PIANC MarCom
Working Group 51 Report
“Guidelines for Water Injection Dredging (WID)”
Smits, J., Vandycke, S., van den Heuvel, M., Welp, T.,
Cranch, A., de Broe, E., Nasner, H., Stengel, T., Hesk, P.,
De Vlieger, H., Smit, P., Clay, N., and Gérard, E.

Tim Welp
Research Hydraulic Engineer
Coastal and Hydraulics Laboratory
23 October 2012

US Army Corps of Engineers
Presentation Outline

- Working Group 51 Objectives
- Elements of Report
- WID Background (Theory, Applicability, Environmental Impacts, etc.)
- WID Fleet
- WID Contracts
- WID Advantages and Disadvantages
- Case Studies
- Summary
Working Group 51 Objectives

- Provide guidance when WID is feasible.
- Provide guidance on contract conditions for WID-contracts between the contractor and the client.
- Describe potential environmental effects of WID.
- Produce a summary of WID projects executed, and their performance.
- Produce an overview of environmental studies related to WID.
- Produce an overview of existing WID-equipment (size, type, etc.)
Elements of Report

- Theoretical considerations and physical principles of WID
- Natural boundary conditions needed for an efficient use of WID
- List of typical applications for the WID technique
- List of available WID equipment throughout the world
- Environmental considerations to be taken into account when using WID
- Monitoring needs
- Typical contract conditions that can be used for WID projects
Theory of WID

The WID process can be divided in four sub-processes:
- Reduction of the soil’s cohesion;
- Fluidization of the soil layer;
- Flow of the density current;
- Settlement of the soil particles.
WID is NOT Agitation Dredging!

- In WID the vertical movement of the sediment is purposely limited to approximately 1 to 3 metres, just above the bed;
- During agitation dredging and hopper overflow the sediment is put into suspension, preferably over the whole height of the water column.
Applicability of WID Depends on:

- Soil characteristics;
- Site bathymetry and geometry;
- Hydrodynamic conditions;
- Geographic location (accessibility, proximity to structures, etc.);
- Type and level of contamination
Environmental Impacts of WID

Effect parameters such as:

- suspended solids,
- turbidity,
- contaminants
- dissolved oxygen

Special attention has to be given when following conditions occur at or nearby the dredging site:

- Sensitive habitats near the dredging area e.g. shellfish beds, spawning habitats, sandy gravely habitats, clear water estuaries, coral reefs…
- When contaminants are in the soil.
WID Monitoring

- Operational monitoring to control the process (mainly for the contractor)
- Contractual monitoring to control the contractual obligations (mainly for the client)
- Environmental monitoring to prove that all requirements are met (mainly for third parties)
WID Dredgers (as per June 2010)

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Maximum dredge depth (m)</th>
<th>Jet bar width (m)</th>
<th>Jet pump diesel engine power (kW)</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maasmond</td>
<td>21 m</td>
<td>12.0 m</td>
<td>1,250 kW</td>
<td>Van de Kamp</td>
</tr>
<tr>
<td>Parakeet</td>
<td>26 m</td>
<td>13.9 m</td>
<td>1,194 kW</td>
<td>DEME</td>
</tr>
<tr>
<td>Dharmo</td>
<td>22 m</td>
<td>12.6 m</td>
<td>1,012 kW</td>
<td>DEME</td>
</tr>
<tr>
<td>Wodon</td>
<td>20 m</td>
<td>12.0 m</td>
<td>918 kW</td>
<td>Van Oord</td>
</tr>
<tr>
<td>Jetsed</td>
<td>25 m</td>
<td>13.4 m</td>
<td>852 kW</td>
<td>Van Oord</td>
</tr>
<tr>
<td>Sagar Manthan</td>
<td>28 m</td>
<td>11.0 m</td>
<td>746 kW</td>
<td>Van Oord</td>
</tr>
<tr>
<td>Njord</td>
<td>19 m</td>
<td>12.0 m</td>
<td>716 kW</td>
<td>Van Oord</td>
</tr>
<tr>
<td>Antarea</td>
<td>28 m</td>
<td>11.0 m</td>
<td>700 kW</td>
<td>Van Oord</td>
</tr>
<tr>
<td>Hol Blank</td>
<td>21 m</td>
<td>10.2 m</td>
<td>662 kW</td>
<td>Bremen Ports</td>
</tr>
<tr>
<td>Steubenhöft</td>
<td>21 m</td>
<td>10.0 m</td>
<td>662 kW</td>
<td>Niedersachsen Ports Cuxhaven</td>
</tr>
<tr>
<td>Iguazu</td>
<td>27 m</td>
<td>12.2 m</td>
<td>660 kW</td>
<td>Van Oord</td>
</tr>
<tr>
<td>Arca</td>
<td>30 m</td>
<td>12.0 m</td>
<td>608 kW</td>
<td>Boskalis</td>
</tr>
<tr>
<td>BT 208</td>
<td>21 m</td>
<td>11.0 m</td>
<td>600 kW</td>
<td>Weeks Marine Inc.</td>
</tr>
<tr>
<td>Norham Camerim</td>
<td>26 m</td>
<td>11.0 m</td>
<td>558 kW</td>
<td>Van Oord</td>
</tr>
<tr>
<td>HAM 922</td>
<td>20 m</td>
<td>6.0 m</td>
<td>502 kW</td>
<td>Van Oord</td>
</tr>
<tr>
<td>Draga Tocantins</td>
<td>20 m</td>
<td>8.0 m</td>
<td>447 kW</td>
<td>Van Oord</td>
</tr>
<tr>
<td>Draga Rio Madeira</td>
<td>20 m</td>
<td>8.0 m</td>
<td>447 kW</td>
<td>Van Oord</td>
</tr>
<tr>
<td>Alke</td>
<td>24 m</td>
<td>11.8 m</td>
<td>442 kW</td>
<td>Meyer & Van de Kamp</td>
</tr>
<tr>
<td>Norma</td>
<td>19 m</td>
<td>8.8 m</td>
<td>440 kW</td>
<td>Boskalis</td>
</tr>
<tr>
<td>Hol Deep</td>
<td>18 m</td>
<td>8.1 m</td>
<td>346 kW</td>
<td>Bremen Ports</td>
</tr>
<tr>
<td>Odin</td>
<td>13 m</td>
<td>4.4 m</td>
<td>220 kW</td>
<td>Van Oord</td>
</tr>
<tr>
<td>Baldur</td>
<td>20 m</td>
<td>2.5 m</td>
<td>75 kW</td>
<td>Van Oord</td>
</tr>
</tbody>
</table>
Contractual Conditions

Four general categories of contracts which are typically used for WID are:

- the lump sum contract
- the re-measurable contract
- the charter (rental) contract
- the target cost contract on an alliance or partnership basis
WID Advantages

- In right conditions WID can be capable of high production rates at low costs.
- Can be operated with minimal crew and other auxiliary plant.
- Due to the relatively small amount of auxiliary equipment it can offer a relatively rapid excavation alternative.
- WID has a continuous operating methodology. There is no need to transport the dredged material to a placement site.
- Sediment remains in the natural system
- It can be highly mobile, operate while leaving the shipping channel relatively unimpeded.
- Can used underneath jetties and moored vessels), and have a reduced risk of damaging submerged infrastructure i.e., pipelines, cables, quay walls, lock aprons, dry-docks, etc.
- Portable WID vessels can allow rapid deployment to relatively remote sites
- Can be used for levelling water bottom for pipelines, tunnel sections, etc., or increasing depth of pipelines and cables.
- An ambient current is not necessarily required if conditions right.
- Can result in reduced carbon footprint.
- WID may provide either a standalone dredging solution or a complement to conventional dredging methods.
WID Disadvantages

- WID can only be used where in-water dredged material placement is allowed.
- Applicability is more restricted by site-specific conditions than more traditional types of dredgers. Discharge channels, where necessary, require maintenance.
- WID cannot be used where unacceptable environmental impacts can be caused by the generated density current (i.e., contaminate resuspension, unacceptable suspended solids impacts, etc).
- Production can only be measured by pre- and post-dredge hydrographic survey, and surveying in fluid mud can be complicated (nautical depth concept).
- Destination of dredged material is more difficult to predict.
6 Case Studies

- Water Injection Dredging in the Weser Estuary
- Port of Antwerp – Controlling Sediment Accumulation Behind Zandvliet Lock Using WID
- Demonstration on the Michoud Canal, Louisiana
- Outer Harbours of Bremerhaven
- WID Assisting Trailing Suction Hopper Dredge Kakinda (India)
- Sao Luis - Brazil
Summary

- Report Status – Pending PIANC approval of final draft.
- While WID is a relatively new dredging method, its existed for approximately 25 years, can currently be considered as proven technology - WID fleet available on the market growing every year.
- As opposed to agitation dredging, the WID generated density current does not disperse the sediment over the whole water column. The density current is more controllable than agitation dredging.
- The exact destination of displaced material is difficult to predict.
- The use of WID is more restricted by site-specific conditions than more traditional types of dredgers.
- When applicable, WID has been demonstrated to be extremely effective and economical in tidal harbours, rivers, and estuaries, especially for fine grained soils.
- All types of contract are possible however, currently most clients prefer a charter contract.