Tunable spin Hall and spin Nernst effects in Dirac nodal line semimetals XCuYAs (X=Zr, Hf; Y=Si, Ge)

Babu Bajinnath Prasad 1,2 and Guang-Yu Guo 1,2,3,4

1Department of Physics and Center for Theoretical Physics, National Taiwan University, Taipei 10671, Taiwan
2Nanotechnology and Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
3Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan

Presenter’s Email: babubajinnathprasad@gmail.com

Introduction

Recent theoretical studies have shown that 27 – 30 % of all non-magnetic crystalline materials in Inorganic Crystal Structure Database (ICSD) are topological, with roughly 12% insulators and 15-18 % semimetals1. The studied XCuYAs (X=Zr, Hf; Y= Si, Ge) compounds belong to the vast family of the 1111-like quaternary phases, which exhibit unique physical properties ranging from p-type transparent semiconductors to Fe-based superconductors. XCuYAs compounds have the same tetragonal symmetry (space group P4mm) as ZrSiS family. Only a few studies on these XCuYAs compounds have been carried out so far, focused mainly on the structural, elastic, electronic properties as well as chemical bonding and stability of these compounds2,3. However, SHE & SNE have not been studied yet in these compounds. So, in this work, we have studied thoroughly the electronic structure, SHE and SNE in these compounds by performing ab-initio DFT calculations. Our main findings are summarized below.

Computational Details

- VASP
- GGA-PBE
- SHC & SNC are calculated within the elegant Berry-phase formalism4

\[\sigma_{ij} = \frac{1}{n} \sum \frac{d k}{d \Omega_{ij}} = \frac{1}{n} \sum \frac{d k}{d (2\pi)} \mathbf{O}_{ij}(k) \]

\[\alpha_{ij}^\alpha = \frac{1}{n} \sum \frac{d k}{d (2\pi)} \mathbf{O}_{ij}(k) \]

\[\sum_{\alpha} \left(\left\langle \epsilon_{\alpha} - \mu \right\rangle f_{\alpha} k_B T \ln \left(1 + e^{-\beta (\epsilon_{\alpha} - \mu)} \right) \right) \]

Results and Summary

- FIG. 1. (a) Crystal structure of the XCuYAs family, (b) illustration of its nonsymmetric glide mirror symmetry, and (c) the corresponding tetragonal Brillouin zone (BZ)
- FIG. 2. Relativistic band structures
- FIG. 3. Total and atom-decomposed density of states (DOS)
- FIG. 4. HiCuGeAs

Summary

- Dirac semimetals with non-symmetric symmetry protected Dirac line nodes along A-M & X-R.
- \textsc{SHC}$_{\text{HiCuGeAs}} = -0.514 \text{ (h/e)}$ (S/cm)
- \textsc{SNC}$_{\text{HiCuGeAs}} = -0.73 \text{ (h/e)}$ (A/m K)
- Tunability in the SHC & SNC values.
- Originate largely from the presence of a large number of spin-orbit coupling-gapped DPs near E_F as well as the gapless DNLs, which give rise to large spin Berry curvatures.
- Promising applications in spintronics and spin caloritronics.

References

3A. M. Baergen et. al, Quaternary germanide arsenides ZrCuGeAs and HfCuGeAs, Z. Anorg. Allg. Chem. 637, 2007 (2011).
5 D. Xiao et. al, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

TABLE I. Experimental lattice constants (a, c), calculated density of states at the Fermi level [N(EF)] (states/eVf.u.), spin Hall conductivity (\(\sigma_{xy}\), \(\sigma_{xz}\), and \(\sigma_{yz}\)) and spin Nernst conductivity (\(\sigma_{xy}^s\), \(\sigma_{xz}^s\), and \(\sigma_{yz}^s\)) at temperature T = 300 K. Note that the unit of the spin Hall conductivity (spin Nernst conductivity) is (h/e)(S/cm) [(h/e)(A/m K)]

<table>
<thead>
<tr>
<th>System</th>
<th>d/a</th>
<th>c/a</th>
<th>N(EF)</th>
<th>(\sigma_{xy})</th>
<th>(\sigma_{xz})</th>
<th>(\sigma_{yz})</th>
<th>(\sigma_{xy}^s)</th>
<th>(\sigma_{xz}^s)</th>
<th>(\sigma_{yz}^s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrCuGeAs</td>
<td>3.8735</td>
<td>0.5712</td>
<td>0.67</td>
<td>-0.45</td>
<td>-0.100</td>
<td>-0.175</td>
<td>0.20</td>
<td>-0.17</td>
<td>-0.22</td>
</tr>
<tr>
<td>HfCuGeAs</td>
<td>3.7525</td>
<td>0.5040</td>
<td>0.65</td>
<td>-0.113</td>
<td>-0.112</td>
<td>-0.110</td>
<td>0.46</td>
<td>-0.14</td>
<td>-0.14</td>
</tr>
<tr>
<td>HfCuSiAs</td>
<td>3.8535</td>
<td>0.5530</td>
<td>0.65</td>
<td>-0.113</td>
<td>-0.112</td>
<td>-0.110</td>
<td>0.46</td>
<td>-0.14</td>
<td>-0.14</td>
</tr>
<tr>
<td>ZrCuSiAs</td>
<td>3.6036</td>
<td>0.5085</td>
<td>0.65</td>
<td>-0.113</td>
<td>-0.112</td>
<td>-0.110</td>
<td>0.46</td>
<td>-0.14</td>
<td>-0.14</td>
</tr>
</tbody>
</table>

FIG. 5. SNC as a function of temperature T

FIG. 6. Contour plot of (a) total and (b) Dirac line node only contributions to spin Berry curvature \(\Omega_{xy}^\alpha\) (k) of HiCuGeAs on the X-R-A-M plane (see Fig. 1(c))