Transient cooling of low frequency excitations by impulse perturbations

Michele Fabrizio
Outline

• a simple mechanism to transiently cool down low-frequency excitations by impulse perturbations

• an exactly solvable toy-model that realises such transient cooling
 M.F., Phys. Rev. Lett. 120, 220601 (2018)
 Andrea Nava and M.F., unpublished

• a possible physical realisation: light-enhanced T_c in K_3C_{60}
Acknowledgments:

- Antoine Georges
- Claudio Giannetti
- Andrea Nava
- Erio Tosatti
- Antoine Georges
Rotating wave approximation

- initially, the laser at frequency ω is off
- when the laser is on, the high-energy mode to be excited requires an energy equal to energy of the mode - ω, as if the mode energy were lower by ω
Rotating wave approximation

the bosonic excitation shifts down in energy by the field frequency ω
with the field on there will be pouring out of low-energy excitations into the high-energy mode.
Rotating wave approximation
at the end of the pulse the population of the low-energy excitations is diminished as if the system were cooler than it was initially.

the missing energy is stored into the high-energy mode.

the system remains trapped into this non-equilibrium state until the high-energy mode decays back.
mutatis mutandis, the same phenomenon might also occur pumping into a Fano-like resonance within a particle-hole continuum. The localised mode has no charge, hence a laser field is just coupled to the p-h continuum.
mutatis mutandis, the same phenomenon might also occur pumping into a Fano-like resonance within a particle-hole continuum.
an exactly solvable toy-model where such selective transient cooling mechanism is realised
Two infinitely connected quantum Ising models coupled to each other

\[H_{2QIMs} = -\frac{1}{4N} \sum_{i,j=1}^{2N} \sigma_{1i}^x \sigma_{1j}^x - h_1 \sum_{i=1}^{2N} \sigma_{1i}^z \]

\[-\frac{1}{4N} \sum_{i,j=1}^{2N} \sigma_{2i}^x \sigma_{2j}^x - h_2 \sum_{i=1}^{2N} \sigma_{2i}^z \]

\[-\Delta \sum_{i} \sigma_{1i}^x \sigma_{2i}^x \]

for each Ising model, any spin is coupled to all others \(\Rightarrow \)

mean-field is exact in the thermodynamic limit \(N \rightarrow \infty \)
The Z_2 symmetry of the Hamiltonian is spontaneously broken.

$$\langle \sigma^x \rangle \neq 0 \quad \Rightarrow \quad \langle \sigma_2^x \rangle \simeq \frac{\Delta}{h_2} \langle \sigma_1^x \rangle \neq 0$$
for $T \approx T_c$ quite many excitations 1 are thermally populated but very few excitations 2

n_1 and n_2 are the corresponding populations
excitation 1 will play the role of low-energy modes

excitation 2 will play the role of the high-energy mode

n_1 and n_2 are the corresponding populations

excitation energies
The “laser pulse”

• in the interval \(t \in [0, \tau] \) we add the time-dependent perturbation

\[
\Delta H(t) = -E_0 \cos \omega t \sum_{i=1}^{2N} \sigma_{1i}^x \sigma_{2i}^x
\]

• \(E_0 \) is the “electric field” amplitude
The “laser pulse”

- in the interval \(t \in [0, \tau] \) we add the time-dependent perturbation

\[
\Delta H(t) = -E_0 \cos \omega t \sum_{i=1}^{2N} \sigma_{1i}^{x} \sigma_{2i}^{x}
\]

- \(E_0 \) is the “electric field” amplitude
- \(\tau \) is the pulse duration

I take \(\tau \) half the Rabi period, with the Rabi frequency \(\Omega = \frac{E_0}{2\pi} \)
The “laser pulse”

• in the interval \(t \in [0, \tau] \) we add the time-dependent perturbation

\[
\Delta H(t) = -E_0 \cos \omega t \sum_{i=1}^{2N} \sigma_i^x \sigma_{2i}^x
\]

• \(E_0 \) is the “electric field” amplitude
• \(\tau \) is the pulse duration
• \(\omega \) the “laser” frequency

I stick to resonance \(\omega = \epsilon_2(T) - \epsilon_1(T) \)
• during the pulse duration $0 < t < \tau$ the population of mode 2 grows whereas that of mode 1 diminishes

• concurrently the energy of the Ising copy 1 decreases, which is overcompensated by the energy increase of 2

Results at $T = 1.1T_c > T_c$
remarkably, a finite symmetry-breaking order parameter transiently develops despite initially $T > T_c$
Include dissipation via Lindblad’s equations

\[\omega = \epsilon_2 - \epsilon_1 \]

- I add a dissipative bath at each site, so that mean field remains exact
- six downward jump operators \(L_{n \rightarrow m} = \ket{m}\bra{n} \) with \(n > m = 0, \ldots, 3 \), and coupling strengths \(\gamma_{n \rightarrow m} > 0 \)
- six upward jump operators \(L_{n \leftarrow m} = \ket{n}\bra{m} \) with \(n > m = 0, \ldots, 3 \), and coupling strengths \(\gamma_{n \leftarrow m} \)

\[
\gamma_{n \leftarrow m} = \gamma_{n \rightarrow m} e^{-\beta(E_n - E_m)}
\]
Include dissipation via Lindblad’s equations

\[|2\rangle \xrightarrow{\omega = \epsilon_2 - \epsilon_1} |3\rangle \xrightarrow{\epsilon_1} |1\rangle \xrightarrow{\epsilon_1} |0\rangle \]

\[\gamma_{n\rightarrow m} = \gamma_{n\rightarrow m} e^{-\beta (E_n - E_m)} \]

- the dissipative dynamics is controlled by the six parameters \(\gamma_{n\rightarrow m} \)
- if all \(\gamma_{n\rightarrow m} \) are of the same order, the system reaches fast thermal equilibrium, without showing any transient cooling
- if \(\gamma_{n\rightarrow m} \) grow with \(E_n - E_m \), i.e., the high energy excitations decay sufficiently faster than the low energy ones, we do find cooling
Show results for

\[|2\rangle \rightarrow |0\rangle \]

\[|3\rangle \rightarrow |1\rangle \]

\[|2\rangle \rightarrow |3\rangle \]

\[|3\rangle \rightarrow |2\rangle \]

\[= 640 \times \]

\[|2\rangle \rightarrow |1\rangle \]

\[|1\rangle \rightarrow |0\rangle \]

\[|2\rangle \rightarrow |3\rangle \]

\[\gamma_{2\rightarrow 0} = \gamma_{3\rightarrow 0} = \gamma_{3\rightarrow 1} = \gamma_{2\rightarrow 1} = 640 \quad \gamma_{1\rightarrow 0} = 640 \quad \gamma_{3\rightarrow 2} \]

- a pulse profile

\[E(t) \cos \omega t = \left(\frac{t}{\tau} \right)^2 \exp \left[1 - \frac{1}{E_0} \left(\frac{t}{\tau} \right)^2 \right] \cos \omega t \]

- \(E_0 \) = peak amplitude of the pulse
- \(\tau \) = pulse duration
\[E(t) \cos \omega t = \left(\frac{t}{\tau} \right)^2 \exp \left[1 - \frac{1}{E_0} \left(\frac{t}{\tau} \right)^2 \right] \cos \omega t \]

I will show results at \(T = 1.5 \ T_c \) varying \(E_0 \) and \(\tau \) so as to maintain the fluence constant

\[
\text{fluence} \propto \int dt \ E(t)^2 = \text{constant}
\]
\[\tau = 500 \]
\[E_0 = 0.19 \]
\[\sigma = 1 \]

\[\tau = 1000 \]

\[E_0 = 0.14 \]

Pulse profile \(E(t) \)
\[\tau = 1500 \]
\[E_0 = 0.12 \]

pulse profile \(E(t) \)
\[\tau = 2500 \]
\[E_0 = 0.10 \]

pulse profile \(E(t) \)
despite $T = 1.5 T_c > T_c$ the order parameter becomes finite, and remains so for longer times the bigger τ is at constant fluence
possibly, a physical realisation of that same cooling mechanism

LETTER

Possible light-induced superconductivity in K$_3$C$_{60}$ at high temperature

M. Mitrano1,2, A. Cantaluppi1,2, D. Nicoletti1,2, S. Kaiser1, A. Perucchi3, S. Lupi4, P. Di Pietro3, D. Pontiroli5, M. Riccó5, S. R. Clark1,6,7, D. Jaksch7,8 & A. Cavalleri1,2,7

25 FEBRUARY 2016 | VOL 530 | NATURE | 461

pump-probe experiment on K$_3$C$_{60}$ molecular superconductor:

- **pump pulse of 300 fs with MIR frequency**
- **optical probe**
Results of the pump-probe experiment

How can we interpret those data?

- equilibrium
- 1ps after the pulse
• the laser pump cleans out thermal excitations from the gap, as if it effectively cooled down the system at low frequency
the transient superconducting-like optical response is observed only when the laser frequency hits a mid-infrared absorption peak
it looks like our cooling mechanism: one pumps into a high-energy mode, and finds that the low-energy excitations are cooled down
we need to find the main actor, i.e., the excitation responsible of the MIR absorption peak
a spin-triplet molecular exciton deriving from the $t_{1u} \text{ LUMO} \rightarrow t_{1g} \text{ LUMO} + 1$ transition strongly pushed down in energy by the positive interplay of Coulomb exchange and Jahn-Teller effect
... specifically, in a molecular calculation

1.1 eV

$\approx 4A_g \approx 4S$

$^2T_{1u} \approx 2P$

Coulomb exchange

$(t_{1u})^2 (t_{1g})^1: 4A_g$

$(t_{1u})^3: ^2T_{1u}$
The absorption process in diagrams

- LUMO
- LUMO+1
- Spin triplet exciton
- S=1 particle-hole pair
- Inter-molecule spin exchange
The absorption process in formulas

\[\delta \sigma_1(\omega, T) = \gamma \int_0^\infty d\epsilon A_{\text{exc}}(\epsilon, T) \left[b(\epsilon - \omega, T) \left(\theta(\epsilon - \omega) \chi''(\epsilon - \omega, T) \right) - \theta(\omega - \epsilon) \chi''(\omega - \epsilon, T) \right] - b(\epsilon + \omega, T) \chi''(\epsilon + \omega, T) \]

exciton DOS \quad Bose distribution at temperature T

imaginary part of the dynamical magnetic susceptibility, large since \(K_3C_{60} \) is not far from becoming an AF Mott insulator

not much different from experiment!

note that the width is controlled by \(\chi''(\omega) \) rather than by the exciton lifetime
Assuming Fermi-liquid theory and local equilibrium, the dynamics during the laser pulse is described by the equation of motion

\[
\dot{E}_{qp}(T(t)) = \frac{\partial E_{qp}(T(t))}{\partial T(t)} \dot{T}(t) = c_V(T(t)) \dot{T}(t) \\
= \alpha (\omega - E_{exc}) \delta\sigma_1(\omega, T(t))
\]

Where

\[
\alpha = \frac{\text{fluence}}{\omega \times \text{penetration depth}} \times V_{C_{60}}
\]
• **time-dependent temperature** $T(t)$

\[
\dot{T}(t) = \alpha \frac{\omega - E_{\text{exc}}}{c_V(T(t))} \delta \sigma_1(\omega, T(t))
\]

in such simple modelling the quasiparticle temperature decreases below resonance, $\omega < E_{\text{exc}}$, and increases above
Effective temperature at the end of the pulse:

\[T_{\text{eff}} = T(t = 300\text{fs}) \]

- \(T_{\text{eff}} \) after the laser shot can be substantially lower than the external value, even lower than \(T_c \).
Conclusions

• a simple and general mechanism to transiently cool down low-frequency excitations might explain the light-enhanced T_c observed in K_3C_{60}

• it requires just a high-energy excitation that acts as entropy sink for low-energy ones when the laser is on, and gradually release back that entropy when the laser is turned off
Thank you!