Mississippi Coastal Improvements Program (MsCIP)

“Comprehensive Barrier Island Restoration Plan”

PIANC
2012 Dredging Conference

Justin S. McDonald, P.E.
Lead Project Engineer, MsCIP
Presentation Outline

• History of the Mississippi Coastal Improvements Program (MsCIP)
• Development of the Comprehensive Barrier Island Restoration Plan
• Selection of Sand Placement Locations
• Identification of Borrow Sources
• Construction Alternatives/Methods Considered
• Recommended Plan
Mississippi Coastal Improvements Program

- P.L. 109-148, 30 December 2005
- Comprehensive Planning to Address
 - Hurricane and Storm Damage Reduction
 - Salt Water Intrusion
 - Shoreline Erosion
 - Fish and Wildlife Preservation
 - Other Water Related Resource Projects
- Cost Effective Projects in lieu of NED benefits
- No Incremental Benefit-Cost Analysis
- Report requirements
 - Interim Report within 6 months
 - Comprehensive Plan within 2 years
- Compatible with State Coastal Restoration Plan
Comprehensive Plan Elements

Hurricane / Storm
Salt Water Intrusion
Shoreline Erosion
Fish & Wildlife

Interim Projects
Phase I Projects
Ecosystem Restoration Studies
Other Studies

Hancock County
Harrison County
Jackson County

Bay St. Louis
Waveland
Gulfport
Biloxi
Gautier
Pascagoula
Moss Point
Petit Bois

High Hazard Risk Area
1% Chance Flood Risk
Katrina Inundation Limits
Littoral Zone Placement of Sand
O&M Beneficial Use Placement
Comprehensive Barrier Island Restoration Plan

- Sediment budget of barrier island chain
- Revised dredge material disposal plan for Pascagoula navigation channel
- Northern shoreline of West Ship Island
- Eastern shoreline of Cat Island
Original Placements for Restoration of Sediment Budget – Mississippi Barrier Islands

Legend:
- Railroads
- Channel Centerlines
- Limited Access Highway
- Major Highway
- 2005 Barrier Island Shoreline
- Municipalities
- Littoral Sand Addition Zone

Original Borrow
45 miles
Recommended Placements for Restoration of Sediment
Budget – Mississippi Barrier Islands
Criteria for Selection of a Borrow Source

- Sand compatibility
 - Particle shape (roundness)
 - Gradation (D_{50} of sand on Ship Island = 0.30 mm)
 - Color
- Out of active littoral transport system
- Minimal wave focusing
- Cost
Borrow Sites Being Considered

- Ship Island Borrow Area
- Da-10
- Petit Bois Borrow Area
Ship Island Borrow Site

GULF ISLANDS NATIONAL SEASHORE
(protected area: 36 CFR 7.12)
DA-10 Borrow Site
Petit Bois Borrow Site

MOBILE DISTRICT

US Army Corps of Engineers

GULF OF MEXICO

BUILDING STRONG™

Petit Bois Borrow Site

<table>
<thead>
<tr>
<th>Column1</th>
<th>Column2</th>
<th>Column3</th>
<th>Column4</th>
<th>Column5</th>
<th>Column6</th>
<th>Column7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petit Bois West</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Volume (McYr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSW1</td>
<td>0.7</td>
<td>-35</td>
<td>4</td>
<td>57</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>PSW2</td>
<td>0.7</td>
<td>-38</td>
<td>7</td>
<td>232</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>PSW3</td>
<td>0.6</td>
<td>-34</td>
<td>6</td>
<td>74</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>PSW4</td>
<td>0.4</td>
<td>-32</td>
<td>7</td>
<td>61</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>PSW5</td>
<td>0.8</td>
<td>-37</td>
<td>6</td>
<td>79</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petit Bois East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Volume (McYr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBE1</td>
<td>0.7</td>
<td>-37</td>
<td>7</td>
<td>76</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>PBE2</td>
<td>3.2</td>
<td>-46</td>
<td>12</td>
<td>173</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>PBE3</td>
<td>4.6</td>
<td>-48</td>
<td>14</td>
<td>213</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>PBE4</td>
<td>1.4</td>
<td>-40</td>
<td>10</td>
<td>248</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>PBE5</td>
<td>1.4</td>
<td>-46</td>
<td>10</td>
<td>704</td>
<td>0.53</td>
<td></td>
</tr>
</tbody>
</table>

SCALE 1:40,000

Statute Miles

Statute Miles
Other Borrow Sites Being Considered
Available Borrow Quantities

<table>
<thead>
<tr>
<th>Borrow Site</th>
<th>D50 (mm)</th>
<th>Computed Volume (mcy)</th>
<th>Dredge Efficiency %</th>
<th>Available for Use (mcy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petit Bois</td>
<td>0.32</td>
<td>15.9</td>
<td>85</td>
<td>13.5</td>
</tr>
<tr>
<td>DA-10</td>
<td>0.33</td>
<td>5.1</td>
<td>100</td>
<td>5.1</td>
</tr>
<tr>
<td>Ship Island</td>
<td>0.21</td>
<td>8.7</td>
<td>100</td>
<td>8.7</td>
</tr>
<tr>
<td>Lower Tombigbee</td>
<td>0.30</td>
<td>2</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>
Construction Alternatives/Methods Considered

- Alternative 1
 - Camille Cut: (16.0 m.c.y, $D_{50} = 0.28$ mm)
 - Dredge coarser sand from Petit Bois using hopper dredge (8.0 m.c.y.)
 - Dispose coarser sand on top of finer sand in Ship Island Borrow (8.0 m.c.y.)
 - Use cutterhead to make single cut and place “mixed” material in Camille Cut
 - East Ship Island: (Same for all alternatives)
 - Dredge DA-10 using cutterhead and load into scows
 - Pump-off directly to East Ship Island (4.8 m.c.y., $D_{50} = 0.33$ mm)
 - Pros:
 - Mixing will be achieved with the use of one dredge during final placement
 - Cons:
 - Sand from Petit Bois will have to be pumped off due to the depth of water in Ship Island Borrow
 - Material will have to be double-handled ($$$$$$)
 - Wave focusing due to excavation of Ship Island Borrow
Construction Alternatives/Methods Considered

• Alternative 2
 – Camille Cut: (16.0 m.c.y, D₅₀=0.28)
 • Dredge coarser sand from Petit Bois using hopper dredge
 • Dispose coarser sand south of finer sand in Ship Island Borrow in deeper water
 • Use two cutterhead dredges with merged discharge lines to place “mixed” material in Camille Cut
 – East Ship Island: (Same for all alternatives)
 • Dredge DA-10 using cutterhead and load into scows
 • Pump-off directly to East Ship Island (4.8 m.c.y., D₅₀ = 0.33 mm)
 – Pros:
 • Hopper dredges carrying Petit Bois sand can directly dispose in deep water south of Ship Island Borrow
 – Cons:
 • Material will have to be double-handled ($$$$
 • Wave focusing due to excavation of Ship Island Borrow
Construction Alternatives/Methods Considered

• Alternative 3 – Recommended
 – Camille Cut: (14.5 m.c.y., $D_{50} = 0.32$ mm)
 • Dredge coarser sand from Petit Bois using hopper dredge and dispose directly into Camille Cut via pump-off (13.5 m.c.y.)
 • Dredge finer sand from Ship Island Borrow using a cutterhead dredge and pump directly to Camille Cut (1.0 m.c.y.)
 • Ship Island sand will serve as a cap on the fill section to facilitate the growth of beach vegetation
 – East Ship Island: (Same for all alternatives)
 • Dredge DA-10 using cutterhead and load into bottom dump scows
 • Pump-off directly to East Ship Island (4.8 m.c.y., $D_{50} = 0.33$ mm)
 – Pros:
 • Coarse material which results in a more stable fill section
 • No double-handling of material
 • Minimal wave focusing due to the small quantity from Ship Island Borrow
 • Most cost effective alternative
Recommended Plan – Phases of Construction

• Construction Phases
 – Phase 1 (6.1 m.c.y.)
 • Initial closure of Camille Cut
 • Top of Berm = EL. +5 ft NAVD88
 • Crest Width = 500 ft
 – Phase 2 (4.8 m.c.y.)
 • East Ship Island
 • Top of Berm = EL. +6 ft NAVD88
 • Crest Width = 1,100 ft
 – Phase 3 (7.4 m.c.y.)
 • Widen and raise Camille Cut Fill
 • Top of Berm = EL. +7 ft NAVD88
 • Crest Width = 1,000 ft
 – Phase 4 (1 m.c.y)
 • Cap Camille Cut Fill
 • Finer grained sand
Summary

• Restoration of the Mississippi Barrier Island Sediment Budget
 – Placement Locations – Camille Cut/East Ship Island
 – Borrow Sources – Ship Island, DA-10, Petit Bois, and Lower Tombigbee River
 – Recommended Plan – 14.5 M c.y. in Camille Cut & 4.8 M c.y. at East Ship Island
 – Construction – 5 Phases
 • Phases 1-4: Dredging/Placement to Construct Restoration Berms
 • Phase 5: Plant dune vegetation