PROBLEM DECOMPOSITION IN NONCONVEX OPTIMIZATION

Terry Rockafellar
University of Washington, Seattle

Flatiron Institute, New York
October 15, 2018
A Basic Format for Thinking About Decomposition

Problem in variables $x_j \in \mathbb{R}^{n_j}$

\[
\begin{align*}
\text{minimize} \quad & \sum_{j=1}^{J} f_j(x_j) \\
\text{subject to} \quad & \sum_{j=1}^{J} F_j(x_j) \in K
\end{align*}
\]

Ingredients: for this presentation

- functions $f_j : \mathbb{R}^{n_j} \rightarrow (-\infty, \infty]$, lower semicontinuous,
- mappings $F_j : \mathbb{R}^{n_j} \rightarrow \mathbb{R}^m$, just C^1 or C^2,
- cone $K \subset \mathbb{R}^m$ closed and convex

Challenges

- solve this by a scheme which breaks computations down into subproblems in the separate indices $j = 1, \ldots, J$
- manage this, at least locally, even in the nonconvex case

Extensions: replace the cone constraint by a “coupling term”
Classical Lagrangian Approach

Lagrangian function: in terms of \(Y = K^* = \) the polar cone

\[
L(x_1, \ldots, x_J, y) = \sum_{j=1}^{J} f_j(x_j) + y \cdot \sum_{j=1}^{J} F_j(x_j) \quad \text{where} \quad y \in Y \\
= \sum_{j=1}^{J} L_j(x_j, y) \quad \text{for} \quad L_j(x_j, y) = f_j(x_j) + y \cdot F_j(x_j)
\]

Convex case: exploit this separability via the dual problem,
maximize \(\sum_{j=1}^{J} g_j(y) \) over \(y \in Y \), \(g_j(y) = \min_{x_j} L_j(x_j, y) \)

Augmented Lagrangian function: with parameter \(r > 0 \)

\[
L_r(x_1, \ldots, x_J, y) = \sup_{y' \in Y} \{ L(x_1, \ldots, x_r, y') - \frac{1}{2r} \| y' - y \| ^2 \} \\
= L(x_1, \ldots, x_J, y) + \frac{r}{2} \| \sum_{j=1}^{J} F_j(x_j) \| ^2 - \frac{1}{2r} d_Y^2 (y + r \sum_{j=1}^{J} F_j(x_j))
\]

Augmented second-order sufficient condition for local optmality

\((\bar{x}_1, \ldots, \bar{x}_j) \) and \(\bar{y} \) satisfy the first-order optimality condition and, for \(r \) sufficiently large, \(L_r \) is convex-concave locally around them

Nonconvex case: convexity maybe gained, but separability lost
Reformulation to Help Liberate Separability

Expansion Lemma:

\[\sum_{j=1}^{J} F_j(x_j) \in K \iff \exists u_j \in \mathbb{R}^m \text{ with } \sum_{j=1}^{J} u_j = 0 \text{ and } F_j(x_j) + u_j \in K \text{ for all } j \]

Expanded problem (equivalent) in variables \(x_j \) and \(u_j \)

minimize \(\sum_{j=1}^{J} f_j(x_j) \) subject to \(F_j(x_j) + u_j \in K, \sum_{j=1}^{J} u_j = 0 \)

First-order optimality condition: for \(\bar{x}_j, \bar{u}_j \), to give a local min

\[\exists \bar{y} \in Y = K^* \text{ such that, for } j = 1, \ldots, J, \text{ the subproblem} \]

minimize \(f_j(x_j) \) subject to \(F_j(x_j) + \bar{u}_j \in K \)

exhibits first-order optimality at \(\bar{x}_j \) with multiplier vector \(\bar{y} \)

Status:

- necessary under a constraint qualification
- in the convex case, always sufficient
Progressive Decomposition Algorithm

Parameters: \(s > 0, r > e \geq 0 \) (where \(e \) “elicits convexity”)

Current elements (in iteration \(k \)): \(y^k, x^k_j, u^k_j \) with \(\sum_{j=1}^{J} u^k_j = 0 \)

Optimization step: for \(j = 1, \ldots, J \), determine

\[
(x^{k+1}_j, \hat{u}^k_j) \in (\text{local?}) \arg\min_{x_j, u_j} \left\{ f^k_j(x_j, u_j) \left| F_j(x_j) + u_j \in K \right. \right\}
\]

for \(f^k_j(x_j, u_j) = f_j(x_j) + \frac{s}{2} \| x_j - x^k_j \|^2 + \frac{r}{2} \| u_j - u^k_j \|^2 - y^k \cdot u_j \)

Updating step: partner \(x^{k+1}_j \) with \(u^{k+1}_j = u^k_j - \hat{u}^k \), where

\[
\hat{u}^k = \frac{1}{J} \sum_{j=1}^{J} \hat{u}^k_j , \text{ and set } y^{k+1} = y^k - (r - e)\hat{u}^k
\]

Behavior in the convex case, where \(e \) can be 0

The subproblems have \((x^{k+1}_j, \hat{u}^k_j) = \arg\min \) (global, unique), and the sequences converge to globally optimal \(\bar{x}_j, \bar{u}_j \), and multiplier \(\bar{y} \)
Behavior in the nonconvex case, with $e > 0$ sufficiently high

- The procedure needs to start near enough to elements that satisfy a new variational second-order sufficient condition.
- Then $(x_j^{k+1}, \hat{u}_j^k) = \text{local argmin} \ (\text{locally unique})$, and the sequences converge to locally optimal \bar{x}_j, \bar{u}_j, and multiplier \bar{y}.

Challenges in the nonconvex case:
- How to know, in execution, whether e is high enough?
- How to know if starting near enough to a solution?
- How to be sure of staying in the “good neighborhood”?
- How to choose the size of the parameters s and r, or adjust?

Challenges even for the convex case:
- What stopping criterion other than “exact minimization”?
- Is it possible to pass from parallel computation in the separate subproblems to some “asynchronous” version?
Connection Back to Augmented Lagrangians

Reconfiguring the optimization step: in minimizing

\[f_j^k(x_j, u_j) = f_j(x_j) + \frac{s}{2} \|x_j - x_j^k\|^2 + \frac{r}{2} \|u_j - u_j^k\|^2 - y^k \cdot u_j \]

in \((x_j, u_j)\) subject to \(F_j(x_j) + u_j \in K\) to get \((x_j^{k+1}, \hat{u}_j^k)\),

(1) first minimize in \(u_j\), then (2) minimize the residual in \(x_j\)

Observation: the residual is \(L_{j,r}^k(x_j, y^k) + \frac{s}{2} \|x_j - x_j^k\|^2\), where

\[L_{j,r}^k(x_j, y) = \text{augmented Lagrangian for the subproblem:} \]

\[\text{minimize } f_j(x_j) \text{ subject to } F_j(x_j) + u_j^k \in K \]

Resulting form of the optimization step in iteration \(k\)

\[x_j^{k+1} = \text{(local) argmin}_{x_j} \{ L_{j,r}^k(x_j, y^k) + \frac{s}{2} \|x_j - x_j^k\|^2 \}, \]

\[\hat{u}_j^k = -\nabla_y L_{j,r}^k(x_j^{k+1}, y^k) \quad \text{augmented separability achieved!} \]

Resulting interpretation of elicitation:

\[e = \text{level of } r \text{ inducing the augmented second-order sufficient condition — as adapted to the extended problem formulation} \]
Dealing With Nonconvex Nonsmoothness

Consider: \(g : \mathbb{R}^n \rightarrow (-\infty, \infty] \) lsc, \(\bar{x} \in \text{dom } g \)

Local minimum?

1st-order necessary condition: \(0 \in \partial g(\bar{x}) \)

2nd-order variational sufficient condition: variational convexity

“\(\partial g \) is indistinguishable in graph around \((\bar{x}, 0)\) from \(\partial \hat{g} \) for a convex function \(\hat{g} \), and the values of \(g \) and \(\hat{g} \) agree there”

Strong version of this: \(\hat{g} \) strongly convex

- corresponds to local max monotonicity of \(\partial g \)
- strong version closely related to tilt stability of \(g \) at \(\bar{x} \)
- tied to ability to work locally with the prox mapping for \(g \)
A Key Favorable Class of Functions

for working with variational convexity that isn’t just local convexity

Strongly amenable functions: \(g : \mathbb{R}^n \to (-\infty, \infty] \)

“representable locally as \(h \circ G \) for \(h \) convex, \(G \in C^2 \) under a c.q.”

Example: \(g = g_0 + \delta_C \) (locally) with
- \(g_0 = \max \) of finitely many \(C^2 \) functions
- \(C \) specified by finitely many \(C^2 \) constraints

\(\implies \) then “prox” can be executed by nonlinear programming
References

http://dx.doi.org/10.1007/s1128-018-0496-1

downloads: sites.math.washington.edu/~rtr/mypage.html