
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT688

FEATURES

- Compare two 8-bit words
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT688 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT688 are 8-bit magnitude comparators. They perform comparison of two 8-bit binary or BCD words.

The output provides $\overline{P} = \overline{Q}$.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	PARAMETER	CONDITIONS	TYP		
		CONDITIONS	нс	нст	UNIT
t _{PHL/} t _{PLH}	propagation delay	$C_{L} = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	P_n , Q_n to $\overline{P} = \overline{Q}$		17	17	ns
	E to $\overline{P} = Q$		8	12	ns
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	30	30	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \qquad \text{where:} \label{eq:pdef}$

 f_i = input frequency in MHz

 $f_o = output$ frequency in MHz

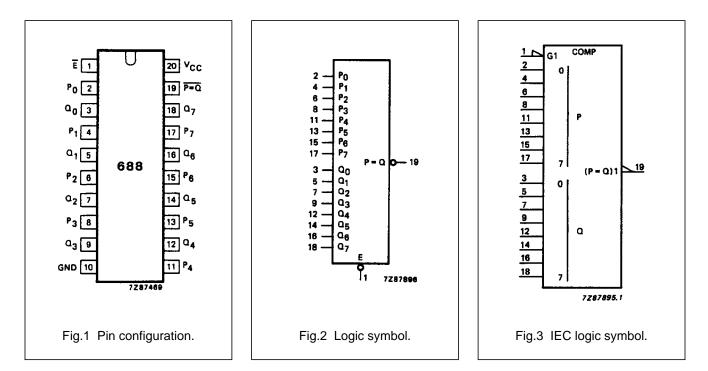
 $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

 C_L = output load capacitance in pF

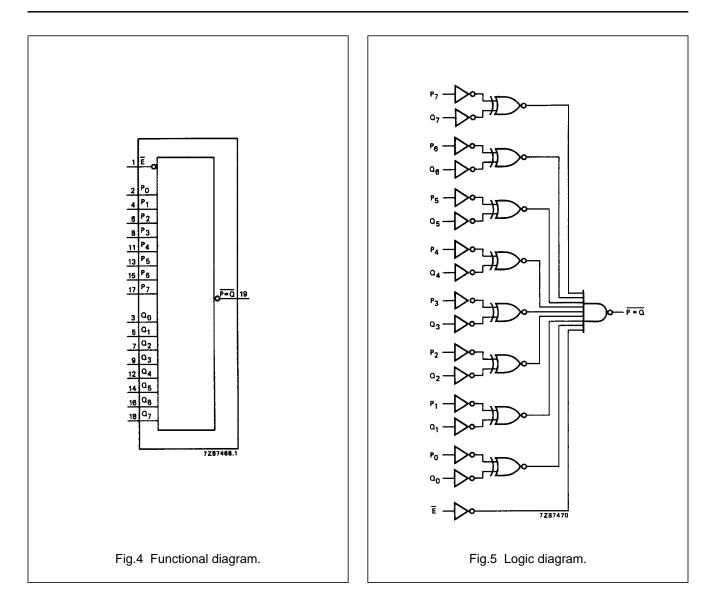
 V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".

Product specification


74HC/HCT688

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	
1	Ē	enable input (active LOW)	
2, 4, 6, 8, 11, 13, 15, 17	P ₀ to P ₇	word inputs	
3, 5, 7, 9, 12, 14, 16, 18	Q ₀ to Q ₇	word inputs	
10	GND	ground (0 V)	
19	$\overline{P} = Q$	equal to output	
20	V _{CC}	positive supply voltage	

74HC/HCT688

FUNCTION TABLE

INPUTS	OUTPUT	
DATA P _n , Q _n		$\overline{P} = Q$
P = Q	L	L
X	Н	Н
P > Q	L	Н
P < Q	L	Н

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

74HC/HCT688

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC									
STMBOL		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay P_n , Q_n to $\overline{P} = \overline{Q}$		55 20 16	170 34 29		215 43 37		255 51 43	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay \overline{E} to $\overline{P} = \overline{Q}$		28 10 8	120 24 20		150 30 26		180 36 31	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 6 and 7

74HC/HCT688

DC CHARACTERISTICS FOR 74HCT

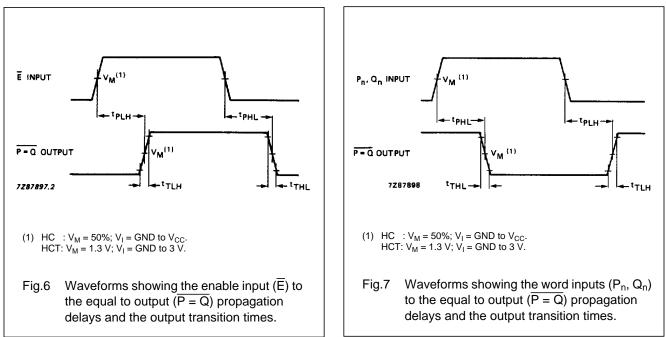
For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

Note to HCT types

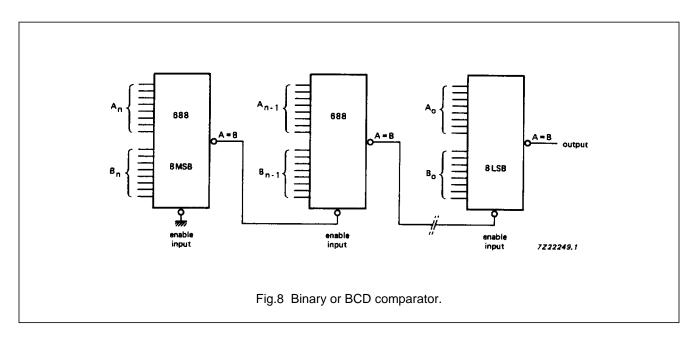
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
Pn	0.35
Q _n	0.35
Ē	0.70


AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HCT									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay P_n , Q_n to $\overline{P} = \overline{Q}$		20	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay \overline{E} to $\overline{P} = \overline{Q}$		18	24		30		36	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7


74HC/HCT688

AC WAVEFORMS

APPLICATION INFORMATION

Two or more "688" 8-bit magnitude comparators may be cascaded to compare binary or BCD numbers of more than 8 bits. An example is shown in Fig.8.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Nexperia:

 74HCT688DB
 74HCT688PW