
Functional Programming -
Principles Cheat Sheet

CHEAT SHEETS / JAVASCRIPT / PAGE 1

M. David Green, Author

What is Functional Programming?

A way of writing code that focuses on using pure
functions describing the relationship between their
arguments and return values without creating side
effects or depending on the state of an application.

Goal: clean, concise code that makes its intentions
clear. JavaScript lets you mix imperative, object-
oriented, and functional code freely.

Mapping https://goo.gl/7coSKE

const animals = [“cat”,”dog”,”fish”];
const getLength = animal => animal.length;
const letterCounts = animals.map(getLength);
console.log(letterCounts); // [3, 3, 4]

Mapping allows you to iterate over the items in an
array without the need for loops or local variables,
returning an array of the same length. Pass the
map method an anonymous inline function that
returns a value, or define a pure named function
and pass its name. Available natively since ES5.

Reducing https://goo.gl/O02qtJ

const animals = [“cat”,”dog”,”fish”];
const addLength = (sum, item) => sum + item.length;
const letterCount = animals.reduce(addLength, 0);
console.log(letterCount); // 10

Reducing also iterates over the items in an array
without the need for loops or local variables, but it
returns a single cumulative result. Pass the reduce
method an anonymous inline function that takes a
running total and an element and returns a result,
or use a named pure function. Optionally, you can
also pass reduce an accumulator to use for the
first iteration. Available natively since ES5.

Filtering (https://goo.gl/xDCkTl)

const animals = [“cat”,”dog”,”fish”];
const exactlyThree = item => item.length === 3;
const threeLetterAnimals = animals.filter(exactlyThree);
console.log(threeLetterAnimals); // [“cat”, “dog”]

Same as mapping and reducing, but it returns a
new array with the same or fewer elements. Pass
the filter method a named or anonymous inline
function that takes an array element and returns a
Boolean. Elements that return true will be included
in the new array. Available natively since ES5.

Using Functional Code Today

Functional code can run slower than imperative or
object-oriented alternatives in engines that aren’t
optimized for it, but functional code is often
cleaner, more concise, and easier to read. Write for
code quality first, then optimize for performance
only if real world data tells you it’s necessary. Start
using functional techniques in your code today!

Chaining

const animals = [“cat”,”dog”,”fish”];
const exactlyThree = word => word.length === 3;
const addLength = (sum, item) => sum + item.length;
const threeCount = animals.filter(exactlyThree)

 .reduce(addLength, 0);
console.log(threeCount); // 6

map, reduce, and filter methods can be chained as
long as you pay attention to what each one returns.
We can easily filter our array to three-letter words,
and then count the total letters in the new array:

Functional Programming -
Techniques Cheat Sheet

CHEAT SHEETS / JAVASCRIPT / PAGE 2

M. David Green, Author

Proper Tail Calls in Recursion

const factorialPTC = number => factorIt(number, 1);
const factorIt = (number, accumulator) => {
 if (number <= 1) {
 return accumulator;
 }
 return factorIt(number -1, number * accumulator);
};
console.log(factorialPTC(6)); // 720

Recursion can result in deep memory use issues
as stack frames pile up for each iteration. Proper
tail calls let the interpreter use the same frame of
the stack for each call. To take advantage of this
optimization in ES6 (for engines that support it),
you may need to refactor your code and use a
helper function. Make sure the final return
statement is a recursive call to the parent function
that doesn’t depend on current local variables.

Currying https://goo.gl/Yfg4su

// Start with a function like this
const greet = (greeting, name) => {
 return (`${greeting}, ${name}`);
};

// Curry to return a nested function waiting for an arg
const greetCurried = greeting => {
 return name => {

 return (`${greeting}, ${name}`);
 };
};

// Quickly build sets of new related functions
const greetHello = greetCurried(“Hello”);
console.log(greetHello(“Heidi”)); // “Hello, Heidi”
const greetHi = greetCurried(“Hi”);
console.log(greetHi(“Heidi”)); // “Hi, Heidi”

Currying means transforming a function with
multiple parameters into a nested set of functions
that return other functions, so that you can pass in
parameters one at a time, allowing you to create
sets of related functions that share common
parameters, and are waiting for a final parameter
before returning a result.

Concise Currying with Arrow Functions

const greetCurried = greeting =>
name => (`${greeting}, ${name}`);

ES6 allows you to write curried functions even
more concisely; the code below works the same as
the definition above:

Recursion https://goo.gl/Hr9K37

const factorial = number => {
 if (number <= 0) { // terminal condition
 return 1;
 }
 return (number * factorial(number - 1)); // recursive call
}
console.log(factorial(6)); // 720

Recursion means having a function call itself as
part of its definition, a cleaner alternative to
looping for sorts and deep searches. Make sure
there’s a terminal condition to end the recursion to
stop it going on forever. When reading a recursive
function, think of the recursive call to the parent as
if it’s the result of all the subsequent calls.

Functional Programming -
Techniques Cheat Sheet

CHEAT SHEETS / JAVASCRIPT / PAGE 3

M. David Green, Author

I've worked as a Web Engineer, Writer, Communications
Manager and Marketing Director at companies such as
Apple, Salon.com, StumbleUpon and Moovweb. My
research into the Social Science of Telecommunications
at UC Berkeley, and while earning an MBA in
Organizational Behavior, showed me that the human
instinct to network is vital enough to thrive in any medium
that allows one person to connect to another.

About the Author

Partial Application and Currying

// Start with a variadic function like this

const greeter = (greeting, separator, emphasis, name) =>

{

 return (greeting + separator + name + emphasis);

};

// Use a partial utility that does something like this

const partial = (variadic, …args) => {

 return (…subargs) =>

 variadic.apply(this, args.concat(subargs));

};

// Pass in the function and some of

// the arguments to create variations

const greetHello = partial(greeter, “Hello”, “, “, “.”);

console.log(greetHello(“Heidi”)); // “Hello, Heidi.”

const greetGoodbye = partial(greeter, “Goodbye”, “, “);

console.log(greetGoodbye(“.”, “Joe”)); // “Goodbye, Joe.”

Unlike purely functional languages, JavaScript

doesn’t limit the number of arguments (or the arity)

of its variadic functions. With a partial utility

(ideally a robust one from a good library) you can

partially apply multiple parameters just as easily.

Note: argument order matters! Put the arguments
most likely to change at the end.

Composition https://goo.gl/37pguH

// Start with small functions

const addOne = x => x + 1;

const timesTwo = x => x * 2;

// Use a compose utility

const compose = (f1, f2) => {

 return value => {

 return f1(f2(value));

 };

};

// Create composed functions

const addOneTimesTwo = compose(timesTwo, addOne);

console.log(addOneTimesTwo(3)); // 8

const timesTwoAddOne = compose(addOne, timesTwo);

console.log(timesTwoAddOne(3)); // 7

Composition means taking two or more simple

functions and combining them to create a more

complex function. It’s possible to do it manually

with a short set of functions, however a compose

utility can help with handling longer sets of

functions, and keeping track of context. As with

currying and partial application, the order matters.

	F.Programming_1
	F.Programming_2
	F.Programming_3

