Inexact relative-error proximal point algorithms

Maicon Marques Alves

Based on joint works with
B. F. Svaiter and R.D.C. Monteiro

Federal University of Santa Catarina, Florianópolis.

Operator Splitting Methods in Data Analysis
Flatiron Institute, March 20–23, 2019
The problem

- Monotone inclusion:

 \[
 \text{find } z \in \mathcal{H} \text{ such that } 0 \in T(z)
 \]

 where \(T : \mathcal{H} \rightrightarrows \mathcal{H} \) is a maximal monotone operator.

- \(T : \mathcal{H} \rightrightarrows \mathcal{H} \) is a **monotone operator** if

 \[
 \langle z - z', v - v' \rangle \geq 0 \quad \forall v \in T(z), v' \in T(z').
 \]

- \(T : \mathcal{H} \rightrightarrows \mathcal{H} \) is a **maximal monotone operator** if \(T \) is monotone and there exists no monotone operator \(S : \mathcal{H} \rightrightarrows \mathcal{H} \) such that \(G(S) \) properly contains \(G(T) \).
The proximal point method

- Monotone inclusion:

 \[\text{find } z \in \mathcal{H} \text{ such that } 0 \in T(z) \]

 where \(T : \mathcal{H} \rightrightarrows \mathcal{H} \) is maximal monotone.

- Resolvent computation:

 \[z_+ = (\lambda T + I)^{-1} z \iff 0 \in \lambda T(z_+) + z_+ - z. \]

- Rockafellar (1976):

 \[\| z_k - (\lambda_k T + I)^{-1} z_{k-1} \| \leq e_k, \quad \sum_{k=1}^{\infty} e_k < \infty. \]
The hybrid proximal extragradient (HPE) method

- Decoupling:

\[z_+ = (\lambda T + I)^{-1} z \iff \exists v \in T(z_+), \quad \lambda v + z_+ - z = 0. \]

- Note that, in this case,

\[z_+ = z - \lambda v. \]

- HPE iteration (Solodov-Svaiter): \(\sigma \in [0, 1), \)

\[v_k \in T(\tilde{z}_k), \quad \|\lambda_k v_k + \tilde{z}_k - z_{k-1}\| \leq \sigma \|\tilde{z}_k - z_{k-1}\|, \]

\[z_k = z_{k-1} - \lambda_k v_k. \]

- If \(\sigma = 0, \) then \(z_k = \tilde{z}_k = (\lambda T + I)^{-1} z_{k-1}. \)
The hybrid proximal extragradient (HPE) method

- More general version with enlargements (Solodov-Svaiter):

 \[v_k \in T^\varepsilon_k(\tilde{z}_k), \quad \| \lambda_k v_k + \tilde{z}_k - z_{k-1} \|^2 + 2\lambda_k\varepsilon_k \leq \sigma^2 \| \tilde{z}_k - z_{k-1} \|^2, \]

 \[\tilde{z}_k = z_{k-1} - \lambda_k v_k. \]

- For \(\varepsilon \geq 0 \),

 \[T^\varepsilon(z) := \{ v \in \mathcal{H} \mid \langle z - z', v - v' \rangle \geq -\varepsilon \quad \forall v' \in T(z') \}. \]

- \[T^\varepsilon(z) \supset T(z). \]
The hybrid proximal extragradient (HPE) method

- Monteiro, Ortiz and Svaiter (2014): Numerical experiments on large scale conic semidefinite programming problems ($\sigma = 0.99$).

- Eckstein and Yao (2018): Douglas-Rachford and ADMM relative-error HPE-type algorithms. Numerical experiments on LASSO and Logistic Regression ($\sigma = 0.90; \sigma = 0.99$).

- Some special instances of the HPE method/framework: Forward-backward, Tseng’s modified forward-backward, Korpolevich, ADMM.
The hybrid proximal extragradient (HPE) method

- Monteiro and Svaiter (2010): Iteration-complexity; global $\mathcal{O}(1/\sqrt{k})$ pointwise and $\mathcal{O}(1/k)$ ergodic convergence rates.

- Is it possible to obtain a global $\mathcal{O}(1/k)$ pointwise rate?

- A., Monteiro and Svaiter (2016): Regularized HPE method with $\mathcal{O}(\rho^{-1} \log(\rho^{-1}))$ pointwise iteration-complexity.
Regularized HPE-type methods for solving monotone inclusions with improved pointwise iteration-complexity bounds.
Thank you for your attention!

maicon.alves@ufsc.br