Dykstra’s Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions

Ryan Tibshirani

Depts. of Statistics & Machine Learning

Carnegie Mellon University

How it began: additive models

Given data \((x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}, \ i = 1, \ldots, n,\) for (potentially) large \(d.\)
How it began: additive models

Given data \((x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}, i = 1, \ldots, n\), for (potentially) large \(d\). Consider an additive model fitted using higher-order total variation regularization, the solution of

\[
\min_{f_1, \ldots, f_d} \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} f_j(x_{ij}) \right)^2 + \lambda \sum_{j=1}^{d} \text{TV}(f_j^{(k)})
\]
How it began: additive models

Given data \((x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}, i = 1, \ldots, n\), for (potentially) large \(d\). Consider an additive model fitted using higher-order total variation regularization, the solution of

\[
\min_{f_1, \ldots, f_d} \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} f_j(x_{ij}) \right)^2 + \lambda \sum_{j=1}^{d} \text{TV}(f_j^{(k)})
\]

For computational sake, we can approximate this by

\[
\min_{\theta_1, \ldots, \theta_d \in \mathbb{R}^n} \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} \theta_{ij} \right)^2 + \lambda \sum_{j=1}^{d} \| \Delta_j^{(k+1)} \theta_j \|_1
\]

where each \(\Delta_j^{(k+1)}, j = 1, \ldots, d\) is a special \((k + 1)\)st order discrete derivative operator.
How it began: additive models

Given data \((x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}, i = 1, \ldots, n\), for (potentially) large \(d\). Consider an additive model fitted using higher-order total variation regularization, the solution of

\[
\min_{f_1,\ldots,f_d} \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} f_j(x_{ij}) \right)^2 + \lambda \sum_{j=1}^{d} \text{TV}(f_j^{(k)})
\]

For computational sake, we can approximate this by

\[
\min_{\theta_1,\ldots,\theta_d \in \mathbb{R}^n} \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} \theta_{ij} \right)^2 + \lambda \sum_{j=1}^{d} \| \Delta_j^{(k+1)} \theta_j \|_1
\]

where each \(\Delta_j^{(k+1)}, j = 1, \ldots, d\) is a special \((k + 1)\)st order discrete derivative operator. We call this \(k\)th order additive trend filtering.
Additive trend filtering

Why additive trend filtering?
Additive trend filtering

Why additive trend filtering? Briefly: (1) computationally efficient,
Additive trend filtering

Why additive trend filtering? Briefly: (1) computationally efficient, (2) locally adaptive,
Additive trend filtering

Why additive trend filtering? Briefly: (1) computationally efficient, (2) locally adaptive, (3) naturally extrapolates to smooth surface
Additive trend filtering

Why additive trend filtering? Briefly: (1) computationally efficient, (2) locally adaptive, (3) naturally extrapolates to smooth surface

(Sadhanala and T., 2017)
The dual of the additive trend filtering problem:

$$\min_{u \in \mathbb{R}^n} \| y - u \|_2^2 \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d,$$

where

$$C_j = \{ (\Delta_j^{(k+1)})^T v_j : \| v_j \|_\infty \leq \lambda \}, \quad j = 1, \ldots, d$$
Trend filtering dual

The dual of the additive trend filtering problem:

$$\min_{u \in \mathbb{R}^n} \|y - u\|_2^2 \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d,$$

where $C_j = \{(\Delta_j^{(k+1)})^T v_j : \|v_j\|_{\infty} \leq \lambda\}, \quad j = 1, \ldots, d$

Primal and dual solutions $\hat{\theta}, \hat{u}$ related by $\hat{u} = y - \sum_{j=1}^{d} \hat{\theta}_j$
The dual of the additive trend filtering problem:

\[
\min_{u \in \mathbb{R}^n} \| y - u \|_2^2 \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d,
\]

where \(C_j = \{ (\Delta_j^{(k+1)})^T v_j : \| v_j \|_\infty \leq \lambda \}, \quad j = 1, \ldots, d \)

Primal and dual solutions \(\hat{\theta}, \hat{u} \) related by \(\hat{u} = y - \sum_{j=1}^d \hat{\theta}_j \)

Dual problem is projection onto intersection of sets \(C_1, \ldots, C_d \).
The dual of the additive trend filtering problem:

\[
\min_{u \in \mathbb{R}^n} \| y - u \|^2_2 \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d,
\]

where \(C_j = \left\{ (\Delta_j^{(k+1)})^T v_j : \|v_j\|_\infty \leq \lambda \right\}, \quad j = 1, \ldots, d \)

Primal and dual solutions \(\hat{\theta}, \hat{u} \) related by \(\hat{u} = y - \sum_{j=1}^d \hat{\theta}_j \)

Dual problem is projection onto intersection of sets \(C_1, \ldots, C_d \).

Motivating questions:

• Is backfitting—i.e., block coordinate descent—some kind of alternating projections in the dual?
• Can we port over methods for parallel projections to primal problem?
Trend filtering dual

The dual of the additive trend filtering problem:

\[
\min_{u \in \mathbb{R}^n} \|y - u\|_2^2 \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d,
\]

where \(C_j = \{(\Delta_j^{(k+1)})^T v_j : \|v_j\|_\infty \leq \lambda\}, \quad j = 1, \ldots, d \)

Primal and dual solutions \(\hat{\theta}, \hat{u} \) related by \(\hat{u} = y - \sum_{j=1}^d \hat{\theta}_j \)

Dual problem is projection onto intersection of sets \(C_1, \ldots, C_d \).

Motivating questions:

- Is backfitting—i.e., block coordinate descent—some kind of alternating projections in the dual?
Trend filtering dual

The dual of the additive trend filtering problem:

$$\min_{u \in \mathbb{R}^n} \|y - u\|_2^2 \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d,$$

where $C_j = \{(\Delta_j^{(k+1)})^T v_j : \|v_j\|_\infty \leq \lambda\}, \quad j = 1, \ldots, d$

Primal and dual solutions $\hat{\theta}, \hat{u}$ related by $\hat{u} = y - \sum_{j=1}^d \hat{\theta}_j$

Dual problem is projection onto intersection of sets C_1, \ldots, C_d.

Motivating questions:

- Is backfitting—i.e., block coordinate descent—some kind of alternating projections in the dual?
- Can we port over methods for parallel projections to primal problem?
Outline:

- Dykstra, ADMM, and CD
- Coordinate descent for the lasso
- Parallel coordinate descent
- Nonquadratic loss: equivalences
- Nonquadratic loss: parallel methods
- Back to additive models
Dykstra, ADMM, and CD
Dykstra’s algorithm

Best approximation problem (projection):
given closed, convex sets $C_1, \ldots, C_d \subseteq \mathbb{R}^n$, nonempty intersection, and $y \in \mathbb{R}^n$, solve

$$\min_{u \in \mathbb{R}^n} \|y - u\|_2^2 \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d$$
Dykstra’s algorithm

Best approximation problem (projection): given closed, convex sets $C_1, \ldots, C_d \subseteq \mathbb{R}^n$, nonempty intersection, and $y \in \mathbb{R}^n$, solve

$$\min_{u \in \mathbb{R}^n} \|y - u\|_2^2 \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d$$

Dykstra’s algorithm (Dykstra, 1983; Boyle and Dykstra, 1986):
Dykstra’s algorithm

Best approximation problem (projection): given closed, convex sets $C_1, \ldots, C_d \subseteq \mathbb{R}^n$, nonempty intersection, and $y \in \mathbb{R}^n$, solve

$$\min_{u \in \mathbb{R}^n} \|y - u\|_2^2 \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d$$

Dykstra’s algorithm (Dykstra, 1983; Boyle and Dykstra, 1986):

Richard Dykstra, U. of Iowa
Dykstra’s algorithm

Best approximation problem (projection): given closed, convex sets $C_1, \ldots, C_d \subseteq \mathbb{R}^n$, nonempty intersection, and $y \in \mathbb{R}^n$, solve

$$\min_{u \in \mathbb{R}^n} \|y - u\|_2^2 \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d$$

Dykstra’s algorithm (Dykstra, 1983; Boyle and Dykstra, 1986): initialize $u^{(0)}_d = y$, $z^{(0)}_1 = \cdots = z^{(0)}_d = 0$, and repeat

$$u_0^{(k)} = u_d^{(k-1)}$$

$$u_i^{(k)} = PC_i (u_{i-1}^{(k)} + z_i^{(k-1)})$$

$$z_i^{(k)} = u_{i-1}^{(k)} + z_i^{(k-1)} - u_i^{(k)}$$

$$\{ i = 1, \ldots, d \}$$
Dykstra’s algorithm (cont.)

Some notes:

- Dykstra is a statistician! (Main work is on shape constraints)
Some notes:

- Dykstra is a statistician! (Main work is on shape constraints)
- Cf. the simpler alternating projections algorithm (von Neumann, 1950; Halperin, 1962) which does not generally converge
Dykstra’s algorithm (cont.)

Some notes:

• Dykstra is a statistician! (Main work is on shape constraints)
• Cf. the simpler alternating projections algorithm (von Neumann, 1950; Halperin, 1962) which does not generally converge
• When sets are affine spaces, equivalent to Hildreth’s algorithm (Hildreth, 1957) for quadratic programming
Dykstra’s algorithm (cont.)

Some notes:

• Dykstra is a statistician! (Main work is on shape constraints)

• Cf. the simpler alternating projections algorithm (von Neumann, 1950; Halperin, 1962) which does not generally converge

• When sets are affine spaces, equivalent to Hildreth’s algorithm (Hildreth, 1957) for quadratic programming

• Theory and extensions thoroughly developed over the years by Bauschke, Borwein, Bregman, Censor, Combettes, Deutsch
Coordinate descent

Regularized regression problem: given $y \in \mathbb{R}^n$, $\Phi \in \mathbb{R}^{n \times p}$, and convex functions $h_i : \mathbb{R}^{p_i} \to \mathbb{R}$, $i = 1, \ldots, d$, solve

$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \|y - \Phi w\|_2^2 + \sum_{i=1}^d h_i(w_i),$$

with $w = (w_1, \ldots, w_d)$ a block decomposition.
Regularized regression problem: given \(y \in \mathbb{R}^n \), \(\Phi \in \mathbb{R}^{n \times p} \), and convex functions \(h_i : \mathbb{R}^{p_i} \rightarrow \mathbb{R}, \) \(i = 1, \ldots, d \), solve

\[
\min_{w \in \mathbb{R}^p} \frac{1}{2} \| y - \Phi w \|_2^2 + \sum_{i=1}^d h_i(w_i),
\]

with \(w = (w_1, \ldots, w_d) \) a block decomposition.
Coordinate descent

Regularized regression problem: given \(y \in \mathbb{R}^n \), \(\Phi \in \mathbb{R}^{n \times p} \), and convex functions \(h_i : \mathbb{R}^{p_i} \rightarrow \mathbb{R} \), \(i = 1, \ldots, d \), solve

\[
\min_{w \in \mathbb{R}^p} \frac{1}{2} \| y - \Phi w \|_2^2 + \sum_{i=1}^{d} h_i(w_i),
\]

with \(w = (w_1, \ldots, w_d) \) a block decomposition

Coordinate descent or CD (??; Warga, 1963):

Paul Tseng, U. of Washington
Coordinate descent

Regularized regression problem: given \(y \in \mathbb{R}^n \), \(\Phi \in \mathbb{R}^{n \times p} \), and convex functions \(h_i : \mathbb{R}^{p_i} \rightarrow \mathbb{R} \), \(i = 1, \ldots, d \), solve

\[
\min_{w \in \mathbb{R}^p} \frac{1}{2} \| y - \Phi w \|_2^2 + \sum_{i=1}^d h_i(w_i),
\]

with \(w = (w_1, \ldots, w_d) \) a block decomposition

Coordinate descent or CD (??; Warga, 1963): initialize \(w^{(0)} = 0 \), and repeat

\[
w^{(k)}_i = \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| y - \sum_{j<i} \Phi_j w_j^{(k)} - \sum_{j>i} \Phi_j w_j^{(k-1)} - \Phi_i w_i \right\|_2^2 + h_i(w_i),
\]

\(i = 1, \ldots, d \)
Coordinate descent (cont.)

Some notes:

• Dates back to the foundation of optimization as a discipline?
Some notes:

- Dates back to the foundation of optimization as a discipline?
- For linear systems, equivalent to Gauss-Seidel iterations
Some notes:

- Dates back to the foundation of optimization as a discipline?
- For linear systems, equivalent to Gauss-Seidel iterations
- Definitive theory by Bertsekas, Luo, and most notably Tseng
Some notes:

- Dates back to the foundation of optimization as a discipline?
- For linear systems, equivalent to Gauss-Seidel iterations
- Definitive theory by Bertsekas, Luo, and most notably Tseng
- Huge revival of interest in machine learning and statistics over the last 10 years; see Wright (2015)
Some notes:

- Dates back to the foundation of optimization as a discipline?
- For linear systems, equivalent to Gauss-Seidel iterations
- Definitive theory by Bertsekas, Luo, and most notably Tseng
- Huge revival of interest in machine learning and statistics over the last 10 years; see Wright (2015)
- Lots of interesting theory and extensions still being developed
Equivalence of Dykstra and CD

Suppose that, for \(i = 1, \ldots, d \),

\[
h_i(v) = \max_{d \in \mathcal{D}_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(\mathcal{D}_i) = \{ v \in \mathbb{R}^n : \Phi_i^T v \in \mathcal{D}_i \}
\]
Equivalence of Dykstra and CD

Suppose that, for $i = 1, \ldots, d$,

$$h_i(v) = \max_{d \in D_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(D_i) = \{v \in \mathbb{R}^n : \Phi_i^T v \in D_i\}$$

(Each h_i is a support function; includes seminorms as special case)
Equivalence of Dykstra and CD

Suppose that, for $i = 1, \ldots, d$,

$$h_i(v) = \max_{d \in D_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(D_i) = \{v \in \mathbb{R}^n : \Phi_i^T v \in D_i\}$$

(Each h_i is a support function; includes seminorms as special case)

Then:
Suppose that, for $i = 1, \ldots, d$,

$$h_i(v) = \max_{d \in D_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(D_i) = \{v \in \mathbb{R}^n : \Phi_i^T v \in D_i\}$$

(Each h_i is a support function; includes seminorms as special case)

Then:

- Regularized regression problem and best approximation problem are duals.
Suppose that, for $i = 1, \ldots, d$,

$$h_i(v) = \max_{d \in D_i} \langle d, v \rangle,$$

$$C_i = (\Phi_i^T)^{-1}(D_i) = \{v \in \mathbb{R}^n : \Phi_i^T v \in D_i\}$$

(Each h_i is a support function; includes seminorms as special case)

Then:

- Regularized regression problem and best approximation problem are duals. Solutions \hat{w}, \hat{u} related by $\hat{u} = y - \Phi \hat{w}$
Equivalence of Dykstra and CD

Suppose that, for $i = 1, \ldots, d$,

$$h_i(v) = \max_{d \in D_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(D_i) = \{ v \in \mathbb{R}^n : \Phi_i^T v \in D_i \}$$

(Each h_i is a support function; includes seminorms as special case)

Then:

- Regularized regression problem and best approximation problem are duals. Solutions \hat{w}, \hat{u} related by $\hat{u} = y - \Phi \hat{w}$
- Coordinate descent and Dykstra’s algorithm are equivalent,
Equivalence of Dykstra and CD

Suppose that, for \(i = 1, \ldots, d, \)

\[
h_i(v) = \max_{d \in D_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(D_i) = \{ v \in \mathbb{R}^n : \Phi_i^T v \in D_i \}
\]

(Each \(h_i \) is a support function; includes seminorms as special case)

Then:

- Regularized regression problem and best approximation problem are duals. Solutions \(\hat{w}, \hat{u} \) related by \(\hat{u} = y - \Phi \hat{w} \)
- Coordinate descent and Dykstra’s algorithm are equivalent, in that at all iterations

\[
z_i^{(k)} = \Phi_i w_i^{(k)}, \quad u_i^{(k)} = y - \sum_{j \leq i} \Phi_j w_j^{(k)} - \sum_{j > i} \Phi_j w_j^{(k-1)},
\]

\(i = 1, \ldots, d \)
Equivalence of Dykstra and CD (cont.)

<table>
<thead>
<tr>
<th>Dykstra, iteration i</th>
<th>Coordinate descent, iteration i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_i^{(k)} = P_{C_i}(u_i^{(k)} + z_i^{(k-1)})$</td>
<td>$w_i^{(k)} = \arg\min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} |y - \sum_{j<i} \Phi_j w_j^{(k)} - \sum_{j>i} \Phi_j w_j^{(k-1)} - \Phi_i w_i|^2 + h_i(w_i)$</td>
</tr>
<tr>
<td>$z_i^{(k)} = u_i^{(k)} + z_i^{(k-1)} - u_i^{(k)}$</td>
<td></td>
</tr>
</tbody>
</table>
Equivalence of Dykstra and CD (cont.)

<table>
<thead>
<tr>
<th>Dykstra, iteration i</th>
<th>Coordinate descent, iteration i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_i^{(k)} = P_{C_i}(u_i^{(k)} + z_i^{(k-1)})$</td>
<td>$w_i^{(k)} = \arg\min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left| y - \sum_{j<i} \Phi_j w_j^{(k)} - \sum_{j>i} \Phi_j w_j^{(k-1)} - \Phi_i w_i \right|_2^2 + h_i(w_i)$,</td>
</tr>
<tr>
<td>$z_i^{(k)} = u_{i-1}^{(k)} + z_i^{(k-1)} - u_i^{(k)}$</td>
<td></td>
</tr>
</tbody>
</table>

Key connection:
Equivalence of Dykstra and CD (cont.)

<table>
<thead>
<tr>
<th>Dykstra, iteration i</th>
<th>Coordinate descent, iteration i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_i^{(k)} = P_{C_i}(u_{i-1}^{(k)} + z_i^{(k-1)})$</td>
<td>$w_i^{(k)} = \arg\min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2}|y - \sum_{j<i} \Phi_j w_j^{(k)} - \sum_{j>i} \Phi_j w_j^{(k-1)} - \Phi_i w_i |_2^2 + h_i(w_i)$</td>
</tr>
<tr>
<td>$z_i^{(k)} = u_{i-1}^{(k)} + z_i^{(k-1)} - u_i^{(k)}$</td>
<td></td>
</tr>
</tbody>
</table>

Key connection: for $S \subseteq \mathbb{R}^q$, and $h_S(x) = \max_{s \in S} \langle s, x \rangle$, we have

$$(\text{Id} - P_S)(r) = \arg\min_{x \in \mathbb{R}^q} \frac{1}{2}\|r - x\|_2^2 + h_S(x)$$
Dykstra, iteration \(i \)

\[
 u_i^{(k)} = P_{C_i}(u_{i-1}^{(k)} + z_i^{(k-1)}) \\
 z_i^{(k)} = u_{i-1}^{(k)} + z_i^{(k-1)} - u_i^{(k)}
\]

Coordinate descent, iteration \(i \)

\[
 w_i^{(k)} = \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| y - \sum_{j<i} \Phi_j w_j^{(k)} - \sum_{j>i} \Phi_j w_j^{(k-1)} - \Phi_i w_i \right\|_2^2 + h_i(w_i),
\]

Key connection: for \(S \subseteq \mathbb{R}^q \), and \(h_S(x) = \max_{s \in S} \langle s, x \rangle \), we have

\[
 (\text{Id} - P_S)(r) = \arg \min_{x \in \mathbb{R}^q} \frac{1}{2} \left\| r - x \right\|_2^2 + h_S(x)
\]

Proof sketch:
Equivalence of Dykstra and CD (cont.)

<table>
<thead>
<tr>
<th>Dykstra, iteration i</th>
<th>Coordinate descent, iteration i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_i^{(k)} = P_{C_i}(u_{i-1}^{(k)} + z_i^{(k-1)})$</td>
<td>$w_i^{(k)} = \arg\min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} |y - \sum_{j < i} \Phi_j w_j^{(k)} - \sum_{j > i} \Phi_j w_j^{(k-1)} - \Phi_i w_i |_2^2 + h_i(w_i)$</td>
</tr>
<tr>
<td>$z_i^{(k)} = u_{i-1}^{(k)} + z_i^{(k-1)} - u_i^{(k)}$</td>
<td></td>
</tr>
</tbody>
</table>

Key connection: for $S \subseteq \mathbb{R}^q$, and $h_S(x) = \max_{s \in S} \langle s, x \rangle$, we have

$$(\text{Id} - P_S)(r) = \arg\min_{x \in \mathbb{R}^q} \frac{1}{2} \|r - x\|_2^2 + h_S(x)$$

Proof sketch:

- Rewrite $z_i^{(k)} = (\text{Id} - P_{C_i})(u_{i-1}^{(k)} + z_i^{(k-1)})$
Equivalence of Dykstra and CD (cont.)

Dykstra, iteration i

\[
\begin{align*}
 u_i^{(k)} &= P_{C_i}(u_{i-1}^{(k)} + z_i^{(k-1)}) \\
z_i^{(k)} &= u_{i-1}^{(k)} + z_i^{(k-1)} - u_i^{(k)}
\end{align*}
\]

Coordinate descent, iteration i

\[
\begin{align*}
 w_i^{(k)} &= \arg\min_{w_i \in \mathbb{R}^p} \frac{1}{2} \left\| y - \sum_{j < i} \Phi_j w_j^{(k)} - \sum_{j > i} \Phi_j w_j^{(k-1)} - \Phi_i w_i \right\|^2_2 + h_i(w_i),
\end{align*}
\]

Key connection: for $S \subseteq \mathbb{R}^q$, and $h_S(x) = \max_{s \in S} \langle s, x \rangle$, we have

\[
(\text{Id} - P_S)(r) = \arg\min_{x \in \mathbb{R}^q} \frac{1}{2} \left\| r - x \right\|^2_2 + h_S(x)
\]

Proof sketch:

- Rewrite $z_i^{(k)} = (\text{Id} - P_{C_i})(u_i^{(k)} + z_i^{(k-1)})$
- By induction, $u_{i-1}^{(k)} + z_i^{(k-1)}$ is ith partial residual
<table>
<thead>
<tr>
<th>Dykstra, iteration i</th>
<th>Coordinate descent, iteration i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_i^{(k)} = P_{C_i}(u_{i-1}^{(k)} + z_i^{(k-1)})$</td>
<td>$w_i^{(k)} = \arg\min_{w_i \in \mathbb{R}^p} \frac{1}{2} | y - \sum_{j<i} \Phi_j w_j^{(k)} - \sum_{j>i} \Phi_j w_j^{(k-1)} - \Phi_i w_i |^2 + h_i(w_i)$,</td>
</tr>
<tr>
<td>$z_i^{(k)} = u_{i-1}^{(k)} + z_i^{(k-1)} - u_i^{(k)}$</td>
<td></td>
</tr>
</tbody>
</table>

Key connection: for $S \subseteq \mathbb{R}^q$, and $h_S(x) = \max_{s \in S} \langle s, x \rangle$, we have

$$(\text{Id} - P_S)(r) = \arg\min_{x \in \mathbb{R}^q} \frac{1}{2} \| r - x \|^2_2 + h_S(x)$$

Proof sketch:

- Rewrite $z_i^{(k)} = (\text{Id} - P_{C_i})(u_{i-1}^{(k)} + z_i^{(k-1)})$
- By induction, $u_{i-1}^{(k)} + z_i^{(k-1)}$ is ith partial residual
- Therefore by key fact, it follows $z_i^{(k)} = \Phi_i w_i^{(k)}$
Equivalence of Dykstra and CD (cont.)

Short history:

- Dates back to Han (1988); Gaffke and Mathar (1989), for the case $\Phi = I$
Short history:

- Dates back to Han (1988); Gaffke and Mathar (1989), for the case $\Phi = I$
- Han was presumably unaware of Dykstra’s work, and reinvented Dykstra’s algorithm
Equivalence of Dykstra and CD (cont.)

Short history:

- Dates back to Han (1988); Gaffke and Mathar (1989), for the case $\Phi = I$
- Han was presumably unaware of Dykstra’s work, and reinvented Dykstra’s algorithm
- Tseng was also presumably unaware of Dykstra’s work!
Equivalence of Dykstra and CD (cont.)

Short history:

- Dates back to Han (1988); Gaffke and Mathar (1989), for the case $\Phi = I$

- Han was presumably unaware of Dykstra’s work, and reinvented Dykstra’s algorithm

- Tseng was also presumably unaware of Dykstra’s work! He was inspired by Han’s work, and wrote 1993 paper accordingly.
Equivalence of Dykstra and CD (cont.)

Short history:

- Dates back to Han (1988); Gaffke and Mathar (1989), for the case \(\Phi = I \)

- Han was presumably unaware of Dykstra’s work, and reinvented Dykstra’s algorithm

- Tseng was also presumably unaware of Dykstra’s work! He was inspired by Han’s work, and wrote 1993 paper accordingly. Led eventually to his seminal 2001 paper
Alternating direction method of multipliers

For convex $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^m \to \mathbb{R}$, matrices $A \in \mathbb{R}^{p \times n}$, $B \in \mathbb{R}^{p \times m}$, and $c \in \mathbb{R}^p$, consider

$$\min_{x \in \mathbb{R}^n, y \in \mathbb{R}^m} f(x) + g(y) \quad \text{s.t.} \quad Ax + By = c$$
Alternating direction method of multipliers

For convex $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^m \to \mathbb{R}$, matrices $A \in \mathbb{R}^{p \times n}$, $B \in \mathbb{R}^{p \times m}$, and $c \in \mathbb{R}^p$, consider

$$\min_{x \in \mathbb{R}^n, y \in \mathbb{R}^m} f(x) + g(y) \quad \text{s.t.} \quad Ax + By = c$$

Define augmented Lagrangian: $L(x, y, v) = f(x) + g(y) + \frac{\rho}{2} \|Ax + By - c + v\|_2^2 - \frac{\rho}{2} \|v\|_2^2$
Alternating direction method of multipliers

For convex $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^m \to \mathbb{R}$, matrices $A \in \mathbb{R}^{p \times n}$, $B \in \mathbb{R}^{p \times m}$, and $c \in \mathbb{R}^p$, consider

$$\min_{x \in \mathbb{R}^n, y \in \mathbb{R}^m} f(x) + g(y) \quad \text{s.t.} \quad Ax + By = c$$

Define augmented Lagrangian: $L(x, y, v) = f(x) + g(y) + \frac{\rho}{2} \|Ax + By - c + v\|_2^2 - \frac{\rho}{2} \|v\|_2^2$

Alternating direction method of multipliers or ADMM (Glowinski and Marroco, 1975; Gabay and Mercier, 1976):
Alternating direction method of multipliers

For convex $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^m \to \mathbb{R}$, matrices $A \in \mathbb{R}^{p \times n}$, $B \in \mathbb{R}^{p \times m}$, and $c \in \mathbb{R}^p$, consider

$$\min_{x \in \mathbb{R}^n, y \in \mathbb{R}^m} f(x) + g(y) \ \text{s.t.} \ Ax + By = c$$

Define augmented Lagrangian: $L(x, y, v) = f(x) + g(y) + \frac{\rho}{2} \|Ax + By - c + v\|_2^2 - \frac{\rho}{2} \|v\|_2^2$

Alternating direction method of multipliers or ADMM (Glowinski and Marroco, 1975; Gabay and Mercier, 1976):
Alternating direction method of multipliers

For convex $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^m \to \mathbb{R}$, matrices $A \in \mathbb{R}^{p \times n}$, $B \in \mathbb{R}^{p \times m}$, and $c \in \mathbb{R}^p$, consider

$$\min_{x \in \mathbb{R}^n, y \in \mathbb{R}^m} f(x) + g(y) \quad \text{s.t.} \quad Ax + By = c$$

Define augmented Lagrangian: $L(x, y, v) = f(x) + g(y) + \frac{\rho}{2} \|Ax + By - c + v\|_2^2 - \frac{\rho}{2} \|v\|_2^2$

Alternating direction method of multipliers or ADMM (Glowinski and Marroco, 1975; Gabay and Mercier, 1976): initialize $y^{(0)}$, $v^{(0)}$, repeat

$$x^{(k)} = \arg \min_{x \in \mathbb{R}^n} L(x, y^{(k-1)}, v^{(k-1)})$$

$$y^{(k)} = \arg \min_{y \in \mathbb{R}^m} L(x^{(k)}, y, v^{(k-1)})$$

$$v^{(k)} = v^{(k-1)} + Ax^{(k)} + By^{(k)} - c$$
Alternating direction method of multipliers (cont.)

Some notes:

- An operator splitting technique; equivalent to \textit{Douglas-Rachford algorithm} (Douglas and Rachford, 1956) via duality argument.
Alternating direction method of multipliers (cont.)

Some notes:

- An operator splitting technique; equivalent to **Douglas-Rachford algorithm** (Douglas and Rachford, 1956) via duality argument
- Early theory by Gabay, Eckstein, Bertsekas
Alternating direction method of multipliers (cont.)

Some notes:

- An operator splitting technique; equivalent to Douglas-Rachford algorithm (Douglas and Rachford, 1956) via duality argument
- Early theory by Gabay, Eckstein, Bertsekas
- Like CD, it has gained immense popularity recently in machine learning and statistics, sparked by Boyd et al. (2011)
Some notes:

- An operator splitting technique; equivalent to Douglas-Rachford algorithm (Douglas and Rachford, 1956) via duality argument
- Early theory by Gabay, Eckstein, Bertsekas
- Like CD, it has gained immense popularity recently in machine learning and statistics, sparked by Boyd et al. (2011)
- Lots of interesting theory and extensions still being developed
Equivalence of Dykstra and ADMM

Short history:

- Boyd et al. (2011): ADMM for 2-set intersection is equivalent to Dykstra’s algorithm
Equivalence of Dykstra and ADMM

Short history:

- Boyd et al. (2011): ADMM for 2-set intersection is equivalent to Dykstra’s algorithm
- Bauschke and Koch (2013): no it isn’t
Equivalence of Dykstra and ADMM

Short history:

- Boyd et al. (2011): ADMM for 2-set intersection is equivalent to Dykstra’s algorithm
- Bauschke and Koch (2013): no it isn’t

Consider best approximation problem with $d = 2$ sets, rewritten as:

$$
\min_{u_1 \in \mathbb{R}^n, u_2 \in \mathbb{R}^n} \|y - u_1\|_2^2 + I_{C_1}(u_1) + I_{C_2}(u_2) \quad \text{s.t.} \quad u_1 = u_2
$$
Equivalence of Dykstra and ADMM

Short history:

- Boyd et al. (2011): ADMM for 2-set intersection is equivalent to Dykstra’s algorithm
- Bauschke and Koch (2013): no it isn’t

Consider best approximation problem with $d = 2$ sets, rewritten as:

$$\min_{u_1 \in \mathbb{R}^n, u_2 \in \mathbb{R}^n} \|y - u_1\|_2^2 + I_{C_1}(u_1) + I_{C_2}(u_2) \quad \text{s.t.} \quad u_1 = u_2$$

ADMM iterations:

$$u_1^{(k)} = P_{C_1} \left(\frac{y}{1 + \rho} + \frac{\rho (u_2^{(k-1)} - z^{(k-1)})}{1 + \rho} \right)$$

$$u_2^{(k)} = P_{C_2} (u_1^{(k)} + z^{(k-1)})$$

$$z^{(k)} = z^{(k-1)} + u_1^{(k)} - u_2^{(k)}$$
Equivalence of Dykstra and ADMM (cont.)

When C_1 is a linear subspace and $\rho = 1$, easy inductive proof shows ADMM iterations are:

$$u_1^{(k)} = P_{C_1}(u_2^{(k-1)})$$
$$u_2^{(k)} = P_{C_2}(u_1^{(k)} + z^{(k-1)})$$
$$z^{(k)} = z^{(k-1)} + u_1^{(k)} - u_2^{(k)}$$
Equivalence of Dykstra and ADMM (cont.)

When C_1 is a linear subspace and $\rho = 1$, easy inductive proof shows ADMM iterations are:

$$u_1^{(k)} = P_{C_1}(u_2^{(k-1)})$$
$$u_2^{(k)} = P_{C_2}(u_1^{(k)} + z^{(k-1)})$$
$$z^{(k)} = z^{(k-1)} + u_1^{(k)} - u_2^{(k)}$$

which is precisely equivalent to Dykstra's algorithm.
Equivalence of Dykstra and ADMM (cont.)

When \(C_1 \) is a linear subspace and \(\rho = 1 \), easy inductive proof shows ADMM iterations are:

\[
\begin{align*}
 u_1^{(k)} &= P_{C_1}(u_2^{(k-1)}) \\
 u_2^{(k)} &= P_{C_2}(u_1^{(k)} + z^{(k-1)}) \\
 z^{(k)} &= z^{(k-1)} + u_1^{(k)} - u_2^{(k)}
\end{align*}
\]

which is precisely equivalent to Dykstra’s algorithm. The case \(d = 2 \) with one set being a linear subspace is actually pretty important!
Equivalence of Dykstra and ADMM (cont.)

When C_1 is a linear subspace and $\rho = 1$, easy inductive proof shows ADMM iterations are:

$$u_1^{(k)} = P_{C_1}(u_2^{(k-1)})$$
$$u_2^{(k)} = P_{C_2}(u_1^{(k)} + z^{(k-1)})$$
$$z^{(k)} = z^{(k-1)} + u_1^{(k)} - u_2^{(k)}$$

which is precisely equivalent to Dykstra’s algorithm. The case $d = 2$ with one set being a linear subspace is actually pretty important!

(Even for general d, and no constraints on C_1, \ldots, C_d, we can view Dykstra’s algorithm as a limiting case of “inertial” ADMM, under a particular scaling for ρ_1, \ldots, ρ_d)
Coordinate descent for the lasso
The lasso

The lasso problem (Tibshirani, 1996; Chen et al., 1998):

\[\min_{w \in \mathbb{R}^p} \frac{1}{2} \| y - \Phi w \|_2^2 + \lambda \sum_{i=1}^p |w_i| \]
The lasso

The lasso problem (Tibshirani, 1996; Chen et al., 1998):

\[
\min_{w \in \mathbb{R}^p} \frac{1}{2} \| y - \Phi w \|_2^2 + \lambda \sum_{i=1}^{p} |w_i|
\]

i.e., \(h_i(w_i) = \max_{d \in [-\lambda, \lambda]} dw_i \), for \(i = 1, \ldots, p \).
The lasso

The lasso problem (Tibshirani, 1996; Chen et al., 1998):

$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \|y - \Phi w\|_2^2 + \lambda \sum_{i=1}^{p} |w_i|$$

i.e., $h_i(w_i) = \max_{d \in [-\lambda, \lambda]} dw_i$, for $i = 1, \ldots, p$. Dual problem:

$$\min_{u \in \mathbb{R}^n} \|y - u\|_2^2 \quad \text{s.t.} \quad u \in \bigcap_{i=1}^{p} \left\{ v \in \mathbb{R}^n : \Phi_i^T v \in [-\lambda, \lambda] \right\}$$
The lasso

The lasso problem (Tibshirani, 1996; Chen et al., 1998):

\[
\min_{w \in \mathbb{R}^p} \frac{1}{2} \| y - \Phi w \|^2_2 + \lambda \sum_{i=1}^{p} |w_i|
\]

i.e., \(h_i(w_i) = \max_{d \in [-\lambda, \lambda]} dw_i \), for \(i = 1, \ldots, p \). Dual problem:

\[
\min_{u \in \mathbb{R}^n} \| y - u \|^2_2 \quad \text{s.t.} \quad u \in \bigcap_{i=1}^{p} \{ v \in \mathbb{R}^n : \Phi_i^T v \in [-\lambda, \lambda] \}
\]

Coordinate descent for lasso (Friedman et al., 2007; many others):

\[
w_i^{(k)} = S_{\lambda/\|\Phi_i\|^2_2} \left(\frac{\Phi_i^T (y - \sum_{j<i} \Phi_j w_j^{(k)} - \sum_{j>i} \Phi_j w_j^{(k-1)})}{\|\Phi_i\|^2_2} \right),
\]

\(i = 1, \ldots, p \)
The lasso

The lasso problem (Tibshirani, 1996; Chen et al., 1998):

$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \| y - \Phi w \|_2^2 + \lambda \sum_{i=1}^{p} |w_i|$$

i.e., $h_i(w_i) = \max_{d \in [-\lambda, \lambda]} dw_i$, for $i = 1, \ldots, p$. Dual problem:

$$\min_{u \in \mathbb{R}^n} \| y - u \|_2^2 \quad \text{s.t.} \quad u \in \bigcap_{i=1}^{p} \{ v \in \mathbb{R}^n : \Phi_i^T v \in [-\lambda, \lambda] \}$$

Coordinate descent for lasso (Friedman et al., 2007; many others):

$$w_i^{(k)} = S_{\lambda/\|\Phi_i\|_2^2} \left(\frac{\Phi_i^T (y - \sum_{j<i} \Phi_j w_j^{(k)} - \sum_{j>i} \Phi_j w_j^{(k-1)})}{\|\Phi_i\|_2^2} \right),$$

$i = 1, \ldots, p$

Equivalent to Dykstra’s (Hildreth’s) algorithm on the dual!
Convergence rates

Implications of this equivalence are interesting from both sides.
Convergence rates

Implications of this equivalence are interesting from both sides. E.g., convergence results from Dykstra/Hildreth carry over to CD.
Implications of this equivalence are interesting from both sides. E.g., convergence results from Dykstra/Hildreth carry over to CD

Theorem (Adaptation of Iusem and De Pierro, 1990). Assume Φ is in general position. CD for the lasso has an asymptotically linear convergence rate, i.e., for large enough k,

$$
\frac{\| w^{(k+1)} - \hat{w} \|_\Sigma}{\| w^{(k)} - \hat{w} \|_\Sigma} \leq \left(\frac{a^2}{a^2 + \lambda_{\min}(\Phi_A^T \Phi_A) / \max_{i \in A} \| \Phi_i \|_2^2} \right)^{1/2}
$$

where $\Sigma = \Phi^T \Phi$, $\| x \|_\Sigma^2 = x^T \Sigma x$ for $x \in \mathbb{R}^p$, $A = \text{supp}(\hat{w})$ is the active set of \hat{w}, and $a = |A|$ is its size.
Theorem (Adaptation of Deutsch and Hundal, 1994). Assume Φ is in general position. CD for the lasso has an asymptotically linear convergence rate, i.e., for large enough k,

$$\frac{\|w^{(k+1)} - \hat{w}\|_\Sigma}{\|w^{(k)} - \hat{w}\|_\Sigma} \leq \left(1 - \prod_{j=1}^{a-1} \frac{\|P_{\{i_{j+1},\ldots,i_a\}} \Phi_{i_j}\|_2^2}{\|\Phi_{i_j}\|_2^2}\right)^{1/2}$$

where $A = \{i_1, \ldots, i_a\}$, $i_1 < \ldots < i_a$, and $P_{\{i_{j+1},\ldots,i_a\}}$ is projection onto orthocomplement of span of $\Phi_{\{i_{j+1},\ldots,i_a\}}$.
Convergence rates (cont.)

Theorem (Adaptation of Deutsch and Hundal, 1994). Assume \(\Phi \) is in general position. CD for the lasso has an asymptotically linear convergence rate, i.e., for large enough \(k \),

\[
\frac{\| w^{(k+1)} - \hat{w} \|_{\Sigma}}{\| w^{(k)} - \hat{w} \|_{\Sigma}} \leq \left(1 - \prod_{j=1}^{a-1} \frac{\| P_{\{i_{j+1}, \ldots, i_a\}} \Phi_{i_j} \|_2^2}{\| \Phi_{i_j} \|_2^2} \right)^{1/2}
\]

where \(A = \{i_1, \ldots, i_a\}, i_1 < \ldots < i_a \), and \(P_{\{i_{j+1}, \ldots, i_a\}} \) is projection onto orthocomplement of span of \(\Phi\{i_{j+1}, \ldots, i_a\} \)

This bound is typically tighter than that from the previous theorem.
Convergence rates (cont.)

Theorem (Adaptation of Deutsch and Hundal, 1994). Assume Φ is in general position. CD for the lasso has an asymptotically linear convergence rate, i.e., for large enough k,

$$
\frac{\|w^{(k+1)} - \hat{w}\|_\Sigma}{\|w^{(k)} - \hat{w}\|_\Sigma} \leq \left(1 - \prod_{j=1}^{a-1} \frac{\|P_{\{i_{j+1}, \ldots, i_a\}} \Phi_{i_j}\|_2^2}{\|\Phi_{i_j}\|_2^2} \right)^{1/2}
$$

where $A = \{i_1, \ldots, i_a\}$, $i_1 < \ldots < i_a$, and $P_{\{i_{j+1}, \ldots, i_a\}}$ is projection onto orthocomplement of span of $\Phi_{\{i_{j+1}, \ldots, i_a\}}$

This bound is typically tighter than that from the previous theorem. E.g., for orthogonal Φ, this bound is zero, whereas the previous one is $\sqrt{a^2/(a^2 + 1)}$
Convergence rates (cont.)

Some remarks:

- Both bounds degrade for higher correlations between columns of Φ
Some remarks:

- Both bounds degrade for higher correlations between columns of Φ
- The second bound shows that order matters!
Convergence rates (cont.)

Some remarks:

- Both bounds degrade for higher correlations between columns of Φ
- The second bound shows that order matters!
- (Asymptotically) linear convergence without strong convexity ...
Convergence rates (cont.)

Some remarks:

- Both bounds degrade for higher correlations between columns of Φ
- The second bound shows that order matters!
- (Asymptotically) linear convergence without strong convexity ... not true of modern finite-time analyses of CD
Some remarks:

- Both bounds degrade for higher correlations between columns of Φ.
- The second bound shows that order matters!
- (Asymptotically) linear convergence without strong convexity ... not true of modern finite-time analyses of CD.
- Asymptotics kick in when CD identifies active set ...
Convergence rates (cont.)

Some remarks:

• Both bounds degrade for higher correlations between columns of Φ

• The second bound shows that order matters!

• (Asymptotically) linear convergence without strong convexity ... not true of modern finite-time analyses of CD

• Asymptotics kick in when CD identifies active set ... evidence for the advantage of warm starts?
Parallel coordinate descent
Parallel Dykstra’s algorithm

A parallel version of Dykstra’s algorithm (Iusem and Pierro, 1987; Gaffke and Mathar; 1989) simply follows from product space trick,
Parallel Dykstra’s algorithm

A parallel version of Dykstra’s algorithm (Iusem and Pierro, 1987; Gaffke and Mathar; 1989) simply follows from product space trick, i.e., rewrite d-set best approximation problem as

$$
\min_{u=(u_1,\ldots,u_d)\in\mathbb{R}^{nd}} \sum_{i=1}^{d} \gamma_i \|y - u_i\|_2^2 \quad \text{s.t.} \quad u \in C_0 \cap (C_1 \times \cdots \times C_d)
$$

where $C_0 = \{(u_1,\ldots,u_d)\in\mathbb{R}^{nd} : u_1 = \cdots = u_d\}$, $\gamma_1,\ldots,\gamma_d > 0$ are weights with $\sum_{i=1}^{d} \gamma_i = 1$.
A parallel version of Dykstra’s algorithm (Iusem and Pierro, 1987; Gaffke and Mathar; 1989) simply follows from product space trick, i.e., rewrite d-set best approximation problem as

$$
\min_{u=(u_1, \ldots, u_d) \in \mathbb{R}^{nd}} \sum_{i=1}^{d} \gamma_i \|y - u_i\|_2^2 \quad \text{s.t.} \quad u \in C_0 \cap (C_1 \times \cdots \times C_d)
$$

where $C_0 = \{(u_1, \ldots, u_d) \in \mathbb{R}^{nd} : u_1 = \cdots = u_d\}$, $\gamma_1, \ldots, \gamma_d > 0$ are weights with $\sum_{i=1}^{d} \gamma_i = 1$. Applying Dykstra to the above:

$$
\begin{align*}
 u_0^{(k)} &= \sum_{i=1}^{d} \gamma_i u_i^{(k-1)} \\
 u_i^{(k)} &= P_{C_i}(u_0^{(k)} + z_i^{(k-1)}) \\
 z_i^{(k)} &= u_0^{(k)} + z_i^{(k-1)} - u_i^{(k)}
\end{align*}
$$

\[\text{for } i = 1, \ldots, d \]
Parallel-Dykstra-CD

Passing parallel Dykstra's algorithm through the connection to CD gives what we call parallel-Dykstra-CD:

\[
\begin{align*}
 w_i^{(k)} &= \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| y - \Phi w^{(k-1)} + \frac{\Phi_i w_i^{(k-1)}}{\gamma_i} - \frac{\Phi_i w_i}{\gamma_i} \right\|^2_2 + h_i \left(\frac{w_i}{\gamma_i} \right), \\
 i &= 1, \ldots, d
\end{align*}
\]
Passing parallel Dykstra’s algorithm through the connection to CD gives what we call parallel-Dykstra-CD:

\[
w_i^{(k)} = \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| y - \Phi w^{(k-1)} + \frac{\Phi_i w_i^{(k-1)}}{\gamma_i} - \frac{\Phi_i w_i}{\gamma_i} \right\|^2_2 + h_i \left(\frac{w_i}{\gamma_i} \right),
\]

\[i = 1, \ldots, d\]

Some remarks:

• When \(\gamma_i = 1\), the \(i\)th update is the full “Jacobi” parallelization...
 ...but recall we must constrain \(\sum_{i=1}^{d} \gamma_i = 1\)!

• Interpret it as a kind of weighted averaging of \(d\) Jacobi updates

• Converges under no assumptions

• For the lasso problem, parallel-Dykstra-CD also has asymptotic linear convergence (adapted from Iusem and De Pierro, 1990)
Parallel-Dykstra-CD

Passing parallel Dykstra's algorithm through the connection to CD gives what we call parallel-Dykstra-CD:

\[
w_i^{(k)} = \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| y - \Phi w^{(k-1)} + \frac{\Phi_i w_i^{(k-1)}}{\gamma_i} - \frac{\Phi_i w_i}{\gamma_i} \right\|_2^2 + h_i \left(\frac{w_i}{\gamma_i} \right),
\]

\[
i = 1, \ldots, d
\]

Some remarks:

- When \(\gamma_i = 1 \), the \(i \)th update is the full “Jacobi” parallelization...

Parallel-Dykstra-CD

Passing parallel Dykstra's algorithm through the connection to CD gives what we call parallel-Dykstra-CD:

\[
\begin{align*}
 w_i^{(k)} &= \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| y - \Phi w^{(k-1)} + \frac{\Phi_i w_i^{(k-1)}}{\gamma_i} - \frac{\Phi_i w_i^{(k-1)}}{\gamma_i} \gamma_i - \frac{\Phi_i w_i^{(k-1)}}{\gamma_i} \right\|_2^2 + h_i \left(\frac{w_i}{\gamma_i} \right), \\
 i &= 1, \ldots, d
\end{align*}
\]

Some remarks:

- When \(\gamma_i = 1 \), the \(i \)th update is the full "Jacobi" parallelization ...
 but recall we must constrain \(\sum_{i=1}^{d} \gamma_i = 1! \)
Parallel-Dykstra-CD

Passing parallel Dykstra's algorithm through the connection to CD gives what we call parallel-Dykstra-CD:

\[w_i^{(k)} = \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| y - \Phi w^{(k-1)} + \frac{\Phi_i w_i^{(k-1)}}{\gamma_i} - \frac{\Phi_i w_i}{\gamma_i} \right\|^2_2 + h_i \left(\frac{w_i}{\gamma_i} \right), \]

\[i = 1, \ldots, d \]

Some remarks:

- When \(\gamma_i = 1 \), the \(i \)th update is the full "Jacobi" parallelization
 ... but recall we must constrain \(\sum_{i=1}^{d} \gamma_i = 1! \)
- Interpret it as a kind of weighted averaging of \(d \) Jacobi updates
Parallel-Dykstra-CD

Passing parallel Dykstra's algorithm through the connection to CD gives what we call parallel-Dykstra-CD:

\[
 w_i^{(k)} = \arg\min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| y - \Phi w^{(k-1)} + \frac{\Phi_i w_i^{(k-1)}}{\gamma_i} - \frac{\Phi_i w_i}{\gamma_i} \right\|^2_2 + h_i \left(\frac{w_i}{\gamma_i} \right),
\]

\[i = 1, \ldots, d\]

Some remarks:

- When \(\gamma_i = 1\), the \(i\)th update is the full “Jacobi” parallelization ...
 but recall we must constrain \(\sum_{i=1}^{d} \gamma_i = 1\)!
- Interpret it as a kind of weighted averaging of \(d\) Jacobi updates
- Converges under no assumptions
Parallel-Dykstra-CD

Passing parallel Dykstra’s algorithm through the connection to CD gives what we call parallel-Dykstra-CD:

\[w_i^{(k)} = \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| y - \Phi w^{(k-1)} + \frac{\Phi_i w_i^{(k-1)}}{\gamma_i} - \frac{\Phi_i w_i}{\gamma_i} \right\|_2^2 + h_i \left(\frac{w_i}{\gamma_i} \right), \]

\[i = 1, \ldots, d \]

Some remarks:

- When \(\gamma_i = 1 \), the \(i \)th update is the full “Jacobi” parallelization … but recall we must constrain \(\sum_{i=1}^{d} \gamma_i = 1! \)
- Interpret it as a kind of weighted averaging of \(d \) Jacobi updates
- Converges under no assumptions
- For the lasso problem, parallel-Dykstra-CD also has asymptotic linear convergence (adapted from Iusem and De Pierro, 1990)
Consider ADMM for the 2-set problem:

$$\min_{u=(u_1,\ldots,u_d)\in\mathbb{R}^{nd}} \sum_{i=1}^{d} \gamma_i \|y - u_i\|_2^2 \quad \text{s.t.} \quad u \in C_0 \cap (C_1 \times \cdots \times C_d)$$
Parallel-ADMM-CD

Consider ADMM for the 2-set problem:

$$\min_{u=(u_1,\ldots,u_d) \in \mathbb{R}^d} \sum_{i=1}^{d} \gamma_i \| y - u_i \|^2_2 \quad \text{s.t.} \quad u \in C_0 \cap (C_1 \times \cdots \times C_d)$$

Passing steps through the same connection (between projection and penalized minimization) gives what we call parallel-ADMM-CD:

$$u^{(k)}_0 = \frac{y - \Phi w^{(k-1)}}{1 + \sum_{i=1}^{d} \rho_i} + \frac{\left(\sum_{i=1}^{d} \rho_i \right) u^{(k-1)}_0}{1 + \sum_{i=1}^{d} \rho_i} + \frac{\Phi (w^{(k-2)} - w^{(k-1)})}{1 + \sum_{i=1}^{d} \rho_i}$$

$$w^{(k)}_i = \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| u_0^{(k)} + \frac{\Phi_i w^{(k-1)}_i}{\rho_i} - \frac{\Phi_i w_i}{\rho_i} \right\|^2_2 + h_i \left(\frac{w_i}{\rho_i} \right), \quad i = 1, \ldots, d$$

Here \(\rho_1,\ldots,\rho_d > 0\) are arbitrary augmented Lagrangian parameters.
Parallel-ADMM-CD

Consider ADMM for the 2-set problem:

$$\min_{u=(u_1,\ldots,u_d)\in \mathbb{R}^{nd}} \sum_{i=1}^{d} \gamma_i \|y - u_i\|_2^2 \quad \text{s.t.} \quad u \in C_0 \cap (C_1 \times \cdots \times C_d)$$

Passing steps through the same connection (between projection and penalized minimization) gives what we call parallel-ADMM-CD:

$$w_i^{(k)} = \arg \min_{w_i \in \mathbb{R}^p} \frac{1}{2} \left\| u_0^{(k)} + \frac{\Phi_i w_i^{(k-1)}}{\rho_i} - \frac{\Phi_i w_i}{\rho_i} \right\|^2 + h_i \left(\frac{w_i}{\rho_i} \right), \quad i = 1, \ldots, d$$

Here $\rho_1, \ldots, \rho_d > 0$ are arbitrary augmented Lagrangian parameters.
Parallel-ADMM-CD (cont.)

Some remarks:

• Note $u_0^{(k)}$ is a convex combination of residual $y - \Phi w^{(k)}$ and momentum term.
Some remarks:

- Note $u_0^{(k)}$ is a convex combination of residual $y - \Phi w^{(k)}$ and momentum term

- Converges under no assumptions
Some remarks:

- Note $u_0^{(k)}$ is a convex combination of residual $y - \Phi w^{(k)}$ and momentum term
- Converges under no assumptions
- When $\sum_{i=1}^{d} \rho_i = 1$, reduces to parallel-Dykstra-CD
Some remarks:

- Note $u_0^{(k)}$ is a convex combination of residual $y - \Phi w^{(k)}$ and momentum term.

- Converges under no assumptions.

- When $\sum_{i=1}^{d} \rho_i = 1$, reduces to parallel-Dykstra-CD ... which is just a restatement of equivalence ADMM and Dykstra for 2-set problem, with one a linear subspace.
Parallel-ADMM-CD (cont.)

Some remarks:

- Note $u_0^{(k)}$ is a convex combination of residual $y - \Phi w^{(k)}$ and momentum term.
- Converges under no assumptions.
- When $\sum_{i=1}^{d} \rho_i = 1$, reduces to parallel-Dykstra-CD ... which is just a restatement of equivalence ADMM and Dykstra for 2-set problem, with one a linear subspace.
- But no constraints on $\rho_1, \ldots, \rho_d > 0$, so parallel-ADMM-CD is strictly more general.
Some remarks:

- Note $u_{0}^{(k)}$ is a convex combination of residual $y - \Phi w^{(k)}$ and momentum term

- Converges under no assumptions

- When $\sum_{i=1}^{d} \rho_i = 1$, reduces to parallel-Dykstra-CD ... which is just a restatement of equivalence ADMM and Dykstra for 2-set problem, with one a linear subspace

- But no constraints on $\rho_1, \ldots, \rho_d > 0$, so parallel-ADMM-CD is strictly more general

- Comparing parallel-ADMM-CD to parallel CD algorithms in the current literature: latter are all stochastic (instead of cyclic)
Lasso parallel CD example

Experimental setup: for \(n = 200 \) and \(p = 500 \), we aggregate results over 30 random instances of lasso problems.
Extension to nonquadratic loss
Coordinate descent for general loss

Regularized estimation problem: given convex $f : \mathbb{R}^n \rightarrow \mathbb{R}$, solve

$$\min_{w \in \mathbb{R}^p} f(\Phi w) + \sum_{i=1}^{d} h_i(w_i)$$
Coordinate descent for general loss

Regularized estimation problem: given convex $f : \mathbb{R}^n \rightarrow \mathbb{R}$, solve

$$\min_{w \in \mathbb{R}^p} \ f(\Phi w) + \sum_{i=1}^{d} h_i(w_i)$$

Coordinate descent:

$$w_i^{(k)} = \arg \min_{w_i \in \mathbb{R}^p} \ f \left(\sum_{j < i} \Phi_j w_j^{(k)} + \sum_{j > i} \Phi_j w_j^{(k-1)} + \Phi_i w_i \right) + h_i(w_i), \quad i = 1, \ldots, d$$
Coordinate descent for general loss

Regularized estimation problem: given convex \(f : \mathbb{R}^n \rightarrow \mathbb{R} \), solve

\[
\min_{w \in \mathbb{R}^p} f(\Phi w) + \sum_{i=1}^{d} h_i(w_i)
\]

Coordinate descent:

\[
 w_i^{(k)} = \arg \min_{w_i \in \mathbb{R}^{pi}} f \left(\sum_{j<i} \Phi_j w_j^{(k)} + \sum_{j>i} \Phi_j w_j^{(k-1)} + \Phi_i w_i \right) + h_i(w_i),
\]

\[i = 1, \ldots, d\]

Usually not computable in closed-form, so rarely used for general \(f \)
Coordinate descent for general loss

Regularized estimation problem: given convex \(f : \mathbb{R}^n \to \mathbb{R} \), solve

\[
\min_{w \in \mathbb{R}^p} f(\Phi w) + \sum_{i=1}^{d} h_i(w_i)
\]

Coordinate descent:

\[
w_i^{(k)} = \arg \min_{w_i \in \mathbb{R}^{p_i}} f \left(\sum_{j<i} \Phi_j w_j^{(k)} + \sum_{j>i} \Phi_j w_j^{(k-1)} + \Phi_i w_i \right) + h_i(w_i),
\]

\[i = 1, \ldots, d\]

Usually not computable in closed-form, so rarely used for general \(f \)

(Common approach is to use proximal Newton, and then CD for the inner loop, where the loss is quadratic)
Dykstra’s algorithm for Bregman projection

Best Bregman-approximation problem: given differentiable, strictly convex \(g : \mathbb{R}^n \to \mathbb{R} \), solve

\[
\min_{u \in \mathbb{R}^n} D_g(u, b) \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d
\]

where \(D_g(u, b) = g(u) - g(b) - \langle \nabla g(b), u - b \rangle \) denotes Bregman divergence with respect to \(g \).
Dykstra’s algorithm for Bregman projection

Best Bregman-approximation problem: given differentiable, strictly convex \(g : \mathbb{R}^n \to \mathbb{R} \), solve

\[
\min_{u \in \mathbb{R}^n} D_g(u, b) \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d
\]

where \(D_g(u, b) = g(u) - g(b) - \langle \nabla g(b), u - b \rangle \) denotes Bregman divergence with respect to \(g \). Dykstra’s algorithm:

\[
\begin{align*}
 u_0^{(k)} &= u_d^{(k-1)} \\
u_i^{(k)} &= (P_{C_i}^g \circ \nabla g^*)(\nabla g(u_{i-1}^{(k)}) + z_i^{(k-1)}) \quad i = 1, \ldots, d \\
z_i^{(k)} &= \nabla g(u_{i-1}^{(k)}) + z_i^{(k-1)} - \nabla g(u_i^{(k)})
\end{align*}
\]

where \(P_{C}^g(x) = \arg \min_{c \in C} D_g(c, x) \) denotes Bregman projection, and \(g^* \) denotes the conjugate of \(g \).
General Dykstra-CD equivalence

Suppose as before that, for $i = 1, \ldots, d$,

$$h_i(v) = \max_{d \in D_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(D_i) = \{v \in \mathbb{R}^n : \Phi_i^T v \in D_i\}$$
Suppose as before that, for $i = 1, \ldots, d$,

$$h_i(v) = \max_{d \in D_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(D_i) = \{v \in \mathbb{R}^n : \Phi_i^T v \in D_i\}$$

and now also that $g(v) = f^*(-v), \ b = -\nabla f(0)$

General Dykstra-CD equivalence
General Dykstra-CD equivalence

Suppose as before that, for $i = 1, \ldots, d$,

$$h_i(v) = \max_{d \in D_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(D_i) = \{ v \in \mathbb{R}^n : \Phi_i^T v \in D_i \}$$

and now also that $g(v) = f^*(-v)$, $b = -\nabla f(0)$

Then:
General Dykstra-CD equivalence

Suppose as before that, for $i = 1, \ldots, d$,

$$h_i(v) = \max_{d \in D_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(D_i) = \{v \in \mathbb{R}^n : \Phi_i^T v \in D_i\}$$

and now also that $g(v) = f^*(-v), b = -\nabla f(0)$

Then:

- Regularized estimation problem and best Bregman-approx are duals.
General Dykstra-CD equivalence

Suppose as before that, for \(i = 1, \ldots, d \),

\[
h_i(v) = \max_{d \in D_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(D_i) = \{ v \in \mathbb{R}^n : \Phi_i^T v \in D_i \}
\]

and now also that \(g(v) = f^*(-v), \ b = -\nabla f(0) \)

Then:

- Regularized estimation problem and best Bregman-approx are duals. Solutions \(\hat{w}, \hat{u} \) related by \(\hat{u} = -\nabla f(\Phi \hat{w}) \)
General Dykstra-CD equivalence

Suppose as before that, for \(i = 1, \ldots, d \),

\[
h_i(v) = \max_{d \in D_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(D_i) = \{ v \in \mathbb{R}^n : \Phi_i^T v \in D_i \}
\]

and now also that \(g(v) = f^*(-v), \quad b = -\nabla f(0) \)

Then:

- Regularized estimation problem and best Bregman-approx are duals. Solutions \(\hat{w}, \hat{u} \) related by \(\hat{u} = -\nabla f(\Phi \hat{w}) \)
- Coordinate descent and Dykstra's algorithm are still equivalent,
General Dykstra-CD equivalence

Suppose as before that, for $i = 1, \ldots, d$,

$$h_i(v) = \max_{d \in D_i} \langle d, v \rangle, \quad C_i = (\Phi_i^T)^{-1}(D_i) = \{v \in \mathbb{R}^n : \Phi_i^T v \in D_i\}$$

and now also that $g(v) = f^*(-v)$, $b = -\nabla f(0)$

Then:

- Regularized estimation problem and best Bregman-approx are **duals**. Solutions \hat{w}, \hat{u} related by $\hat{u} = -\nabla f(\Phi \hat{w})$
- Coordinate descent and Dykstra’s algorithm are still **equivalent**, in that at all iterations

$$z_i^{(k)} = \Phi_i w_i^{(k)}, \quad u_i^{(k)} = -\nabla f\left(\sum_{j \leq i} \Phi_j w_j^{(k)} + \sum_{j > i} \Phi_j w_j^{(k-1)}\right), \quad i = 1, \ldots, d$$
General parallel CD algorithms

Use the product space trick to turn best Bregman-approx into 2-set problem:

$$\min_{u \in \mathbb{R}^{nd}} D_{\tilde{g}}(u, \tilde{b}) \quad \text{s.t.} \quad u \in C_0 \cap (C_1 \times \cdots \times C_d)$$

where $C_0 = \{(u_1, \ldots, u_d) \in \mathbb{R}^{nd} : u_1 = \cdots = u_d\}$, $\gamma_1, \ldots, \gamma_d > 0$ are weights with $\sum_{i=1}^d \gamma_i = 1$, as before,
General parallel CD algorithms

Use the product space trick to turn best Bregman-approx into 2-set problem:

$$\min_{u \in \mathbb{R}^{nd}} D\tilde{g}(u, \tilde{b}) \quad \text{s.t.} \quad u \in C_0 \cap (C_1 \times \cdots \times C_d)$$

where $C_0 = \{(u_1, \ldots, u_d) \in \mathbb{R}^{nd} : u_1 = \cdots = u_d\}$, $\gamma_1, \ldots, \gamma_d > 0$ are weights with $\sum_{i=1}^{d} \gamma_i = 1$, as before, and now $\tilde{g}(u_1, \ldots, u_d) = \sum_{i=1}^{d} \gamma_i g(u_i)$, $\tilde{b} = (b, \ldots, b) \in \mathbb{R}^{nd}$.
General parallel CD algorithms

Use the product space trick to turn best Bregman-approx into 2-set problem:

$$\min_{u \in \mathbb{R}^{nd}} D\tilde{g}(u, \tilde{b}) \quad \text{s.t.} \quad u \in C_0 \cap (C_1 \times \cdots \times C_d)$$

where $C_0 = \{(u_1, \ldots, u_d) \in \mathbb{R}^{nd} : u_1 = \cdots = u_d\}$, $\gamma_1, \ldots, \gamma_d > 0$ are weights with $\sum_{i=1}^{d} \gamma_i = 1$, as before, and now $\tilde{g}(u_1, \ldots, u_d) = \sum_{i=1}^{d} \gamma_i g(u_i)$, $\tilde{b} = (b, \ldots, b) \in \mathbb{R}^{nd}$

Apply Dykstra’s algorithm, reformulate, to give parallel-Dykstra-CD:

$$w_{i}^{(k)} = \arg \min_{w_i \in \mathbb{R}^{p_i}} f \left(\Phi w_{i}^{(k)} - \frac{\Phi_i w_i^{(k)}}{\gamma_i} + \frac{\Phi_i w_i}{\gamma_i} \right) + h_i \left(\frac{w_i}{\gamma_i} \right), \quad i = 1, \ldots, d$$
General parallel CD algorithms (cont.)

Or instead, apply ADMM, reformulate, to give parallel-ADMM-CD:

\[u_0^{(k)} = -\nabla f \left(\left(\sum_{i=1}^{d} \rho_i \right) (u_0^{(k)} - u_0^{(k-1)}) - \Phi(w^{(k-2)} - 2w^{(k-1)}) \right) \]

\[w_i^{(k)} = \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| u_0^{(k)} + \frac{\Phi_i w_i^{(k-1)}}{\rho_i} - \frac{\Phi_i w_i}{\rho_i} \right\|_2^2 + h_i \left(\frac{w_i}{\rho_i} \right), \quad i = 1, \ldots, d \]

for augmented Lagrangian parameters \(\rho_1, \ldots, \rho_d > 0 \)
General parallel CD algorithms (cont.)

Or instead, apply ADMM, reformulate, to give \textit{parallel-ADMM-CD}:

\[
\begin{align*}
 u_0^{(k)} &= -\nabla f \left(\left(\sum_{i=1}^{d} \rho_i \right) (u_0^{(k)} - u_0^{(k-1)}) - \Phi (w^{(k-2)} - 2w^{(k-1)}) \right) \\
 w_i^{(k)} &= \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| u_0^{(k)} + \frac{\Phi_i w_i^{(k-1)}}{\rho_i} - \frac{\Phi_i w_i}{\rho_i} \right\|_2^2 + h_i \left(\frac{w_i}{\rho_i} \right), \quad i = 1, \ldots, d
\end{align*}
\]

for augmented Lagrangian parameters \(\rho_1, \ldots, \rho_d > 0 \)

Some remarks:

• \textit{Parallel-Dykstra-CD} performs \(d \) minimizations (penalized) in a cycle, and \textit{parallel-ADMM-CD} performs 1 (unpenalized)

• These two are not equivalent (for any config.)
Or instead, apply ADMM, reformulate, to give parallel-ADMM-CD:

\[
 u_0^{(k)} = -\nabla f \left(\left(\sum_{i=1}^{d} \rho_i \right) \left(u_0^{(k)} - u_0^{(k-1)} \right) - \Phi \left(w^{(k-2)} - 2w^{(k-1)} \right) \right)
\]

\[
 w_i^{(k)} = \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| u_0^{(k)} + \frac{\Phi_i w_i^{(k-1)}}{\rho_i} - \frac{\Phi_i w_i}{\rho_i} \right\|^2 + h_i \left(\frac{w_i}{\rho_i} \right),
\]

for augmented Lagrangian parameters \(\rho_1, \ldots, \rho_d > 0 \)

Some remarks:

- Parallel-Dykstra-CD performs \(d \) \(f \)-minimizations (penalized) in a cycle, and parallel-ADMM-CD performs 1 (unpenalized)
General parallel CD algorithms (cont.)

Or instead, apply ADMM, reformulate, to give parallel-ADMM-CD:

\[
 u^{(k)}_0 = -\nabla f \left(\left(\sum_{i=1}^{d} \rho_i \right) (u^{(k)}_0 - u^{(k-1)}_0) - \Phi (w^{(k-2)} - 2w^{(k-1)}) \right)
\]

\[
 w^{(k)}_i = \arg \min_{w_i \in \mathbb{R}^{p_i}} \frac{1}{2} \left\| u^{(k)}_0 + \frac{\Phi_i w^{(k-1)}_i}{\rho_i} - \frac{\Phi_i w_i}{\rho_i} \right\|^2_2 + h_i \left(\frac{w_i}{\rho_i} \right), \\
 i = 1, \ldots, d
\]

for augmented Lagrangian parameters \(\rho_1, \ldots, \rho_d > 0\)

Some remarks:

- Parallel-Dykstra-CD performs \(d f\)-minimizations (penalized) in a cycle, and parallel-ADMM-CD performs 1 (unpenalized)
- These two are not equivalent (for \(\sum_{i=1}^{d} \rho_i = 1\), or any config.)
Logistic lasso

As an example, consider the **logistic lasso** problem:

\[
\min_{w \in \mathbb{R}^p} \sum_{i=1}^{n} \left(- y_i \phi_i^T w + \log \left(1 + \exp(\phi_i^T w) \right) \right) + \lambda \sum_{i=1}^{p} |w_i|
\]

where \(\phi_i \in \mathbb{R}^n, i = 1, \ldots, n \) are rows of \(\Phi \).
Logistic lasso

As an example, consider the logistic lasso problem:

$$\min_{w \in \mathbb{R}^p} \sum_{i=1}^{n} \left(-y_i \phi_i^T w + \log \left(1 + \exp(\phi_i^T w) \right) \right) + \lambda \sum_{i=1}^{p} |w_i|$$

where $\phi_i \in \mathbb{R}^n$, $i = 1, \ldots, n$ are rows of Φ. Parallel-ADMM-CD:

$$u_{0i}^{(k)} = y_i - \sigma(\rho u_{0i}^{(k)} - c_i^{(k)}), \quad i = 1, \ldots, n$$

$$w_i^{(k)} = S_{\lambda \rho_i / \|\Phi_i\|^2_2} \left(\frac{\rho_i \Phi_i^T (u_0^{(k)} + \Phi_i w_i^{(k-1)}) / \rho_i}{\|\Phi_i\|^2_2} \right), \quad i = 1, \ldots, p$$

where we let $\rho = \sum_{i=1}^{p} \rho_i$, $c_i^{(k)} = \rho u_{0i}^{(k-1)} + \phi_i^T (w^{(k-2)} - 2w^{(k-1)})$, $i = 1, \ldots, n$, and $\sigma(t) = 1/(1 + e^{-t})$
Logistic lasso

As an example, consider the logistic lasso problem:

$$\min_{w \in \mathbb{R}^p} \sum_{i=1}^{n} \left(-y_i \phi_i^T w + \log \left(1 + \exp(\phi_i^T w) \right) \right) + \lambda \sum_{i=1}^{p} |w_i|$$

where $\phi_i \in \mathbb{R}^n$, $i = 1, \ldots, n$ are rows of Φ. Parallel-ADMM-CD:

$$u_0^{(k)} = y_i - \sigma(\rho u_0^{(k)} - c_i^{(k)}), \quad i = 1, \ldots, n$$

$$w_i^{(k)} = S_{\lambda \rho_i/\|\Phi_i\|^2_2} \left(\frac{\rho_i \Phi_i^T (u_0^{(k)} + \Phi_i w_i^{(k-1)}) / \rho_i}{\|\Phi_i\|^2_2} \right), \quad i = 1, \ldots, p$$

where we let $\rho = \sum_{i=1}^{p} \rho_i$, $c_i^{(k)} = \rho u_0^{(k-1)} + \phi_i^T (w^{(k-2)} - 2w^{(k-1)})$, $i = 1, \ldots, n$, and $\sigma(t) = 1/(1 + e^{-t})$

Here, u_0-update: n univariate minimizations (e.g., can use bisection search), w-update: p soft-thresholds.
Logistic lasso

As an example, consider the logistic lasso problem:

$$\min_{w \in \mathbb{R}^p} \sum_{i=1}^n \left(-y_i \phi_i^T w + \log \left(1 + \exp(\phi_i^T w) \right) \right) + \lambda \sum_{i=1}^p |w_i|$$

where $\phi_i \in \mathbb{R}^n$, $i = 1, \ldots, n$ are rows of Φ. Parallel-ADMM-CD:

$$u_{0i}^{(k)} = y_i - \sigma(\rho u_{0i}^{(k)} - c_i^{(k)}), \quad i = 1, \ldots, n$$

$$w_i^{(k)} = S_{\lambda \rho_i / \| \Phi_i \|_2^2} \left(\frac{\rho_i \Phi_i^T (u_0^{(k)} + \Phi_i w_i^{(k-1)}) / \rho_i}{\| \Phi_i \|_2^2} \right), \quad i = 1, \ldots, p$$

where we let $\rho = \sum_{i=1}^p \rho_i$, $c_i^{(k)} = \rho u_{0i}^{(k-1)} + \phi_i^T (w^{(k-2)} - 2w^{(k-1)})$, $i = 1, \ldots, n$, and $\sigma(t) = 1/(1 + e^{-t})$

Here, u_0-update: n univariate minimizations (e.g., can use bisection search), w-update: p soft-thresholds. Both are parallelizable!
Logistic lasso parallel CD example

Experimental setup: for $n = 200$ and $p = 500$, we aggregate results over 30 random instances of logistic lasso problems.
Back to additive models
Recall additive trend filtering:

Primal:\[
\min_{\theta_1, \ldots, \theta_d \in \mathbb{R}^n} \frac{1}{2} \| y - \sum_{j=1}^{d} \theta_j \|_2^2 + \lambda \sum_{j=1}^{d} \| \Delta_j^{(k+1)} \theta_j \|_1
\]

Dual:\[
\min_{u \in \mathbb{R}^n} \| y - u \|_2^2 \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d
\]

where \(C_j = \{ (\Delta_j^{(k+1)})^T v_j : \| v_j \|_\infty \leq \lambda \}, j = 1, \ldots, d \)
Back to additive trend filtering

Recall additive trend filtering:

Primal: \[
\min_{\theta_1, \ldots, \theta_d \in \mathbb{R}^n} \frac{1}{2} \| y - \sum_{j=1}^d \theta_j \|_2^2 + \lambda \sum_{j=1}^d \| \Delta_j^{(k+1)} \theta_j \|_1
\]

Dual: \[
\min_{u \in \mathbb{R}^n} \| y - u \|_2^2 \quad \text{s.t.} \quad u \in C_1 \cap \cdots \cap C_d
\]

where \(C_j = \{ (\Delta_j^{(k+1)})^T v_j : \| v_j \|_\infty \leq \lambda \} \), \(j = 1, \ldots, d \)

Backfitting or block CD: center \(y \), and repeat

\[
\theta_j^{(t)} = \text{TF}_{k, \lambda} \left(y - \sum_{\ell<j} \theta_j^{(t)} - \sum_{\ell>j} \theta_j^{(t-1)} , X_j \right), \quad j = 1, \ldots, d
\]

where \(\text{TF}_{k, \lambda}(z, x) \) is \(k \)th order univariate trend filtering with tuning parameter \(\lambda \), response \(z \), and inputs \(x \)
Parallel backfitting for trend filtering

Parallel-ADMM-backfitting: center y, and repeat

$$u_0^{(t)} = \frac{y - \sum_{j=1}^{d} \theta_j^{(t-1)}}{1 + \rho} + \frac{\rho u_0^{(t-1)}}{1 + \rho} + \frac{\sum_{j=1}^{d} (\theta_j^{(t-2)} - \theta_j^{(t-1)})}{1 + \rho}$$

$$\theta_j^{(t)} = \rho_j \cdot \text{TF}_{k,\lambda}(u_0^{(t)} + \theta_j^{(t-1)}/\rho_j, X_j), \quad j = 1, \ldots, d$$

where we let $\rho = \sum_{j=1}^{p} \rho_j$
Parallel backfitting for trend filtering

Parallel-ADMM-backfitting: center y, and repeat

$$u_0^{(t)} = \frac{y - \sum_{j=1}^{d} \theta_j^{(t-1)}}{1 + \rho} + \frac{\rho u_0^{(t-1)}}{1 + \rho} + \frac{\sum_{j=1}^{d} (\theta_j^{(t-2)} - \theta_j^{(t-1)})}{1 + \rho}$$

$$\theta_j^{(t)} = \rho_j \cdot \text{TF}_{k,\lambda}(u_0^{(t)} + \theta_j^{(t-1)}/\rho_j, X_j), \quad j = 1, \ldots, d$$

where we let $\rho = \sum_{j=1}^{p} \rho_j$

Some remarks:
Parallel backfitting for trend filtering

Parallel-ADMM-backfitting: center \(y \), and repeat

\[
\begin{align*}
\theta_j^{(t)} &= \rho_j \cdot TF_k,\lambda(u_0^{(t)} + \theta_j^{(t-1)} / \rho_j, X_j), \quad j = 1, \ldots, d \\
u_0^{(t)} &= \frac{y - \sum_{j=1}^{d} \theta_j^{(t-1)}}{1 + \rho} + \frac{\rho u_0^{(t-1)}}{1 + \rho} + \frac{\sum_{j=1}^{d} (\theta_j^{(t-2)} - \theta_j^{(t-1)})}{1 + \rho}
\end{align*}
\]

where we let \(\rho = \sum_{j=1}^{p} \rho_j \)

Some remarks:

- Converges under no assumptions
Parallel backfitting for trend filtering

Parallel-ADMM-backfitting: center y, and repeat

$$u_0^{(t)} = \frac{y - \sum_{j=1}^{d} \theta_j^{(t-1)}}{1 + \rho} + \frac{\rho u_0^{(t-1)}}{1 + \rho} + \frac{\sum_{j=1}^{d} (\theta_j^{(t-2)} - \theta_j^{(t-1)})}{1 + \rho}$$

$$\theta_j^{(t)} = \rho_j \cdot \text{TF}_{k,\lambda}(u_0^{(t)} + \theta_j^{(t-1)}/\rho_j, X_j), \quad j = 1, \ldots, d$$

where we let $\rho = \sum_{j=1}^{p} \rho_j$

Some remarks:

- Converges under no assumptions
- When $\rho = 1$, reduces to parallel-Dykstra-backfitting, in which case we have $u_0^{(t)} = y - \sum_{j=1}^{d} \theta_j^{(t-1)}$, the residual
Parallel backfitting for trend filtering

Parallel-ADMM-backfitting: center y, and repeat

$$u_0^{(t)} = \frac{y - \sum_{j=1}^{d} \theta_j^{(t-1)}}{1 + \rho} + \frac{\rho u_0^{(t-1)}}{1 + \rho} + \frac{\sum_{j=1}^{d} (\theta_j^{(t-2)} - \theta_j^{(t-1)})}{1 + \rho}$$

$$\theta_j^{(t)} = \rho_j \cdot TF_{k,\lambda}(u_0^{(t)} + \theta_j^{(t-1)}/\rho_j, X_j), \quad j = 1, \ldots, d$$

where we let $\rho = \sum_{j=1}^{p} \rho_j$

Some remarks:

- Converges under no assumptions
- When $\rho = 1$, reduces to parallel-Dykstra-backfitting, in which case we have $u_0^{(t)} = y - \sum_{j=1}^{d} \theta_j^{(t-1)}$, the residual
- If we replace $TF_{k,\lambda}(\cdot)$ operator by smoothing spline, P-spline, wavelet smoothing, then still converges!
Summary and future work

Summary:

- Dykstra’s algorithm and coordinate descent are equivalent (act on equivalent dual problems)

Future work:

- Extend beyond seminorms (projection becomes prox)
- CD in Hilbert spaces, via general Dykstra results?
- Asynchronous parallel CD algorithms, via ADMM?
Summary and future work

Summary:

- Dykstra’s algorithm and coordinate descent are equivalent (act on equivalent dual problems)
- This connection provides new convergence results for lasso CD, as well as new parallel-Dykstra-CD algorithm

Future work:

- Extend beyond seminorms (projection becomes prox)
- CD in Hilbert spaces, via general Dykstra results
- Asynchronous parallel CD algorithms, via ADMM
Summary and future work

Summary:

- Dykstra’s algorithm and coordinate descent are equivalent (act on equivalent dual problems)
- This connection provides new convergence results for lasso CD, as well as new parallel-Dykstra-CD algorithm
- ADMM equivalent to Dykstra for product space reformulation and $\rho = 1$. For $\rho > 1$, gives new parallel-ADMM-CD algorithm

Future work:

- Extend beyond seminorms (projection becomes prox)
- CD in Hilbert spaces, via general Dykstra results?
- Asynchronous parallel CD algorithms, via ADMM?
Summary and future work

Summary:

• Dykstra’s algorithm and coordinate descent are equivalent (act on equivalent dual problems)
• This connection provides new convergence results for lasso CD, as well as new parallel-Dykstra-CD algorithm
• ADMM equivalent to Dykstra for product space reformulation and $\rho = 1$. For $\rho > 1$, gives new parallel-ADMM-CD algorithm
• This is all true outside of quadratic loss, except the parallel CD algorithms from Dykstra and ADMM are distinct

Future work:

• Extend beyond seminorms (projection becomes prox)?
• CD in Hilbert spaces, via general Dykstra results?
• Asynchronous parallel CD algorithms, via ADMM?
Summary and future work

Summary:

• Dykstra’s algorithm and coordinate descent are equivalent (act on equivalent dual problems)
• This connection provides new convergence results for lasso CD, as well as new parallel-Dykstra-CD algorithm
• ADMM equivalent to Dykstra for product space reformulation and \(\rho = 1 \). For \(\rho > 1 \), gives new parallel-ADMM-CD algorithm
• This is all true outside of quadratic loss, except the parallel CD algorithms from Dykstra and ADMM are distinct

Future work:
Summary and future work

Summary:

• Dykstra’s algorithm and coordinate descent are equivalent (act on equivalent dual problems)
• This connection provides new convergence results for lasso CD, as well as new parallel-Dykstra-CD algorithm
• ADMM equivalent to Dykstra for product space reformulation and $\rho = 1$. For $\rho > 1$, gives new parallel-ADMM-CD algorithm
• This is all true outside of quadratic loss, except the parallel CD algorithms from Dykstra and ADMM are distinct

Future work:

• Extend beyond seminorms (projection becomes prox)?
Summary and future work

Summary:

• Dykstra’s algorithm and coordinate descent are equivalent (act on equivalent dual problems)
• This connection provides new convergence results for lasso CD, as well as new parallel-Dykstra-CD algorithm
• ADMM equivalent to Dykstra for product space reformulation and \(\rho = 1 \). For \(\rho > 1 \), gives new parallel-ADMM-CD algorithm
• This is all true outside of quadratic loss, except the parallel CD algorithms from Dykstra and ADMM are distinct

Future work:

• Extend beyond seminorms (projection becomes prox)?
• CD in Hilbert spaces, via general Dykstra results?
Summary and future work

Summary:

- Dykstra’s algorithm and coordinate descent are equivalent (act on equivalent dual problems)
- This connection provides new convergence results for lasso CD, as well as new parallel-Dykstra-CD algorithm
- ADMM equivalent to Dykstra for product space reformulation and $\rho = 1$. For $\rho > 1$, gives new parallel-ADMM-CD algorithm
- This is all true outside of quadratic loss, except the parallel CD algorithms from Dykstra and ADMM are distinct

Future work:

- Extend beyond seminorms (projection becomes prox)?
- CD in Hilbert spaces, via general Dykstra results?
- Asynchronous parallel CD algorithms, via ADMM?
References and acknowledgements

Veeranjaneyulu Sadhanala

Thank you for listening
Bonus time
Alternating conditional expectations

Given random variables X_1, \ldots, X_p, Y, consider the problem

$$
\min_{f,g_1,\ldots,g_p} \mathbb{E} \left[\left(f(Y) - \sum_{i=1}^{p} g_i(X_i) \right)^2 \right]
$$

s.t. \quad \mathbb{E}[f(Y)] = \mathbb{E}[g_1(X_1)] = \cdots = \mathbb{E}[g_p(X_p)] = 0,
\mathbb{E}[f^2(Y)] = 1, \quad \mathbb{E}[g_i^2(X_i)] < \infty, \; i = 1, \ldots, p
Alternating conditional expectations

Given random variables X_1, \ldots, X_p, Y, consider the problem

$$
\min_{f,g_1,\ldots,g_p} \mathbb{E} \left[\left(f(Y) - \sum_{i=1}^p g_i(X_i) \right)^2 \right]
$$

s.t. \hspace{1cm} \mathbb{E}[f(Y)] = \mathbb{E}[g_1(X_1)] = \cdots = \mathbb{E}[g_p(X_p)] = 0,

\hspace{1cm} \mathbb{E}[f^2(Y)] = 1, \mathbb{E}[g_i^2(X_i)] < \infty, \ i = 1, \ldots, p

Breiman and Friedman (1985): under regularity conditions, optimal transformations $f^*, g_1^*, \ldots, g_p^*$ exist
Alternating conditional expectations

Given random variables X_1, \ldots, X_p, Y, consider the problem

$$\min_{f,g_1,\ldots,g_p} \mathbb{E} \left[\left(f(Y) - \sum_{i=1}^p g_i(X_i) \right)^2 \right]$$

s.t. $\mathbb{E}[f(Y)] = \mathbb{E}[g_1(X_1)] = \cdots = \mathbb{E}[g_p(X_p)] = 0$, $\mathbb{E}[f^2(Y)] = 1$, $\mathbb{E}[g_i^2(X_i)] < \infty$, $i = 1, \ldots, p$

Breiman and Friedman (1985): under regularity conditions, optimal transformations $f^*, g_1^*, \ldots, g_p^*$ exist and satisfy

$$f^*(y) = \mathbb{E} \left[\sum_{i=1}^p g_i^*(X_i) \bigg| Y = y \right] / \mathbb{E} \left[\sum_{i=1}^p g_i^*(X_i) \bigg| Y \right]$$

$$g_i^*(x) = \mathbb{E} \left[f^*(Y) - \sum_{j \neq i} g_j^*(X_j) \bigg| X_i = x \right], \quad i = 1, \ldots, p$$
Alternating conditional expectations

Given random variables X_1, \ldots, X_p, Y, consider the problem

$$\min_{f,g_1,\ldots,g_p} \mathbb{E} \left[\left(f(Y) - \sum_{i=1}^{p} g_i(X_i) \right)^2 \right]$$

s.t. $\mathbb{E}[f(Y)] = \mathbb{E}[g_1(X_1)] = \cdots = \mathbb{E}[g_p(X_p)] = 0$,
$\mathbb{E}[f^2(Y)] = 1$, $\mathbb{E}[g_i^2(X_i)] < \infty$, $i = 1, \ldots, p$

Breiman and Friedman (1985): under regularity conditions, optimal transformations $f^*, g_1^*, \ldots, g_p^*$ exist and satisfy

$$f^*(y) = \mathbb{E} \left[\sum_{i=1}^{p} g_i^*(X_i) \bigg| Y = y \right] / \left\| \mathbb{E} \left[\sum_{i=1}^{p} g_i^*(X_i) \bigg| Y \right] \right\|$$

$$g_i^*(x) = \mathbb{E} \left[f^*(Y) - \sum_{j \neq i} g_j^*(X_j) \bigg| X_i = x \right], \quad i = 1, \ldots, p$$

Leads to the alternating conditional expectations or ACE algorithm
Some definitions:

- For each $i = 1, \ldots, p$, denote by H_i the Hilbert space of all measurable functions g_i s.t. $\mathbb{E}[g_i(X_i)] = 0$, $\mathbb{E}[g_i^2(X_i)] < \infty$, endowed with the usual inner product and norm:
 \[
 \langle g_i, h_i \rangle = \mathbb{E}[g_i(X_i)h_i(X_i)], \quad \|g_i\| = \langle g_i, g_i \rangle = \mathbb{E}[g_i^2(X_i)]
 \]
Alternating conditional expectations (cont.)

Some definitions:

- For each $i = 1, \ldots, p$, denote by H_i the Hilbert space of all measurable functions g_i s.t. $\mathbb{E}[g_i(X_i)] = 0$, $\mathbb{E}[g_i^2(X_i)] < \infty$, endowed with the usual inner product and norm:

$$\langle g_i, h_i \rangle = \mathbb{E}[g_i(X_i)h_i(X_i)], \quad \|g_i\| = \langle g_i, g_i \rangle = \mathbb{E}[g_i^2(X_i)]$$

- Define H_0 similarly, but corresponding to Y. Also define B_0 to be the unit ball in H_0
Some definitions:

- For each $i = 1, \ldots, p$, denote by H_i the Hilbert space of all measurable functions g_i s.t. $\mathbb{E}[g_i(X_i)] = 0$, $\mathbb{E}[g_i^2(X_i)] < \infty$, endowed with the usual inner product and norm:

$$\langle g_i, h_i \rangle = \mathbb{E}[g_i(X_i)h_i(X_i)], \quad \|g_i\| = \langle g_i, g_i \rangle = \mathbb{E}[g_i^2(X_i)]$$

- Define H_0 similarly, but corresponding to Y. Also define B_0 to be the unit ball in H_0

- Define H to be the Hilbert space of all functions of the form

$$f(y) + \sum_{i=1}^{p} g_i(x_i), \quad f \in H_0, \; g_i \in H_i, \; i = 1, \ldots, p$$
Alternating conditional expectations (cont.)

Some definitions:

- For each $i = 1, \ldots, p$, denote by H_i the Hilbert space of all measurable functions g_i s.t. $\mathbb{E}[g_i(X_i)] = 0$, $\mathbb{E}[g_i^2(X_i)] < \infty$, endowed with the usual inner product and norm:

$$\langle g_i, h_i \rangle = \mathbb{E}[g_i(X_i)h_i(X_i)], \quad \| g_i \| = \langle g_i, g_i \rangle = \mathbb{E}[g_i^2(X_i)]$$

- Define H_0 similarly, but corresponding to Y. Also define B_0 to be the unit ball in H_0.

- Define H to be the Hilbert space of all functions of the form

$$f(y) + \sum_{i=1}^{p} g_i(x_i), \quad f \in H_0, \ g_i \in H_i, \ i = 1, \ldots, p$$

Note that H_0, H_1, \ldots, H_p are closed linear subspaces in H.
ACE as Dykstra’s algorithm?

ACE algorithm (single-loop):

\[
f^{(k)}(y) = \mathbb{E} \left[\sum_{i=1}^{p} g^{(k-1)}_i(X_i) \mid Y = y \right] / \ \| \mathbb{E} \left[\sum_{i=1}^{p} g^{(k-1)}_i(X_i) \mid Y \right] \|
\]

\[
g^{(k)}_i(x) = \mathbb{E} \left[f^{(k)}(Y) - \sum_{j<i} g^{(k)}_j(X_j) - \sum_{j>i} g^{(k-1)}_j(X_j) \mid X_i = x \right],
\]

\[i = 1, \ldots, p\]
ACE as Dykstra’s algorithm?

ACE algorithm (single-loop):

\[
\begin{align*}
 f^{(k)}(y) &= \mathbb{E} \left[\sum_{i=1}^{p} g_i^{(k-1)}(X_i) \middle| Y = y \right] / \mathbb{E} \left[\sum_{i=1}^{p} g_i^{(k-1)}(X_i) \middle| Y \right] \\
 g_i^{(k)}(x) &= \mathbb{E} \left[f^{(k)}(Y) - \sum_{j<i} g_j^{(k)}(X_j) - \sum_{j>i} g_j^{(k-1)}(X_j) \middle| X_i = x \right], \\
 &\quad i = 1, \ldots, p
\end{align*}
\]

This is “almost” of Dykstra form:

\[
\begin{align*}
 u_i^{(k)} &= P_{C_i}(u_{i-1}^{(k)} + z_i^{(k-1)}) \\
 z_i^{(k)} &= u_{i-1}^{(k)} + z_i^{(k-1)} - u_i^{(k)}
\end{align*}
\]
ACE as Dykstra’s algorithm?

ACE algorithm (single-loop):

\[
f^{(k)}(y) = \mathbb{E} \left[\sum_{i=1}^{p} g^{(k-1)}_i(X_i) \middle| Y = y \right] / \mathbb{E} \left[\sum_{i=1}^{p} g^{(k-1)}_i(X_i) \middle| Y \right]
\]

\[
g^{(k)}_i(x) = \mathbb{E} \left[f^{(k)}(Y) - \sum_{j<i} g^{(k)}_j(X_j) - \sum_{j>i} g^{(k-1)}_j(X_j) \middle| X_i = x \right],
\]

This is “almost” of Dykstra form:

\[
u^{(k)}_i = P_{C_i}(u^{(k)}_{i-1} + z^{(k-1)}_i)
\]

\[
z^{(k)}_i = u^{(k)}_{i-1} + z^{(k-1)}_i - u^{(k)}_i
\]

where we let \(u = f - \sum_{i=1}^{p} g_i, z_0 = -f, z_i = g_i, i = 1, \ldots, p\), and \(C_i = H_i^\perp, i = 0, \ldots, p\) (orthocomplements in \(H\)).
ACE as Dykstra’s algorithm?

ACE algorithm (single-loop):

\[f^{(k)}(y) = \mathbb{E} \left[\sum_{i=1}^{p} g_i^{(k-1)}(X_i) \right| Y = y \] / \mathbb{E} \left[\sum_{i=1}^{p} g_i^{(k-1)}(X_i) \right| Y \]

\[g_i^{(k)}(x) = \mathbb{E} \left[f^{(k)}(Y) - \sum_{j<i} g_j^{(k)}(X_j) - \sum_{j>i} g_j^{(k-1)}(X_j) \right| X_i = x \], \quad i = 1, \ldots, p

This is “almost” of Dykstra form:

\[u_i^{(k)} = P_{C_i}(u_{i-1}^{(k)} + z_i^{(k-1)}) \]

\[z_i^{(k)} = u_{i-1}^{(k)} + z_i^{(k-1)} - u_i^{(k)} \]

where we let \(u = f - \sum_{i=1}^{p} g_i, \) \(z_0 = -f, \) \(z_i = g_i, \) \(i = 1, \ldots, p, \) and \(C_i = H_i^\perp, \) \(i = 0, \ldots, p \) (orthocomplements in \(H \)). Trouble is scaling step ... otherwise Dykstra theory would apply directly