Proximal algorithms with mysterious “plug-and-play” operators.

Dr. Marcelo Pereyra
http://www.macs.hw.ac.uk/~mp71/

Maxwell Institute for Mathematical Sciences, Heriot-Watt University

March 2019, New York.
Outline

1. Imaging inverse problems

2. Bayesian statistical modelling
Forward imaging problem

True scene

Imaging device

Observed image
Inverse imaging problem

True scene

Imaging device

Observed image

Restored image
Short-exposure imaging

True scene

Imaging device

Observed data
Short-exposure imaging

M. Pereyra (MI — HWU)
Radio-astronomy imaging

True scene

Imaging device

Observed data
Radio-astronomy imaging

True scene

Imaging device

Observed data

Restored image

(X. Cai et al. (2018))
Outline

1. Imaging inverse problems
2. Bayesian statistical modelling
We are interested in an unknown image $x \in \mathbb{R}^d$. We measure y, related to x by some mathematical model. For example, in many imaging problems

$$y = Ax + w,$$

for some operator A that is poorly conditioned or rank deficient, and an unknown perturbation or “noise” w. The recovery of x from y is often ill-posed or ill-conditioned, so we regularise the problem to make it well posed.
Bayesian statistics is a mathematical framework for deriving inferences about x, from some observed data y and prior knowledge available.

Adopting a subjective probability approach, we represent x as a random quantity and use probability distributions to model expected properties.

To derive inferences about x from y we postulate a joint statistical model $p(x, y)$; typically specified via the decomposition $p(x, y) = p(y|x)p(x)$.
The Bayesian framework

The decomposition $p(x, y) = p(y|x)p(x)$ has two key ingredients:

The **likelihood** function: the conditional distribution $p(y|x)$ that models the data observation process (forward model).

The **prior** function: the marginal distribution $p(x) = \int p(x, y)dx$ that models our knowledge about x “before observing y”.

For example, for $y = Ax + w$, with $w \sim \mathcal{N}(0, \sigma^2\mathbb{I})$, we have

$$y \sim \mathcal{N}(Ax, \sigma^2\mathbb{I}),$$

or equivalently

$$p(y|x) \propto \exp\{-\|y - Ax\|^2/2\sigma^2\}.$$
We base our inferences on the posterior distribution $p(x|y)$.

We derive $p(x|y)$ from the likelihood $p(y|x)$ and the prior $p(x)$ by using

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

where $p(y) = \int p(y|x)p(x)dx$ measures model-fit-to-data.

The conditional $p(x|y)$ models our knowledge about x after observing y.
The predominant Bayesian approach in imaging to derive a “solution” from \(p(x|y) \) is MAP estimation

\[
\hat{x}_{MAP} = \arg\max_{x \in \mathbb{R}^d} p(x|y),
\]
\[
= \arg\min_{x \in \mathbb{R}^d} - \log p(y|x) - \log p(x) + \log p(y).
\]

When \(p(x|y) \) is log-concave, then \(\hat{x}_{MAP} \) is a convex optimisation problem and can be efficiently solved (Chambolle and Pock, 2016).

Let \(f(x) = - \log p(y|x) \) and \(g(x) = - \log p(x) \). Often \(f, g \in \Gamma_0(\mathbb{R}) \), \(f \) is \(L_f \)-Lipschitz differentiable, and \(g \) has a computable proximal operator.
MAP estimation by proximal optimisation

For example, we could use a proximal gradient iteration

$$x^{m+1} = \text{prox}_{\frac{L_f^{-1}}{m}} \{x^m + \frac{L_f^{-1}}{m} \nabla f(x^m)\},$$

converges to \hat{x}_{MAP} at rate $O(1/m)$, with poss. acceleration to $O(1/m^2)$.

Alternatively, we could draw samples from $p(x|y)$ with a proximal Markov chain Monte Carlo algorithm, e.g.,

$$X^{m+1} = \text{prox}_{\delta} \{X^m + \delta \nabla f(X^m)\} + \sqrt{2\delta}Z^{m+1},$$

with $0 < \delta < L_f^{-1}$ and $Z^{m+1} \sim \mathcal{N}(0, I_d)$.

Definition The proximal operator of g is defined as (Moreau, 1962)

$$\text{prox}_g^\lambda(x) \doteq \arg\min_{u \in \mathbb{R}^N} g(u) + \frac{1}{2\lambda} \|u - x\|^2.$$
Image super-resolution

True scene

Imaging device

Observed image

Restored image

(Y. Romano, M. Elad, P. Milanfar (2017))
Bibliography:

