We introduce a methodology to disentangle the role of electronic (ΔN) and lattice degrees of freedom (Q) in phase transitions, solving this long-standing issue. We find the role of a linear electron-lattice coupling to be key.

$$F(\Delta N, Q) = \frac{k Q^2}{2} - \frac{1}{2}g Q \Delta N + F_{el}(\Delta N)$$

Provided k, g and $\Delta N(Q)$ are known, one can then obtain $F_{el}(\Delta N)$ and $\Delta F(\Delta N, Q)$ by integration of equation of state.

Here we use DFT+DMFT for the ES calculation.

Electronic (left panel) and total energy (central panel) as functions of octahedral breathing mode amplitude (Q), and electronic disproportionation (ΔN).

Energy vs orbital polarization ΔN for thin film Ca_2RuO_4 for different strains. Tensile strain favors an insulating state/higher MIT temperature.

As $F_{el}(\Delta N) > 0$, $kQ^2 > 0$, the electron-lattice coupling $-\frac{1}{2}g Q \Delta N$ is key to driving the transition.

This methodology can be applied to any electronic phase transition. One simply needs:

1) A method to perform electronic structure calculations (DFT, DFT+U, DFT+DMFT, DFT+HF)
2) A well-defined electronic (ΔN) degree of freedom.
3) A well-defined lattice degree (Q) of freedom.
4) A methodology to extract and define g and k.

Further References:
2) OE Peil et al, PRB, 99, 2019
3) AB. Georgescu et al, PNAS, 29, 2019
4) Q. Han, AJ Millis, PRL, 121, 067601, 2018