NO-REGRET CRITERIA IN LEARNING, GAMES AND CONVEX OPTIMIZATION

Sylvain Sorin
sylvain.sorin@imj-prg.fr

Institut de Mathématiques Jussieu-PRG
Sorbonne Université, UPMC - Paris 6
CNRS UMR 7586

Operator Splitting Methods in Data Analysis
Center for Computational Mathematics
Flatiron Institute, New York
March 20-22, 2019
The purpose of this work is to underline links between no-regret algorithms used in learning, games and convex optimization. In particular we will study continuous and discrete time versions and their connections. We will comment on recent advances in on:
- Euclidean and non-euclidean approaches
- speed of convergence of the evaluation
- convergence of the trajectories
Model

V normed vector space, finite dimensional dual V^* and duality map $\langle \cdot | \cdot \rangle$.

$X \subset V$ compact convex.

The aim is to study properties of algorithms that associate to a process $\{u_t \in V^*, t \geq 0\}$, a process $\{x_t \in X, t \geq 0\}$, where x_t is function of $\{(x_s, u_s), 0 \leq s < t\}$, satisfying:

$$R_t(x) = \int_0^t \langle u_s | x - x_s \rangle ds \leq o(t), \quad t \geq 0, \forall x \in X$$ \hspace{1cm} (1)

or in discrete time with $\{x_m\}$ depending on $\{x_1, u_1, \ldots, x_{m-1}, u_{m-1}\}$ with:

$$R_n(x) = \sum_{m=1}^n \langle u_m | x - x_m \rangle \leq o(n), \quad \forall x \in X.$$ \hspace{1cm} (2)

Case 1: general bounded process $\{u_t\}$ or $\{u_n\}$

no-regret learning
Model

V normed vector space, finite dimensional dual V^* and duality map $\langle .| . \rangle$.
$X \subset V$ compact convex.

The aim is to study properties of algorithms that associate to a process $\{u_t \in V^*, t \geq 0\}$, a process $\{x_t \in X, t \geq 0\}$, where x_t is function of $\{(x_s, u_s), 0 \leq s < t\}$, satisfying:

$$R_t(x) = \int_0^t \langle u_s| x - x_s \rangle ds \leq o(t), \quad t \geq 0, \forall x \in X$$ \quad (1)

or in discrete time with $\{x_m\}$ depending on $\{x_1, u_1, \ldots, x_{m-1}, u_{m-1}\}$ with:

$$R_n(x) = \sum_{m=1}^n \langle u_m | x - x_m \rangle \leq o(n), \quad \forall x \in X.$$ \quad (2)

Case 1: general bounded process $\{u_t\}$ or $\{u_n\}$
no-regret learning
Case 2: vector field $g : X \rightarrow V^*$

$u_t = g(x_t)$ or $u_n = g(x_n)$

VI or game framework

Consider a game with a finite set of players I where equilibria are solution of variational inequalities:

$$\langle g^i(x) | x^i - y^i \rangle \geq 0, \quad \forall y^i \in X^i, \forall i \in I$$

$X^i \subset V^i$ is the strategy set of player i, $X = \prod_i X^i$, and $g^i : X \rightarrow V^i$ is his evaluation function.

At stage n each player i chooses x^i_n, this defines a profile $x_n \in X$ and the reference process for player i is $u^i_n = g^i(x_n)$.

$$\langle g(x) | y - x \rangle = \sum_i \langle g^i(x) | y^i - x^i \rangle$$
S' is the set of solutions of the variational inequality:

$$\langle g(x)|y-x\rangle \leq 0, \quad \forall y \in X \quad (3)$$

Lemma

If g *is continuous and* $x_s \to x$ *then* $x \in S'$.

S is the set of solutions of the variational inequality:

$$\langle g(y)|y-x\rangle \leq 0, \quad \forall y \in X. \quad (4)$$

g *dissipative* ($\langle g(x) - g(y)|x-y\rangle \leq 0, \forall x, y \in X$) implies $S' \subset S$ and if moreover g is continuous: $S \subset S'$.

Lemma

If g *is dissipative the accumulation points of* $\{\bar{x}_t\}$ *or* $\{\bar{x}_n\}$ *are in* S.

Proof:

$$\frac{R_t(y)}{t} = \frac{1}{t} \int_0^t \langle g(x_s)|y-x_s\rangle \geq \frac{1}{t} \int_0^t \langle g(y)|y-x_s\rangle = \langle g(y)|y-\bar{x}_t\rangle$$

where $\bar{x}_t = \frac{1}{t} \int_0^t x_s ds$
S' is the set of solutions of the variational inequality:

$$\langle g(x)|y-x\rangle \leq 0, \quad \forall y \in X$$ \hspace{1cm} (3)

Lemma

If \(g \) is continuous and \(x_s \rightarrow x \) then \(x \in S' \).

S is the set of solutions of the variational inequality:

$$\langle g(y)|y-x\rangle \leq 0, \quad \forall y \in X.$$ \hspace{1cm} (4)

g dissipative (\(\langle g(x) - g(y)|x-y\rangle \leq 0, \forall x, y \in X \)) implies \(S' \subset S \) and if moreover \(g \) is continuous: \(S \subset S' \).

Lemma

If \(g \) is dissipative the accumulation points of \(\{\bar{x}_t\} \) or \(\{\bar{x}_n\} \) are in \(S \).

Proof:

$$\frac{R_t(y)}{t} = \frac{1}{t} \int_0^t \langle g(x_s)|y-x_s\rangle \geq \frac{1}{t} \int_0^t \langle g(y)|y-x_s\rangle = \langle g(y)|y-\bar{x}_t\rangle$$

where \(\bar{x}_t = \frac{1}{t} \int_0^t x_s \, ds \)
Case 3: $u_t = -\nabla f(x_t)$, f convex \mathcal{C}^1

Convex optimization

$$\langle \nabla f(x_t) \vert y - x_t \rangle \leq f(y) - f(x_t)$$

gives:

$$\int_0^t [f(x_s) - f(y)] dt \leq \int_0^t \langle -\nabla f(x_s) \vert y - x_s \rangle ds = R_t(y)$$

which implies by Jensen’s inequality:

$$f(\bar{x}_t) - f(y) \leq \frac{1}{t} \int_0^t [f(x_s) - f(y)] ds \leq \frac{R_t(y)}{t} \quad (5)$$

Lemma

The accumulation points of $\{\bar{x}_t\}$ or $\{\bar{x}_n\}$ belong to $S = \text{argmin}_x f$.

One can also deal with the case $u_m = -\lambda_m \nabla f(x_m)$ with $\lambda_m \geq 0$, $\sigma_n = \sum_{m \leq n} \lambda_m$ and $\sigma_n \hat{x}_n = \sum_{m \leq n} \lambda_m x_m$:

$$\sigma_n [f(\hat{x}_n) - f(y)] \leq \sum_{m \leq n} \lambda_m [f(x_m) - f(y)] \leq \sum_{m \leq n} \langle \lambda_m \nabla f(x_m) \vert x_m - y \rangle \leq R_n(y).$$
Continuous time

Potential function $P(t;y) \geq 0$ satisfying:

$$\langle u_t, y - x_t \rangle \leq - \frac{d}{dt} P(t;y), \quad \text{hence}$$

$$R_t(y) = \int_0^t \langle u_s | y - x_s \rangle ds \leq P(0;y) - P(t;y)$$

(1) rate of convergence $1/t$.

(2) Assume $y \in S$, then $P(t;y)$ is decreasing:

$$\frac{d}{dt} P(t;y) \leq \langle g(x_t), x_t - y \rangle \leq 0$$

(3) If $\{x_t\}$ is a descent procedure ($\frac{d}{dt} f(x_t) \leq 0$),

$$E(t;y) = t(f(x_t) - f(y)) + P(t;y)$$

is decreasing, for all $y \in X$.

$$\frac{d}{dt} E(t;y) = f(x_t) - f(y) + t \frac{d}{dt} f(x_t) + \frac{d}{dt} P(t;y) \leq f(x_t) - f(y) + \langle \nabla f(x_t), y - x_t \rangle \leq 0$$

Accumulation point of $\{x_t\}$ are in S.
A. Projected gradient

V Hilbert, $X \subset V$, convex closed.

Dynamics

(Projected) gradient descent is defined by:

\[
\langle u_t - \dot{x}_t, y - x_t \rangle \leq 0, \forall y \in X. \tag{6}
\]

which is:

\[
\dot{x}_t = \Pi_{T_X(x_t)}(u_t) \tag{7}
\]

where Π_C is the projection on the closed convex set C and $T_C(x)$ is the tangent cône to C at x.

Potential

Let:

\[
V(t; y) = \frac{1}{2}\|x_t - y\|^2, \quad y \in X. \tag{8}
\]

\[
\langle u_t, y - x_t \rangle \leq \langle \dot{x}_t, y - x_t \rangle = -\frac{d}{dt}V(t; y)
\]
Trajectories

Lemma
Assume $S \neq \emptyset$ and g dissipative.
\(\{\bar{x}_t\} \) converges weakly to a point in \(S \).

Proof:
- \(\{\bar{x}_t\} \) is bounded hence has weak accumulation points.
- The weak limit points of \(\{\bar{x}_t\} \) are in \(S \)
- \(\|x_t - y^*\| \) converges when \(y^* \in S \)

Hence by Opial’s lemma, \(\bar{x}_t \) converges weakly to a point in \(S \). ■
Descent properties
Consider case 3: \(u_t = -\nabla f(x_t) \).

Lemma

\(f(x_t) \) is decreasing

Proof:

\[
\frac{d}{dt} f(x_t) = \langle \nabla f(x_t), \dot{x}_t \rangle = -\|\dot{x}_t\|^2
\]

since \(\langle u_t - \dot{x}_t, \dot{x}_t \rangle = 0 \) (Moreau’s decomposition).

Lemma

\(\{x_t\} \) weakly converges to a point in \(S \)

Proof:

Weak accumulation points of \(\{x_t\} \) are in \(S \). Then Opial’s lemma applies.
to summarize:
- R_t is bounded
- in addition in case 2 $\{\bar{x}_t\}$ weakly converges to a point in S
- in case 3 $f(x_t)$ is decreasing thus $f(x_t)$ converges to f^* at speed $1/t$ and $\{x_t\}$ weakly converges to a point in S.
B. Mirror descent

Dynamics
Continuous version of “Mirror descent algorithm”’
Nemirovski and Yudin [?], Beck and Teboulle [?]
Alvarez, Bolte and Brahic, Attouch and Teboulle, Bolte and
Teboulle

H strictly convex, C^1

X, compact, convex, $\subset \text{dom}H$.

The continuous time process satisfies:

$$\langle u_t - \frac{d}{dt} \nabla H(x_t) | y - x_t \rangle \leq 0, \forall y \in X.$$ \hspace{1cm} (9)

The previous analysis corresponds to the case: $H(x) = \frac{1}{2} \|x\|^2$.
Potential
Bregman distance associated to H

\[D_H(y, x) = H(y) - H(x) - \langle \nabla H(x) | y - x \rangle \geq 0. \]

\[\frac{d}{dt} D_H(y, x_t) = \langle -\frac{d}{dt} \nabla H(x_t) | y - x_t \rangle \] (10)

so that (9) implies

\[\langle u_t | y - x_t \rangle \leq -\frac{d}{dt} D_H(y, x_t) \]
The use of a special functions H adapted to X allows to get rid of the normal cône and to produce a trajectory that remains in $intX$.
This leads to:

\[
\frac{d}{dt} \nabla H(x_t) = u_t \tag{11}
\]

\[
\dot{x}_t = \nabla^2 H(x_t)^{-1} u_t. \tag{12}
\]

This corresponds to a Riemannian metric. In this case one has a descent algorithm for the gradient since:

\[
\langle \nabla f(x_t) | \dot{x}_t \rangle = -\langle \nabla f(x_t) | \nabla^2 H(x_t)^{-1} \nabla f(x_t) \rangle \leq 0
\]
To prove convergence the steps are:
1) \(\{x_t\} \) has accumulation points (sublevels of \(D_H(x^*, \cdot) \) bounded)
2) If \(x_{t_k} \to x^* \) then \(x^* \in S \)
3) H1 if \(z^k \to y \) then \(D_H(y, z^k) \to 0 \)
 For example \(H L \)-smooth and then:
 \[
 0 \leq D_H(x, y) \leq \frac{L}{2} \|x - y\|^2
 \]
4) H2 if \(D_H(y, z^k) \to 0 \) then \(z^k \to y \)
 For example \(H \beta \)-strongly convex and then:
 \[
 D_H(x, y) \geq \frac{\beta}{2} \|x - y\|^2
 \]
C. Dual averaging
Continuous version of dual averaging Nesterov [?], “Lazy gradient mirror descent ”, Kwon and Mertikopoulos [?].

Dynamics
Assume h bounded strictly convex sci with $\text{dom } h = X \subset V$ convex compact.

Let $U_t = \int_0^t u_s ds$ and x_t be the argmax of:

$$\langle U_t | x \rangle - h(x).$$

Let $h^*(w) = \sup_{x \in V} \langle w | x \rangle - h(x)$ be the Fenchel conjugate. h^* is differentiable.

The dynamics is given by:

$$x_t = \nabla h^*(U_t) \in X \quad (13)$$
Potential
Define, for \(y \in X \):

\[
W(t; y) = h^*(U_t) - \langle U_t | y \rangle + h(y) \quad (\geq 0).
\]

\[
\frac{d}{dt} h^*(U_t) = \langle u_t | \nabla h^*(U_t) \rangle = \langle u_t | x_t \rangle
\]

thus:

\[
\frac{d}{dt} W(t; y) = \langle u_t | x_t - y \rangle
\]
Trajectories

Lemma

\(f(x_t) \) is decreasing.

Proof:

\[
\frac{d}{dt} f(x_t) = \langle \nabla f(x_t) | \nabla^2 h^*(U_t)(u_t) \rangle
\]

with \(u_t = -\nabla f(x_t) \).

Hence the accumulation points of \(x_t \) are in \(S \).
A. Projected gradient

Dynamics

Levitin and Polyak [1], Polyak [2]

\[x_{m+1} = \arg\min_x \{ \langle \nabla f(x_m), x \rangle + \frac{1}{2\eta_m} \| x - x_m \|^2 \}, \quad (16) \]

(\(\eta_m\) decreasing) which corresponds to:

\[x_{m+1} = \Pi_X [x_m + \eta_m u_m], \quad (17) \]

or with variational characterization:

\[\langle x_m + \eta_m u_m - x_{m+1}, y - x_{m+1} \rangle \leq 0, \forall y \in X. \quad (18) \]
Values
Let $m(X)$ be the diameter of X. Assume $\|u_m\|_* \leq M$.

Proposition

$$R_n(x) \leq \frac{1}{2\eta_n}m(X)^2 + \frac{M^2}{2} \sum_{m=1}^{n} \eta_m$$

hence with $\eta_n = 1/\sqrt{n}$, $R_n(x) \leq O(\sqrt{n})$.

Trajectories
Assume $S \neq \emptyset$.

Lemma
For $x^* \in S$, $\|x_m - x^*\|$ converges if $\eta_n \in \ell^2$.

Lemma
If $\eta_n \in \ell^2$ and g is dissipative, $\{\bar{x}_n\}$ converges to a point in S.
B. Mirror descent

Assumption: \(H \) \(L \)-strongly convex for some norm \(\| \cdot \| \) on \(V = IR^n \).
\[\| u_n \|_* \leq M. \]

Dynamics
Nemirovski and Yudin [?], Beck and Teboulle [?]

The usual MD algorithm is given by:

\[
x_{m+1} = \text{argmin}_X \left\{ \langle \nabla f(x_m) | x \rangle + \frac{1}{\eta_m} D_H(x, x_m) \right\}, \quad (19)
\]

General formulation:

\[
\langle \nabla H(x_m) + \eta_m u_m - \nabla H(x_{m+1}) | x - x_{m+1} \rangle \leq 0, \forall x \in X. \quad (20)
\]
Values

Proposition

\[R_n(x) \leq \frac{D_H(x, x_1)}{\eta} + n\eta \frac{M^2}{2L}. \]

Then \(\eta = 1/\sqrt{n} \).

Trajectories

Assume \(S \neq \emptyset \).

Lemma

For \(x^* \in S \), \(D_H(x^*, x_n) \) converges if \(\{\eta_n\} \in \ell^2 \).
C: Dual averaging

Assumption: \(h \) \(L \)-strongly convex for some norm \(\| \cdot \| \) on \(V = \mathbb{R}^n \).

Dynamics

Nesterov [?]
The algorithm is given by:

\[
x_{m+1} = \nabla h^*(\eta_m U_m).
\]

and \(\{\eta_m\} \) is decreasing.

Values

Nesterov [?] or discrete approximation of (13) Kwon and Mertikopoulos [?]:

Proposition

\[
R_n(x) = \sum_{m=1}^{n} \langle u_m | x - x_m \rangle \leq \frac{r_X(h)}{\eta_n} + \frac{\sum_{m=1}^{n} \eta_{m-1} \| u_m \|_*^2}{2L} \tag{21}
\]

Assume: \(\| u_m \|_* \leq M \).

Hence the convergence rate \(O(\sqrt{n}) \) with time varying parameters \(\eta_m = 1/\sqrt{m} \).
Smooth case

Assume that f is β smooth:

$$|f(y) - f(x) - \langle \nabla f(x) | y - x \rangle| \leq \frac{\beta}{2} \| x - y \|^2$$ \hspace{1cm} (22)

A: Projected gradient

Let $x_{m+1} = \Pi_X(y_{m+1})$, $y_{m+1} = x_m + \eta u_m$ and $u_m = -\nabla f(x_m)$. Take $\eta = 1/\beta$ and define $v_n = \beta(x_{n+1} - x_n)$

$$f(x_{n+1}) - f(y) \leq \langle v_n, y - x_n \rangle - \frac{1}{2\beta} \| v_n \|^2$$

in particular $f(x_n)$ decreasing and $\{\| v_n \|\} \in \ell^2$.
Values

\[n[f(x_{n+1}) - f(y)] \leq R_n^v(y) - \frac{1}{2\beta} \left\| \sum_{m=1}^{n} v_m \right\|^2 = \frac{\beta}{2} \left\| y - x_1 \right\|^2 \]

Hence convergence rate of the order \(\frac{1}{n} \).

Trajectories

Lemma

Let \(y^* \in S \). Then \(\left\| x_n - y^* \right\| \) decreases.

Lemma

\(\{x_n\} \) weakly converge to a point in \(S \).
B: Mirror descent
We follow Bauschke, Bolte and Teboulle [?].

\[\langle \nabla H(x_n) - \lambda \nabla f(x_n) - \nabla H(x_{n+1}) | x - x_{n+1} \rangle \leq 0, \forall x \in X \]

Hypothesis 1:
\[LD_H - D_f \geq 0 \]

\((LH - f\) convex) If \(H \) is strongly convex and \(f \) is smooth, there exist \(L \) such that this holds.

Values
One has, by H1:
\[f(x) \leq f(y) + \langle \nabla f(z) | x - y \rangle + LD_h(x, z) - D_f(y, z) \]

(the last term is \(\leq 0 \) when \(f \) is convex). Take \(2\lambda L = 1 \)

Theorem
Assume \(f \) convex, lower bounded.
1) \(f(x_n) \) is decreasing.
2) \(\sum D_H(x_{n+1}, x_n) < +\infty. \)

\[f(x_n) - f(y) \leq \frac{2L}{n} D_H(y, x_1) \]
Trajectories

Theorem
Assume f convex, S compact $\neq \emptyset$.

1) $y \in S$ implies $D_H(y, x_n)$ decreases.

2) Assume
$H2 : x^k \to x^* \in S \Rightarrow D_H(x^*, x^k) \to 0$
$H3 : x^* \in S, D_H(x^*, x^k) \to 0 \Rightarrow x^k \to x^*$

Then $\{x_n\}$ converges to a point in S.
C: Dual averaging
Similar results for the values in case 3.
Lu, Freund and Nesterov (2018)
D: Mirror prox

Nemirovski (2004)
Assume g to be β Lipschitz.

Dynamics

x_n gives y_{n+1} via usual MD i.e. $v_n = g(x_n)$

$$\langle \nabla H(x_n) + \lambda g(x_n) - \nabla H(y_{n+1}) - |x - y_{n+1}| \rangle \leq 0, \forall x \in X$$

x_n gives x_{n+1} via translated MD i.e. $u_n = g(y_{n+1})$

$$\langle \nabla H(x_n) + \lambda g(y_{n+1}) - \nabla H(x_{n+1}) |x - x_{n+1}| \rangle \leq 0, \forall x \in X$$

Values

If H is α strongly convex and $\alpha \geq \lambda \beta$

$$\lambda \sum_{m=1}^{n} \langle g(y_m) | u - y_m \rangle \leq D_H(u, x_1) - D_H(u, x_n)$$
Acceleration: from discrete to continuous

Nesterov (1983)

\[x_{k+1} = y_k - s \nabla f(y_k) \]

\[y_{k+1} = x_{k+1} + \frac{k}{k+3}(x_{k+1} - x_k) \]

f with Lip gradient L and s ≤ 1/L

convergence of f(x_k) of the order O(1/k^2) (best bound)

Su, Boyd, Candes (NIPS 2014, JMLR 2016)

\[\dot{x}_t + \frac{r}{t} \dot{x}_t + \nabla f(x_t) = 0, \]

r = 3: continuous version of Nesterov discrete algorithm.

Lyapounov function

\[E(t; y) = \frac{t^2}{r-1} [f(x_t) - f(y)] + \frac{r-1}{2} \| x_t + \frac{t}{r-1} \dot{x}_t - y \|^2 \]

For r = 3, E(t; y) is decreasing for all y.

If r > 3, E(t; y) is decreasing for y ∈ S. In particular

\[f(x_t) - f^* \leq O\left(\frac{1}{t^2}\right) \]
Acceleration: from discrete to continuous

Nesterov (1983)

\[x_{k+1} = y_k - s \nabla f(y_k) \]

\[y_{k+1} = x_{k+1} + \frac{k}{k+3}(x_{k+1} - x_k) \]

\(f \) with Lip gradient \(L \) and \(s \leq 1/L \)

convergence of \(f(x_k) \) of the order \(O(1/k^2) \) (best bound)

Su, Boyd, Candes (NIPS 2014, JMLR 2016)

\[\ddot{x}_t + r \frac{\dot{x}_t}{t} + \nabla f(x_t) = 0, \]

\(r = 3 \) : continuous version of Nesterov discrete algorithm.

Lyapunov function

\[E(t; y) = \frac{t^2}{r-1} [f(x_t) - f(y)] + \frac{r-1}{2} \|x_t + \frac{t}{r-1} \dot{x}_t - y\|^2 \]

For \(r = 3 \), \(E(t; y) \) is decreasing for all \(y \).

If \(r > 3 \), \(E(t; y) \) is decreasing for \(y \in S \). In particular

\[f(x_t) - f^* \leq O\left(\frac{1}{t^2}\right) \]
Attouch, Chbani, Peypouquet, Redont (Math Pro 2018) extend the analysis

\(r \geq 3 \) Hilbert space \(H + L^1 \) perturbation

same speed of convergence for the values (with the same Lyapunov function)

if \(r > 3 \) weak convergence of the trajectory \(x_t \) using energy functions of the form (with real parameters \(a, b \))

\[
F(t) = \frac{t^2}{r-1} [f(x_t) - f^*] + \frac{r-1}{2} \| a(x_t - x^*) + \frac{t}{r-1} \dot{x}_t \|^2 + b \| x_t - x^* \|^2
\]

leading (for some specific \(b \)) to

\[
F'(t) \leq (2 - a) t [f(x_t) - f^*] - (r - a - 1) t \| \dot{x}(t) \|^2
\]

in fact for \(r > 3 \) speed of \(cv \ o\left(\frac{1}{t^2}\right) \) (May, 2017)
extension non euclidean
Krichene, Bayen, Bartlett (NIPS 2015)

\[
F(t; y) = \frac{t^2}{q} [f(x_t) - f(y)] + q[h^*(z_t) - \langle y, z_t \rangle + h(y)]
\]

\[
F'(t; y) = \frac{2t}{q} [f(x_t) - f(y)] + \frac{t^2}{q} \langle \nabla f(x_t), \dot{x}_t \rangle + q \langle \nabla h^*(z_t) - y, \dot{z}_t \rangle
\]

choose

\[
\dot{z}_t = -\frac{t}{q} \nabla f(x_t), \quad x_t + \frac{t}{q} \dot{x}_t = \nabla h^*(z_t)
\]

\[
F'(t; y) = \frac{2t}{q} [f(x_t) - f(y)] - t \langle \nabla f(x_t), -\frac{t}{q} \dot{x}_t + \nabla h^*(z_t) - y \rangle
\]

\[
= \frac{2t}{q} [f(x_t) - f(y)] - t \langle \nabla f(x_t), x_t - y \rangle \leq \frac{2t}{q} [f(x_t) - f(y)] - t[f(x_t) - f(y)]
\]

which is non positive if \(q = 2 \) or \(q > 2 \) and \(y^* \in S \).
Note: no condition on \(\nabla f \).
For the euclidean unconstrained case take $h(x) = \frac{1}{2} \|x\|^2$ so that $\nabla h^* = \text{Id}$ and one has

$$\frac{d}{dt} [x_t + \frac{t}{q} \dot{x}_t] = -\frac{t}{q} \nabla f(x_t)$$

which is the SBC equation with $r = q + 1$.

The second equation can be written

$$t^q x_t = q \int_0^t s^{q-1} \nabla h^*(z_s) ds$$

so that x_t is an average of the previous $\nabla h^*(z_s)$.
For the euclidean unconstrained case take \(h(x) = \frac{1}{2} \| x \|^2 \) so that \(\nabla h^* = Id \) and one has

\[
\frac{d}{dt} [x_t + \frac{t}{q} \dot{x}_t] = - \frac{t}{q} \nabla f(x_t)
\]

which is the SBC equation with \(r = q + 1 \).

The second equation can be written

\[
t^q x_t = q \int_0^t s^{q-1} \nabla h^*(z_s) ds
\]

so that \(x_t \) is an average of the previous \(\nabla h^*(z_s) \)
More extension KBB, (NIPS 2016)

\[\dot{z}_t = -\eta_t \nabla f(x_t), \quad x_t = \frac{1}{W_t} \int_0^t w_s \nabla h^*(z_s) \, ds \]

with \(\eta \) and \(w \) positive.

new Lyapounov function is of the form

\[E(t) = a_t [f(x_t) - f(y)] + [h^*(z_t) - \langle y, z_t \rangle] \]

and speed of cv \(1/a_t \), with compatibility conditions between \(\eta \), \(w \) and \(a \) (standard case \(a_t = t^2 \))

\[E'(t) \leq [f(x_t) - f(y)](a_t' - \eta_t) + \langle \nabla f(x_t), \dot{x}_t \rangle (a_t - \frac{\eta_t W_t}{w_t}) \]
Discrete properties

no natural discretization

2 first order equations: choice of coefficients

\[x_{k+1} = y_k - s \nabla f(y_k) \]

\[y_{k+1} = x_{k+1} + \frac{k}{k+r}(x_{k+1} - x_k) \]

discrete Lyapounov function (SBC)

\[E(k) = \frac{2(k+r-2)^2s}{r-1}[f(x_k) - f^*] + (r-1)\|w_k - x^*\|^2 \]

with

\[w_k = \frac{k+r-1}{r-1}y_k - \frac{k}{r-1}x_k \]

satisfies

\[E(k) + \frac{2s[(r-3)(k+r-2) + 1]}{r-1}[f(x_k) - f^*] \leq E(k-1) \]
Similar computations in BBK
In addition for $r > 3$:
weak convergence of x_n, Chambolle and Dossal (2015), ACPR (2018)
Attouch and Peypouquet (2016) cv of the value with rate $o\left(\frac{1}{n^2}\right)$
Open pb:
- link between continuous and discrete:
 property of the curve
 property of the approximation
- cv of the trajectory in the non euclidean setting
- similar procedure for smooth learning ??
