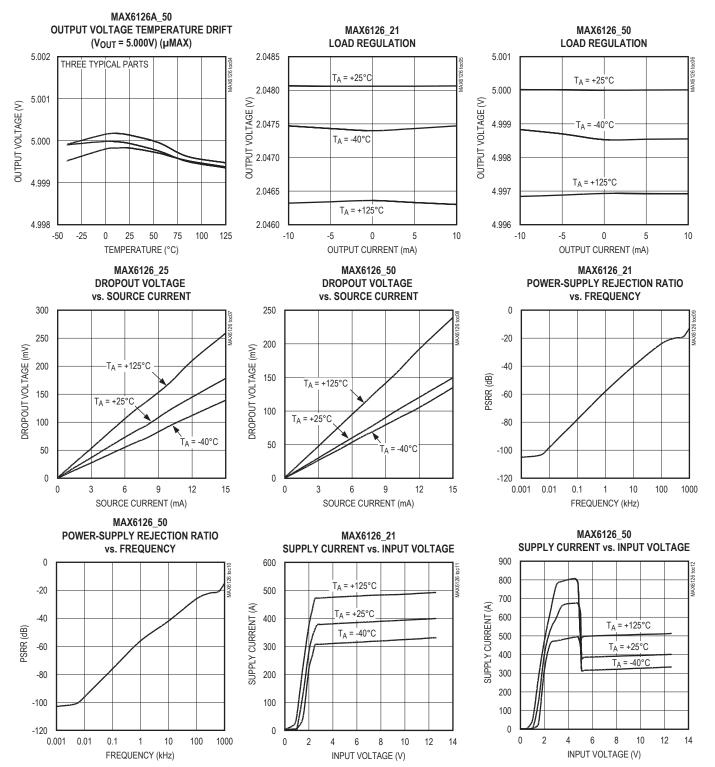
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Turn-On Settling Time	t _R	To V _{OUT} = 0.01% of final value	C _{NR} = 0		2		— ms
			C _{NR} = 0.1µF		20		
INPUT							
Supply Voltage Range	V _{IN}	Guaranteed by line-re	gulation test	5.2		12.6	V
Quiescent Supply Current		T _A = +25°C			380	550	
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$				725	μΑ


Note 1: Temperature coefficient is measured by the "box" method, i.e., the maximum $\Delta V_{OUT}/V_{OUT}$ is divided by the maximum ΔT .

Note 2: Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T_{MAX} to T_{MIN} . **Note 3:** Dropout voltage is defined as the minimum differential voltage ($V_{IN} - V_{OUT}$) at which V_{OUT} decreases by 0.1% from its

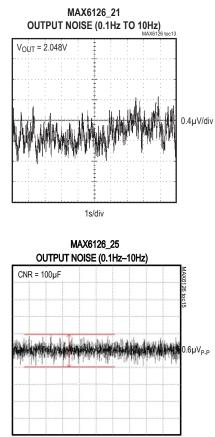
original value at V_{IN} = 5.0V (V_{IN} = 5.5V for V_{OUT} = 5.0V).

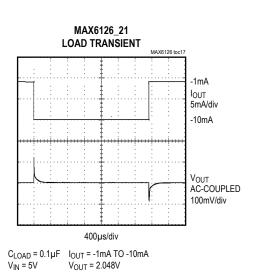
Typical Operating Characteristics

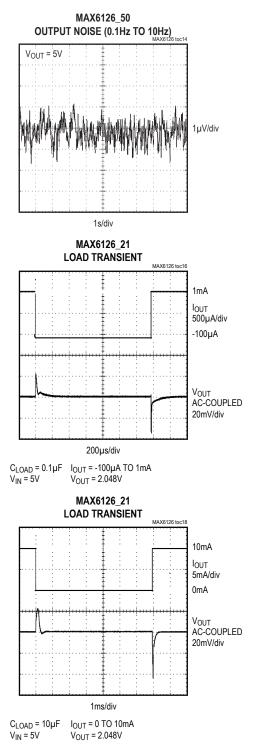

 $(V_{IN} = 5V \text{ for MAX6126}_21/25/30/33/36/41, V_{IN} = 5.5V \text{ for MAX6126}_50, C_{LOAD} = 0.1\mu\text{F}, I_{OUT} = 0, T_A = +25^{\circ}\text{C}$, unless otherwise specified.) (Note 5)

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Typical Operating Characteristics (continued)

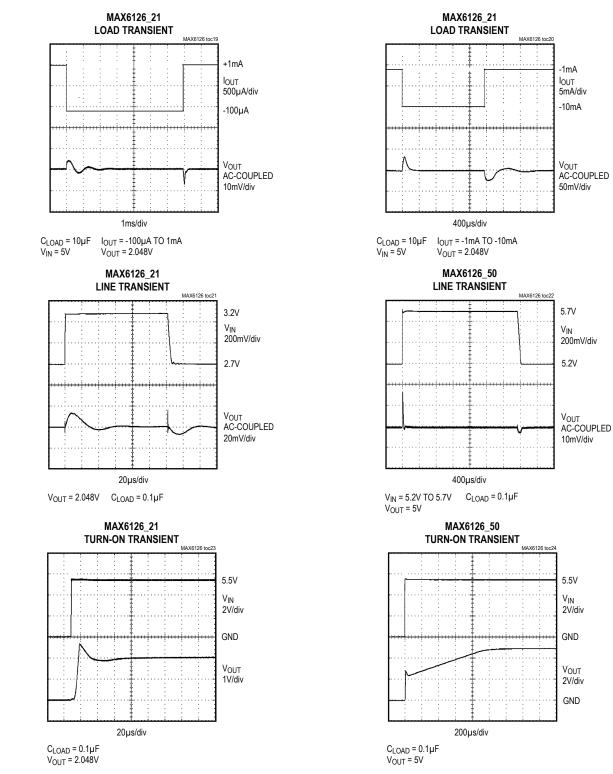

 $(V_{IN} = 5V \text{ for MAX6126}_21/25/30/33/36/41, V_{IN} = 5.5V \text{ for MAX6126}_50, C_{LOAD} = 0.1\mu\text{F}, I_{OUT} = 0, T_A = +25^{\circ}\text{C}$, unless otherwise specified.) (Note 5)


Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference


Typical Operating Characteristics (continued)

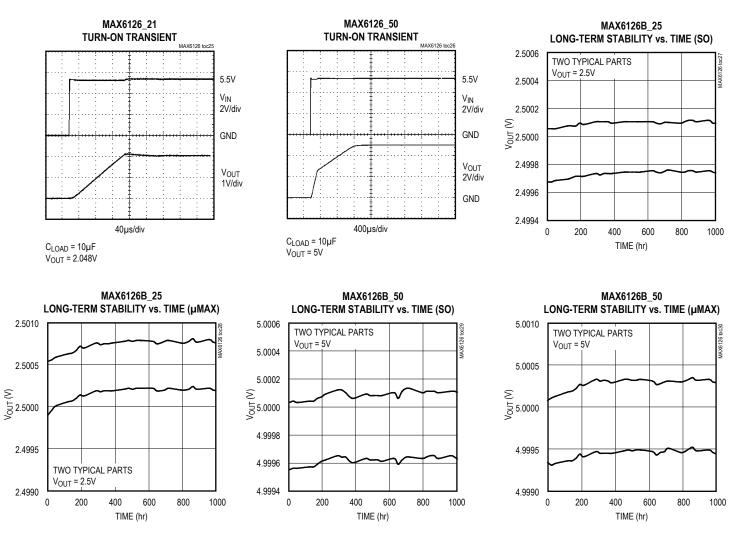
 $(V_{IN} = 5V \text{ for MAX6126}_21/25/30/33/36/41, V_{IN} = 5.5V \text{ for MAX6126}_50, C_{LOAD} = 0.1\mu\text{F}, I_{OUT} = 0, T_A = +25^{\circ}\text{C}$, unless otherwise specified.) (Note 5)

6.5s/div



Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Typical Operating Characteristics (continued)


 $(V_{IN} = 5V \text{ for MAX6126}_21/25/30/33/36/41, V_{IN} = 5.5V \text{ for MAX6126}_50, C_{LOAD} = 0.1\mu\text{F}, I_{OUT} = 0, T_A = +25^{\circ}\text{C}$, unless otherwise specified.) (Note 5)

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Typical Operating Characteristics (continued)

 $(V_{IN} = 5V \text{ for MAX6126}_21/25/30/33/36/41, V_{IN} = 5.5V \text{ for MAX6126}_50, C_{LOAD} = 0.1\mu\text{F}, I_{OUT} = 0, T_A = +25^{\circ}\text{C}$, unless otherwise specified.) (Note 5)

Note 5: Many of the MAX6126 *Typical Operating Characteristics* are extremely similar. The extremes of these characteristics are found in the MAX6126_21 (2.048V output) and the MAX6126_50 (5.000V output). The *Typical Operating Characteristics* of the remainder of the MAX6126 family typically lie between those two extremes and can be estimated based on their output voltages.

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Pin Description

PIN	NAME	FUNCTION
1	NR	Noise Reduction. Connect a 0.1μ F capacitor to improve wideband noise. Leave unconnected if not used (see Figure 1).
2	IN	Positive Power-Supply Input
3	GND	Ground
4	GNDS	Ground-Sense Connection. Connect to ground connection at load.
5, 8	I.C.	Internally Connected. Do not connect anything to these pins.
6	OUTS	Voltage Reference Sense Output
7	OUTF	Voltage Reference Force Output. Short OUTF to OUTS as close to the load as possible. Bypass OUTF with a capacitor (0.1μ F to 10μ F) to GND.

Detailed Description

Wideband Noise Reduction

To improve wideband noise and transient power-supply noise, add a 0.1μ F capacitor to NR (Figure 1). A 0.1μ F NR capacitor reduces the noise from 60nV/ \sqrt{Hz} to 35nV/ \sqrt{Hz} for the 2.048V output. Noise in the power-supply input can affect output noise, but can be reduced by adding an optional bypass capacitor between IN and GND, as shown in the <u>Typical Operating Circuit</u>. The 0.1Hz to 10Hz noise when measured with a 0.1 μ F noise reduction capacitor (NR pin) is 0.9μ V_{P-P}. Using a 100 μ F noise to 0.6μ V_{P-P}.

Output Bypassing

The MAX6126 requires an output capacitor between 0.1μ F and 10μ F. Locate the output capacitor as close to OUTF as possible. For applications driving switching capacitive loads or rapidly changing load currents, it is advantageous to use a 10μ F capacitor in parallel with a 0.1μ F capacitor. Larger capacitor values reduce transients on the reference output.

Supply Current

The quiescent supply current of the series-mode MAX6126 family is typically $380\mu A$ and is virtually independent of the supply voltage, with only a $2\mu A/V$ (max) variation with supply voltage.

When the supply voltage is below the minimum specified input voltage during turn-on, the device can draw up to 300μ A beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

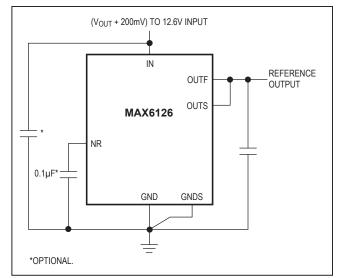


Figure 1. Noise-Reduction Capacitor

Thermal Hysteresis

Thermal hysteresis is the change of output voltage at $T_A = +25^{\circ}C$ before and after the device is cycled over its entire operating temperature range. The typical thermal hysteresis value is 20ppm (SO package).

Turn-On Time

These devices typically turn on and settle to within 0.1% of their final value in 200 μ s to 2ms depending on the device. The turn-on time can increase up to 4ms with the device operating at the minimum dropout voltage and the maximum load. A noise reduction capacitor of 0.1 μ F increases the turn-on time to 20ms.

Output Force and Sense

The MAX6126 provides independent connections for the power-circuit output (OUTF) supplying current into a load, and for the circuit input regulating the voltage applied to that load (OUTS). This configuration allows for the cancellation of the voltage drop on the lines connecting the MAX6126 and the load. When using the Kelvin connection made possible by the independent current and voltage connections, take the power connection to the load from OUTF, and bring a line from OUTS to join the line from OUTF, at the point where the voltage accuracy is needed. The MAX6126 has the same type of Kelvin connection to cancel drops in the ground return line. Connect the load to ground and bring a connection from GNDS to exactly the same point.

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Applications Information

Precision Current Source

<u>Figure 2</u> shows a typical circuit providing a precision current source. The OUTF output provides the bias current for the bipolar transistor. OUTS and GNDS sense the voltage across the resistor and adjust the current sourced by OUTF accordingly. For even higher precision, use a MOSFET to eliminate base current errors.

The voltage range of OUTF is set by the reference output voltage (OUTS) and the $V_{BE}(BJT)$ or $V_{GS}(MOS)$ of the output external device:

$$V_{OUTF} = V_{BE} + V_{REF}$$

where:

V_{OUTF} is voltage on OUTF pin

V_{BE} is base-emitter drop across BJT

 $\mathsf{V}_{\mathsf{REF}}$ is the actual voltage reference output this part is supposed to provide.

It translates to supply voltage requirement for voltage reference:

 $V_{IN} \ge V_{DROP}$ (dropout voltage) + V_{BEmax} + V_{REF}

where:

VDROP is dropout voltage of voltage reference

High-Resolution DAC and Reference from a Single Supply

Figure 3 shows a typical circuit providing the reference for a high-resolution, 16-bit MAX541 D/A converter.

Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

In a data converter application, the reference voltage of the converter must stay within a certain limit to keep the error in the data converter smaller than the resolution limit through the operating temperature range. Figure 4 shows the maximum allowable reference voltage temperature coefficient to keep the conversion error to less than 1 LSB, as a function of the operating temperature range (T_{MAX} - T_{MIN}) with the converter resolution as a parameter. The graph assumes the reference voltage temperature coefficient as the only parameter affecting accuracy.

In reality, the absolute static accuracy of a data converter is dependent on the combination of many parameters such as integral nonlinearity, differential nonlinearity, offset error, gain error, as well as voltage reference changes

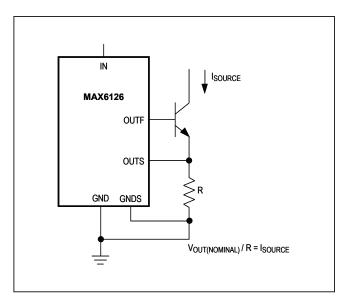


Figure 2. Precision Current Source

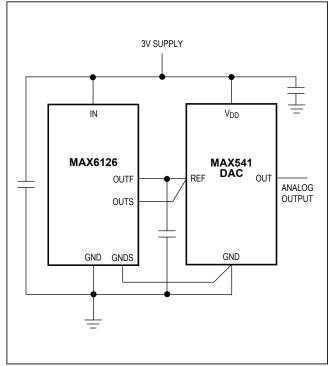


Figure 3. 14-Bit High-Resolution DAC and Positive Reference from a Single 3V Supply

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

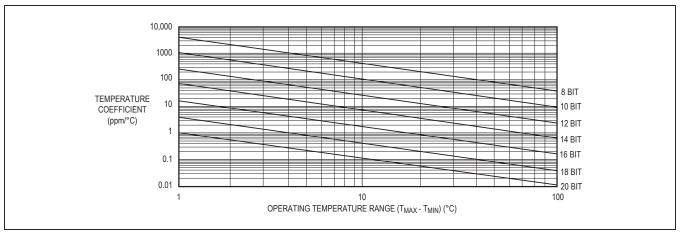


Figure 4. Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

Output Shifts and LTD after Standard IR Reflow and Mechanical Stress Effects (MAX6126AASA50+)

There are many factors that contribute to a voltage reference's drift over time. These can include part soldering to a board, package stress, board stress and layout, humidity and part-to-part variation. The extreme heat of an IR reflow can also cause the output voltage to shift since the materials that make up a semiconductor device and its package, have different rates of expansion and contraction. After a device going through any IR reflow profile or a convection soldering oven, the reference voltage output shifts. The device's expansion/contraction (due to the extreme heat/cooling process) applies stresses to the die which causes the output voltage to shift.

To better quantify the reference output shift due to die induced mechanical stress as a result of IR reflow as shown in Figure 5), Maxim has done two experiments:

Experiment 1: with 48 devices going through a 3x IR reflow process (without soldering down to a PCB)

Experiment 2: with 32 samples are undergone the same 3x IR reflow profile and soldered down to a PCB.

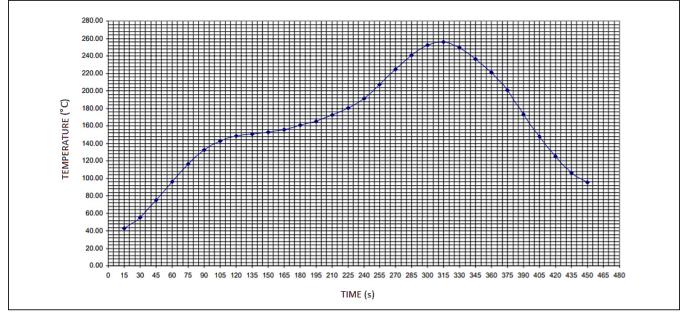


Figure 5. Standard IR Reflow Profile (Peak Temperature = 257°C, Ramping Rate = 0.802°C/s)

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

First Experiment Results:

Experimental results of the first experiment (undergone a 3x IR reflow without solder) are shown in <u>Figure 6, 7</u> and <u>8</u>. <u>Figure 6a</u> shows the output voltage (V_{OUT}) accuracy before the 3x IR reflow, <u>Figure 6b</u> presents the V_{OUT} accuracy after the 3x IR reflow and <u>Figure 6c</u> shows the

shift before and after the 3x IR reflow. Figures 7a, 7b, and $\underline{7c}$ show the Tempco Pre, Post, and the Difference (Post-Pre) 3x IR reflow for the automotive temperature range respectively. Similarly, Figures 8a, 8b, and 8c plot the Tempco for the extended temperature range.

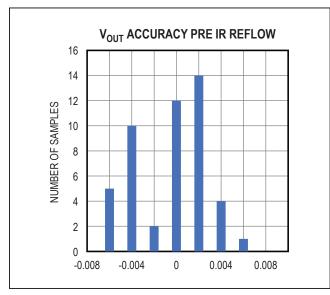


Figure 6a. 48 Samples V_{OUT} Accuracy Pre IR Reflow (%)

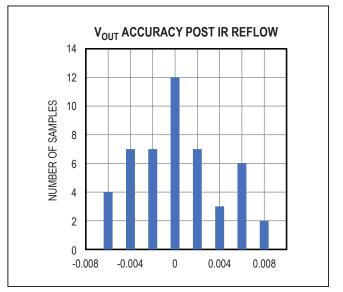


Figure 6b. 48 Samples V_{OUT} Accuracy Post IR Reflow (%)

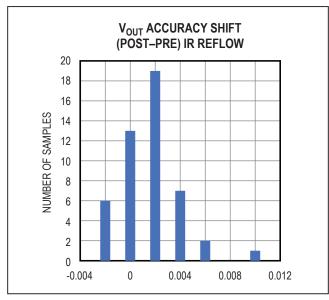


Figure 6c. 48 Samples V_{OUT} Accuracy Shift (Post–Pre) IR Reflow (%)

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

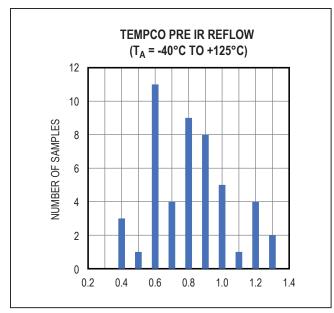


Figure 7a. 48 Samples Tempco Pre IR Reflow (ppm/°C)

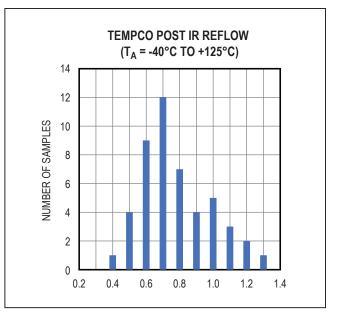


Figure 7b. 48 Samples Tempco Post IR Reflow (ppm/°C)

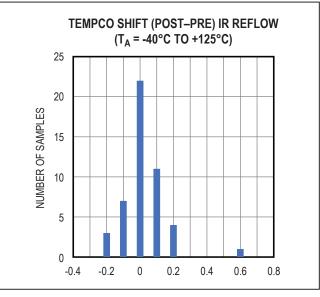


Figure 7c. 48 Samples Tempco Shift (Post–Pre) IR Reflow (ppm/°C)

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

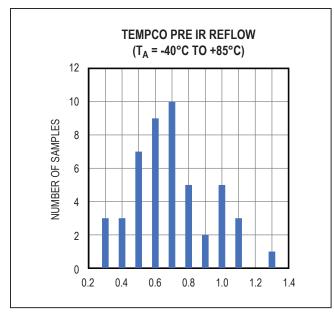


Figure 8a. 48 Samples Tempco Pre IR Reflow (ppm/°C)

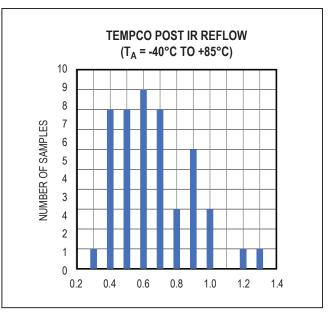


Figure 8b. 48 Samples Tempco Post IR Reflow (ppm/°C)

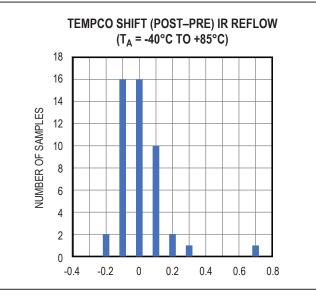


Figure 8c. 48 Samples Tempco Shift (Post–Pre) IR Reflow (ppm/°C)

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Second Experiment Results:

In the second experiment, Maxim has evaluated a different batch of 32 samples before and after soldering down with the same 3x IR reflow profile. In this experiment, these samples underwent the effects of both 3x IR reflow and mechanical stress from soldering. The test board was set up in a humidity-controlled oven. Conditions were set to $T_A = +35^{\circ}C$ and 40% relative humidity. Same as in experiment one, experimental data are presented in Figures 9, 10 and 11.

We can observe that the MAX6126 output accuracy and temperature coefficient exhibit an additionally shift due to mechanical stress of PCB soldering compared to the first experiment where the MAX6126 was only exposed to the extreme heat of the IR reflow temperature cycle.

The above extra shift can be addressed with proper PCB design such that the mechanical stress induced by soldering is minimized.

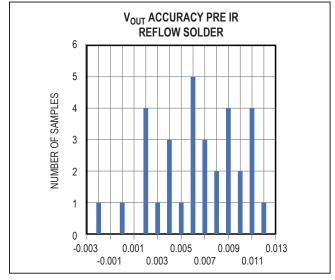


Figure 9a. 32 Samples Output Voltage Pre IR Reflow Solder (%)

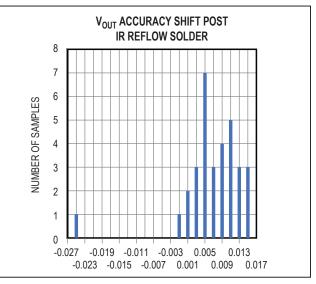


Figure 9b. 32 Samples Output Shift Post IR Reflow Solder (%)

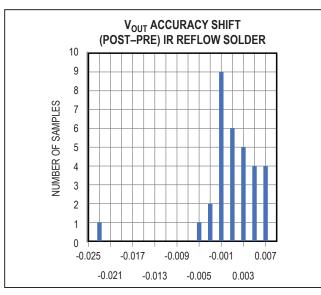


Figure 9c. 32 Samples Output Shift (Post–Pre) IR Reflow Solder (%)

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

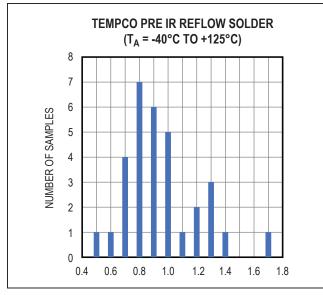


Figure 10a. 32 Samples Tempco Pre IR Reflow Solder (ppm/°C)

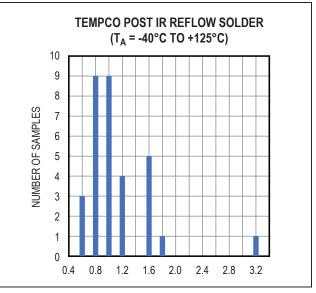


Figure 10b. 32 Samples Tempco Post IR Reflow Solder (ppm/°C)

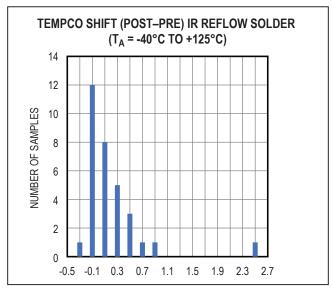


Figure 10c. 32 Samples Tempco Shift (Post–Pre) IR Reflow Solder (ppm/°C)

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

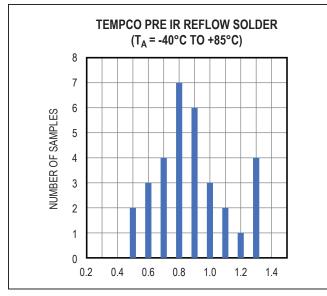


Figure 11a. 32 Samples Tempco Pre IR Reflow Solder (ppm/°C)

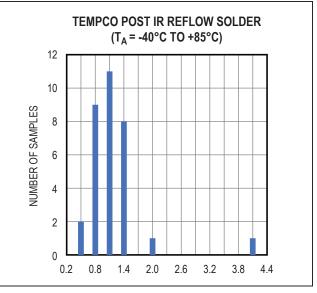


Figure 11b. 32 Samples Tempco Post IR Reflow Solder (ppm/°C)

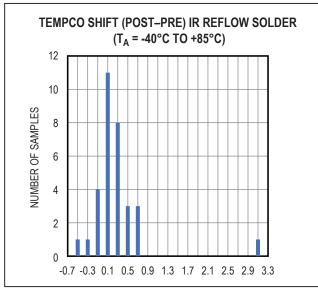


Figure 11c. 32 Samples Tempco Shift (Post–Pre) IR Reflow Solder (ppm/°C)

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Long Term Drift (LTD)

Besides showing the output voltage shifts due to reflows and mechanical stresses, Maxim has also collected the long-term drift of these 32 MAX6126 units in another run more than 1000 hours after the devices have gone through 3x reflow and eventually soldered down on a PCB. Similar to the experiment above, the test board was set up in a humidity and temperature controlled oven. The conditions were set to $T_A = +35^{\circ}C$ and 40% relative humidity (red trace as shown in Figure 12). The LTD result as shown in Figure 12.

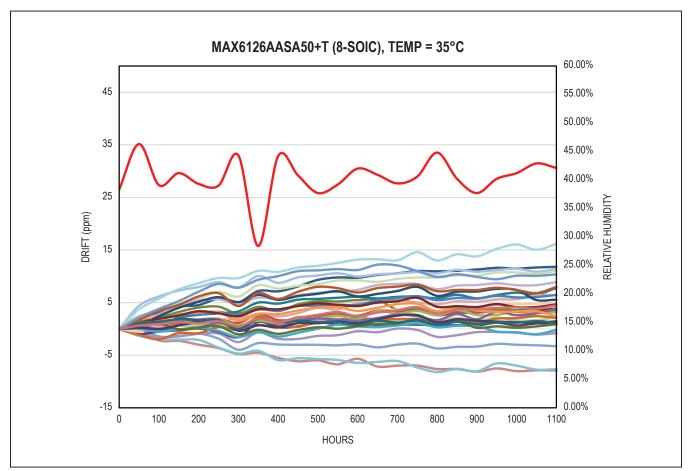
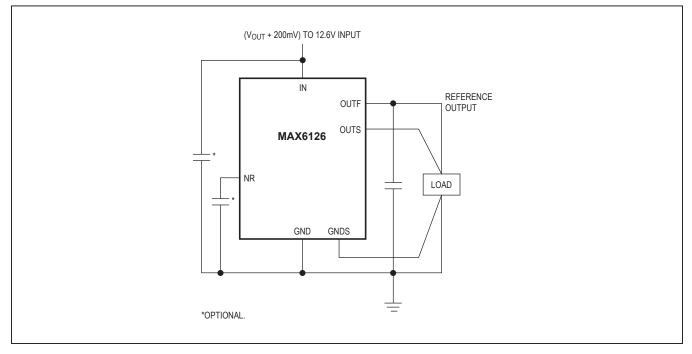



Figure 12. MAX6126 AASA50+ LTD after 3x Reflow and being Soldered Down.

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Typical Operating Circuit

Chip Information

PROCESS: BICMOS

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	OUTPUT VOLTAGE (V)	MAXIMUM INITIAL ACCURACY (%)	MAXIMUM TEMPCO (-40°C to +85°C) (ppm/°C)
MAX6126B21+	-40°C to +125°C	8 µMAX	2.048	0.1	7
MAX6126AASA25+	-40°C to +125°C	8 SO	2.500	0.02	3
MAX6126BASA25+	-40°C to +125°C	8 SO	2.500	0.06	5
MAX6126A25+	-40°C to +125°C	8 µMAX	2.500	0.06	3
MAX6126B25+	-40°C to +125°C	8 µMAX	2.500	0.1	7
MAX6126A28+	-40°C to +125°C	8 µMAX	2.800	0.06	3
MAX6126B28+	-40°C to +125°C	8 µMAX	2.800	0.1	7
MAX6126AASA30+	-40°C to +125°C	8 SO	3.000	0.02	3
MAX6126BASA30+	-40°C to +125°C	8 SO	3.000	0.06	5
MAX6126A30+	-40°C to +125°C	8 µMAX	3.000	0.06	3
MAX6126B30+	-40°C to +125°C	8 µMAX	3.000	0.1	7
MAX6126AASA33+	-40°C to +125°C	8 SO	3.300	0.02	3
MAX6126BASA33+	-40°C to +125°C	8 SO	3.300	0.06	5
MAX6126A33+	-40°C to +125°C	8 µMAX	3.300	0.06	3
MAX6126B33+	-40°C to +125°C	8 µMAX	3.300	0.1	7
MAX6126AASA36+	-40°C to +125°C	8 SO	3.600	0.02	3
MAX6126BASA36+	-40°C to +125°C	8 SO	3.600	0.06	5
MAX6126A36+	-40°C to +125°C	8 µMAX	3.600	0.06	3
MAX6126B36+	-40°C to +125°C	8 µMAX	3.600	0.1	7
MAX6126AASA41+	-40°C to +125°C	8 SO	4.096	0.02	3
MAX6126BASA41+	-40°C to +125°C	8 SO	4.096	0.06	5
MAX6126BASA41/V+	-40°C to +125°C	8 SO	4.096	0.06	5
MAX6126A41+	-40°C to +125°C	8 µMAX	4.096	0.06	3
MAX6126B41+	-40°C to +125°C	8 µMAX	4.096	0.1	7
MAX6126AASA50+	-40°C to +125°C	8 SO	5.000	0.02	3
MAX6126BASA50+	-40°C to +125°C	8 SO	5.000	0.06	5
MAX6126A50+	-40°C to +125°C	8 µMAX	5.000	0.06	3
MAX6126B50+	-40°C to +125°C	8 µMAX	5.000	0.1	7

+Denotes a lead(Pb)-free/RoHS-compliant package.

N denotes an automotive qualified part.

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 µMAX	U8+1	<u>21-0036</u>	<u>90-0092</u>
8 SO	S8+4	<u>21-0041</u>	<u>90-0096</u>

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/02	Initial release	—
1	3/03	Remove "future product" and "contact factory" notes	1, 16
2	6/03	Add "A" grade devices	1, 16
3	12/03	Change µMAX part number	1, 16
4	7/04	Add top mark to Ordering Information	1, 16
5	12/10	Add 2.8V option, add lead-free options, update Package Information	1, 2, 4, 15, 16
6	8/12	Added automotive package, MAX6126BASA41/V+ to data sheet	17
7	4/16	Updated Typical Operating Characteristics section (added TOC15)	14, 15
8	6/16	Added <i>Electrical Characteristics</i> tables, text references, and <i>Ordering Information</i> references for 3.3V and 3.6V output options.	1, 6, 9–13, 17
9	9/19	Added Output Shifts and LTD after Standard IR Reflow and <i>Mechanical Stress Effects (MAX6126AASA50+)</i> section	18–26

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.