Dynamical mean-field theory: (some) theory and (some) algorithm

Lin Lin

Department of Mathematics, UC Berkeley; Lawrence Berkeley National Laboratory

Diagrammatic Monte Carlo Workshop, Flatiron Institute, July 2019
Dynamical mean-field theory (DMFT)

- Spectroscopic information is encoded in the one-particle Green’s function $G(z)$

- Quantum embedding ("Domain decomposition" in high dimensional space)

- Solve a (high dimensional) strongly correlated system by a series of (low dimensional) impurity problems

- “Glue” impurity problems together with single-particle type theories.

[Kananenka, Gull, Zgid, PRB 2015] …
DMFT applications: strongly correlated systems

- Electronic structure near a Mott transition

- Lattice dynamics and structural stability

- Optical properties

- Transport properties, and superconductors

- Heavy elements: Actinides and lanthanides

- ...
Algorithm

Hybridization fitting via semi-definite relaxation

[Majuto-Zaera, Zepeda-Núñez, Lindsey, Tubman, Whaley, L., 1907.07191]
How to solve the impurity problem?

\[(h^0)^{(p)}, \Delta^{(p)}(z) \rightarrow G_{\text{imp}}^{(p)}\]

- Open quantum system: \(z = i\omega \), Path integral. Quantum Monte Carlo (e.g. [Gull, Millis et al, RMP, 2011])

- Closed quantum system: Hamiltonian-based (e.g. [Zgid, Chan, J. Chem. Phys. 2011])
 - Allow broader range of impurity solvers (CI, CC, Selected CI..)
 - Hybridization fitting
Hamiltonian-based DMFT

- Hybridization fitting

\[
\Delta(i\omega) \approx h_{12}(i\omega - h_{22})^{-1}h_{21} = \sum_{\ell=1}^{N_p} \frac{V_{\ell} V_{\ell}^*}{i\omega - \lambda_{\ell}}
\]

- Replace a large (and possibly infinite) sized bath by a smaller one.

- Closed Hamiltonian system

\[
\hat{H}_{\text{imp}} = \hat{H}_{\text{cluster}} + \sum_{\ell=1}^{N_p} \lambda_{\ell} \hat{d}_{\ell}^\dagger \hat{d}_{\ell} + \sum_{\ell=1}^{N_p} \sum_{\alpha=1}^{N_c} (V_{\alpha,\ell} \hat{d}_{\ell}^\dagger \hat{a}_\alpha + \text{h.c.})
\]
Hybridization fitting

\[\Delta(i\omega) \approx \sum_{\ell=1}^{N_p} \frac{V_\ell V_\ell^*}{i\omega - \lambda_\ell} \]

- Fitting problem: highly nonlinear optimization
- Surprisingly time consuming
- \(\Delta(z) \): Meromorphic matrix-valued function in \(\mathbb{C} \) with real poles
- Positive semi-definite (PSD) residue matrix
Semidefinite relaxation

\[\Delta(i\omega) \approx \sum_{\ell=1}^{N_p} \frac{X_{\ell}}{i\omega - \lambda_{\ell}}, \quad X_{\ell} \geq 0 \]

- With a possibly smaller \(N_p \)
- Relaxed minimization problem

\[
\min_{\lambda_{\ell}, X_{\ell} \geq 0} J_{SDR}(\{\lambda_{\ell}, X_{\ell}\}_{\ell=1}^{N_p})
\]

\[
J_{SDR}(\{\lambda_{\ell}, X_{\ell}\}_{\ell=1}^{N_p}) = \frac{1}{N_\omega} \sqrt{\sum_{n=1}^{N_\omega} \left\| \Delta(i\omega_n) - \sum_{\ell=1}^{N_p} \frac{X_{\ell}}{i\omega_n - \lambda_{\ell}} \right\|_F^2}
\]
Semidefinite relaxation

- After obtaining the minimizers

\[\hat{X}_\ell = U_\ell U_\ell^* = \sum_{q=1}^{N_c} U_{\ell,q} U_{\ell,q}^* \]

- Expansion

\[\sum_{\ell=1}^{N_p} \frac{\hat{X}_\ell}{i \omega - \hat{\lambda}_\ell} = \sum_{\ell=1}^{N_p} \sum_{q=1}^{N_c} \frac{U_{\ell,q} U_{\ell,q}^*}{i \omega - \hat{\lambda}_\ell} = \sum_{r=1}^{N_{\text{eff}}} \frac{\tilde{V}_r \tilde{V}_r^*}{i \omega - \tilde{\epsilon}_r} \]
Optimization for the poles

- Nested optimization

\[J_{\text{pol}}(\{\lambda_\ell\}_{\ell=1}^{N_p}) = \min_{X_\ell \geq 0} J_{\text{SDR}}(\{\lambda_\ell, X_\ell\}_{\ell=1}^{N_p}) \]

- Derivative evaluation

\[\frac{\partial}{\partial \lambda_k} J_{\text{pol}}(\{\lambda_\ell\}_{\ell=1}^{N_p}) = \left. \frac{\partial}{\partial \lambda_k} \left(\sqrt{\sum_{j=1}^{N_\omega} \left\| \Delta(i\omega_j) - \sum_{\ell=1}^{N_p} \frac{X_\ell}{i\omega_j - \lambda_\ell} \right\|^2_F} \right) \right|_{X_\ell = X'_\ell} \]

\[X'_\ell = \arg \min_{X_\ell \geq 0} J_{\text{SDR}}(\{\lambda_\ell, X_\ell\}_{\ell=1}^{N_p}) \]
Pseudocode

Algorithm 1 Pseudo-code for the nested optimization routine.

Require: Initial guess \(\{\lambda_\ell\}_{\ell=1}^{N_p} \)

Ensure: \(\{\hat{\lambda}_\ell, \hat{X}_\ell\}_{\ell=1}^{N_p} \)

\[
\begin{align*}
\textbf{while} & \quad \| \nabla J_{\text{pol}}(\{\lambda_\ell\}_{\ell=1}^{N_p}) \| > \epsilon_{\text{tol}} \textbf{ do} \\
& \quad X'_\ell \leftarrow \arg\min_{X_\ell \geq 0} J_{\text{SDR}}(\{\hat{\lambda}_\ell, X_\ell\}_{\ell=1}^{N_p}) \text{ by solving the SDR problem} \\
& \quad \lambda_\ell \leftarrow \text{BFGS}(\lambda_\ell, \nabla J_{\text{pol}}(\{\lambda_\ell\}_{\ell=1}^{N_p})) \\
\textbf{end while} \\
& \hat{\lambda}_\ell \leftarrow \lambda_\ell \\
& \hat{X}_\ell \leftarrow \arg\min_{X_\ell \geq 0} J_{\text{SDR}}(\{\hat{\lambda}_\ell, X_\ell\}_{\ell=1}^{N_p})
\end{align*}
\]
Results

• 2D Hubbard model.

• Impurity size (to be solved by the impurity solver)

• Impurity solver: adaptive sampling configuration algorithm (ASCI)

• Can use other impurity solvers as well, e.g. coordinate descent

[Tubman, Lee, Takeshita, Head-Gordon, Whaley, JCP, 2016]
[Mejuto-Zaera, Tubman, Whaley, 2017] [Wang, Li, Lu, 2019]
Accuracy

- **Fitting error**

<table>
<thead>
<tr>
<th>N_p</th>
<th>N_b^{eff}</th>
<th>Error</th>
<th>N_b^{eff}</th>
<th>Error</th>
<th>N_b^{eff}</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
<td>2.18e-3</td>
<td>16</td>
<td>2.16e-3</td>
<td>24</td>
<td>1.56e-2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>1.59e-3</td>
<td>24</td>
<td>1.57e-3</td>
<td>36</td>
<td>8.44e-3</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>2.88e-4</td>
<td>32</td>
<td>3.97e-4</td>
<td>47</td>
<td>2.09e-3</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>2.64e-4</td>
<td>40</td>
<td>2.93e-4</td>
<td>56</td>
<td>1.31e-3</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>1.75e-5</td>
<td>48</td>
<td>5.99e-5</td>
<td>63</td>
<td>9.55e-4</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>1.14e-5</td>
<td>52</td>
<td>4.04e-5</td>
<td>72</td>
<td>8.37e-4</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>2.50e-6</td>
<td>55</td>
<td>5.41e-5</td>
<td>80</td>
<td>7.20e-4</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td>1.56e-6</td>
<td>62</td>
<td>5.26e-5</td>
<td>86</td>
<td>7.16e-4</td>
</tr>
<tr>
<td>10</td>
<td>38</td>
<td>1.50e-6</td>
<td>66</td>
<td>3.08e-5</td>
<td>88</td>
<td>7.07e-4</td>
</tr>
</tbody>
</table>

(a) Diagonal component of Δ.

(b) Off-diagonal component of Δ.

Efficiency: Timings for fitting

<table>
<thead>
<tr>
<th>N_p</th>
<th>SDR</th>
<th>BFGS</th>
<th>BOBYQA</th>
<th>SDR</th>
<th>BFGS</th>
<th>BOBYQA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s</td>
<td>Error</td>
<td>s</td>
<td>s</td>
<td>Error</td>
<td>s</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2.18e-3</td>
<td>4</td>
<td>1.09e-1</td>
<td>28</td>
<td>2.18e-3</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>1.59e-3</td>
<td>5</td>
<td>9.98e-2</td>
<td>989</td>
<td>1.47e-3</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>2.88e-4</td>
<td>33</td>
<td>4.90e-3</td>
<td>2717</td>
<td>1.29e-4</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>2.64e-4</td>
<td>48</td>
<td>3.30e-3</td>
<td>5535</td>
<td>1.43e-4</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>1.75e-5</td>
<td>56</td>
<td>3.43e-4</td>
<td>1060</td>
<td>1.14e-4</td>
</tr>
<tr>
<td>7</td>
<td>46</td>
<td>1.14e-5</td>
<td>69</td>
<td>2.27e-4</td>
<td>1629</td>
<td>9.64e-5</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>2.50e-6</td>
<td>79</td>
<td>9.92e-5</td>
<td>1790</td>
<td>7.83e-5</td>
</tr>
<tr>
<td>9</td>
<td>96</td>
<td>1.56e-6</td>
<td>87</td>
<td>9.87e-5</td>
<td>2633</td>
<td>5.35e-5</td>
</tr>
<tr>
<td>10</td>
<td>39</td>
<td>1.50e-6</td>
<td>113</td>
<td>6.09e-5</td>
<td>1844</td>
<td>7.41e-5</td>
</tr>
</tbody>
</table>

BOBYQA (Bound Optimization BY Quadratic Approximation) [Powell,2009]
Derivative-free method.
Gradient based method easily trapped in local minima (empirical evidence)
Robustness: fit error vs. initial pole energies

\(N_p = 2 \)

\[
\begin{array}{|c|c|c|}
\hline
\text{Nr. of samples} & 1184 & 1195 & 1469 \\
\text{Rate of Success} & 83\% & 88\% (43\% + 45\%) & 55\% \\
\text{max}[\sigma(\epsilon_\ell)] & 6e-6 & 5e-4 & 2e-4 \\
\hline
\end{array}
\]

\(N_p = 3 \)

\(N_p = 4 \)

Initial poles randomly distributed in \([−10,10]^{⊗N_p}\).
Performance in DMFT

- 2D Hubbard, half filling, $\frac{U}{t} = 8$
- $2 \times 3, 2 \times 4, 1 \times 6$ cluster size, $N_p = 2, 3, 4, 6$
- Max fitting frequency $i(0,2)t$

\[A(k, \omega) = -\frac{1}{\pi} \text{Im}(G_{\text{latt}}(k, \omega)) \]
Theory

Self energy sparsity
Well-posedness of the SCF loop (causality)
Luttinger-Ward formalism

[L., Lindsey, 1902.04796]
[L., Lindsey, Schneider, in preparation]
[L., Lindsey, 1809.02900, 1809.02901, PNAS 2018]
Example of quantum impurity problem

• Single-impurity Anderson model (SIAM)

\[\hat{H} = \sum_\sigma \epsilon_f \hat{f}_\sigma^\dagger \hat{f}_\sigma + \sum_{\langle j,j' \rangle_\sigma} t_{jj'} \hat{c}_{j\sigma}^\dagger \hat{c}_{j'\sigma} + \sum_{j,\sigma} \left(V_j \hat{f}_\sigma^\dagger \hat{c}_{j\sigma} + V_j^* \hat{c}_{j\sigma}^\dagger \hat{f}_\sigma \right) + U \hat{f}_\uparrow^\dagger \hat{f}_\uparrow \hat{f}_\downarrow^\dagger \hat{f}_\downarrow \]

• Hamiltonian

• Self energy is a sparse matrix

\[\Sigma(Z) = \begin{pmatrix} 0 & \cdots & \sigma(Z) & \cdots \\ \vdots & \ddots & \vdots & \ddots \\ \sigma(Z) & \cdots & 0 \end{pmatrix} \]
Sparisity of self energy for quantum impurity

Theorem ([L.-Lindsey, 1902.04796])

For the quantum impurity problem, the sparsity pattern of the self energy is only determined by the sparsity pattern of the interaction. W.L.O.G.

\[\Sigma(z) = \begin{pmatrix} \Sigma_{\text{imp}}(z) & 0 \\ 0 & 0 \end{pmatrix}. \]

- Foundation of DMFT / CT-QMC etc
- “Folk theorem” since [Feynman-Vernon, 1963] at the latest with diagrammatic arguments
- Our proof is linear algebraic (non-perturbative)
- Extensible to classical impurity problems, fermionic and bosonic systems, zero and finite temperature, non-equilibrium systems, impurity problems with broken particle-number symmetry (related to superconducting systems)
Causality

Lehmann representation (retarded Green’s function)

\[
G_{ij}^R(z) = \sum_n \frac{f_{i,n} f_{j,n}^*}{z - (E_{N+1}^n - E_N^0) + i\eta} + \sum_n \frac{g_{i,n} g_{j,n}^*}{z + (E_{N-1}^n - E_N^0) + i\eta}
\]

\[
\epsilon_n = E_N^0 - E_{N-1}^n
\]

\[
\mu = E_{N+1}^n - E_N^0
\]

\[
\text{gap}
\]

\[
\text{Re}
\]
Well-posedness of the DMFT loop

Causal

1. Analytic in the upper half of the complex plane
2. Spectral density $-\text{Im} \left(G^R(z)\right)$ is PSD (implying that diagonal is non-negative).

- Whether G^R, Σ^R, Δ^R during the SCF loop remains causal.

- For imaginary frequency fitting:
 - Real poles
 - Residue matrix PSD

[Kotliar, Savrasov, Pálsson, Biroli, 2001]
[Biroli, Parcollet, Kotliar, 2003]
Causality

• Spectral density: Discrete PSD operator valued measure on \(\mathbb{R} \) (for some finite \(K \))

\[
\sum_{\ell=1}^{K} X_\ell \delta(\cdot - \lambda_\ell)
\]

• Stieltjes transform

\[
S := \left\{ f : \mathbb{C} \to \mathbb{C}^{N_b \times N_b} \left| f(z) = \sum_{\ell=1}^{K} \frac{X_\ell}{z - \lambda_\ell}, X_\ell \geq 0, \lambda_\ell \in \mathbb{R} \right. \right\}
\]

• Question: \(G(z), \Sigma(z), \Delta(z) \in S \)?
Well-posedness

Theorem ([L., Lindsey, Schneider, in preparation])

If $\Delta^{(p)} \in \mathcal{S}$, then in the next iteration $\Delta_{\text{new}}^{(p)} \in \mathcal{S}$.

\[
(h^0)^{(p)}, \Delta^{(p)}(z) \rightarrow G_{\text{imp}}^{(p)}
\]

\[
\Sigma^{(p)}(z) = [z - (h^0)^{(p)}] - [G_{\text{imp}}^{(p)}(z)]^{-1}
\]

\[
\Delta_{\text{new}}^{(p)}(z) = [z - (h^0)^{(p)}] - \Sigma^{(p)}(z) - [G_{\text{latt}}^{(p)}(z)]^{-1}
\]

\[
\Sigma(z) \approx \bigoplus_{p=1}^{P} \Sigma^{(p)}(z)
\]

\[
G_{\text{latt}}(z) = (z - h^0 - \Sigma(z))^{-1}
\]
Sketch of the proof

• Step 1. Lehmann representation

\[\Delta^{(p)}(z) \in S \rightarrow G_{imp}^{(p)} \in S \]

• Step 2.

\[G_{imp}^{(p)} \in S \rightarrow \left(G_{imp}^{(p)} \right)^{-1}, \Sigma(p) \in ? \]

Proposition

Let \(\cap_{k=1}^{K} \ker(X_k) = \{0\} \),

\[f(z) = \sum_{k=1}^{K} \frac{X_k}{z - \varepsilon_k} \in S. \]

Then there exists a holomorphic \(g(z) := zM + C, M > 0, \) and \(g(z) - f^{-1}(z) \in S. \)
Sketch of the proof

\[
(G_{\text{imp}}^{(p)})_{11}^{-1} = z - C - f(z), \quad \Sigma^{(p)} = C' + f(z), \quad f(z) \in S
\]

• Step 3. Prove the Schur complement form

\[
\Delta_{\text{new}}^{(p)}(z) = h_{12} \left([z - h^0 - \Sigma(z)]_{22} \right)^{-1} h_{21}
\]

Proposition

Let \(g(z) = zM + C - f(z) \), where \(f \in S, M > 0 \).
Suppose that \(\bigcap_{k=1}^K \ker (X_k) = \{0\} \). Then \(g^{-1} \in S \)

• Hence \(\Delta_{\text{new}}^{(p)} \in S \)
Continued fraction representation

- Continued fraction along the iteration

\[\Delta_{\text{new}}^{(p)}(z) \approx D_0 \frac{1}{z - E_0 - D_1 \frac{1}{z - E_1 - D_2 \frac{1}{z - E_2 - \ldots}} \cdots D_2^*} \]

- Limit may not be in \(\mathcal{S} \)

- Matrix product states [Wolf et al, PRX 2015] (single-site ase)

- Cluster-DMFT: Matrix orthogonal polynomials (MOP) and block Lanczos method.

- Moment matching instead of broadening

[L., Lindsey, Schneider, in preparation]
Luttinger-Ward functional

\[\Omega[G] = \Phi[G] - \text{Tr} \left((G_0^{-1} - G^{-1}) G \right) + \text{Tr} \log(-G) \]

- Single line for DMFT

\[\Phi[G] = \sum_{p=1}^{N_p} \Phi^{(p)}[G^{(p)}], \quad \Sigma[G] = \Sigma^{(p)}[G^{(p)}], \quad \Sigma^{(p)}[G^{(p)}] = \nabla \Phi^{(p)}[G^{(p)}]. \]
Does Luttinger-Ward functional exist?

Nonexistence of the Luttinger-Ward Functional and Misleading Convergence of Skeleton Diagrammatic Series for Hubbard-Like Models

Evgeny Kozik, 1,2,* Michel Ferrero, 2 and Antoine Georges 3,2,4

1 Physics Department, King’s College London, Strand, London WC2R 2LS, United Kingdom
2 Centre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
3 Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
4 DPMC, Université de Genève, 24 Quai Ernest Ansermet, CH-1211 Genève, Suisse

• $\Sigma[G]$ is not single valued.

• Also [Gunnarsson et al PRL 2017] [Vucicevic, Wentzell, Ferrero, Parcolelet, 2018]

• Still controversial
Does Luttinger-Ward functional mean anything?

Variational structure of Luttinger–Ward formalism and bold diagrammatic expansion for Euclidean lattice field theory

Lin Lina,b,1,2 and Michael Lindseya,1

aDepartment of Mathematics, University of California, Berkeley, CA 94720; and bComputational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Edited by George Papanicolaou, Stanford University, Stanford, CA, and approved January 24, 2018 (received for review November 29, 2017)

\begin{itemize}
 \item Euclidean lattice field model (Gibbs measure)
 \end{itemize}

\begin{equation}
Z = \int_{\mathbb{R}^N} e^{-\frac{1}{2} x^T A x - U(x)} \, dx
\end{equation}
Gibbs measure

\[Z = \int_{\mathbb{R}^N} e^{-\frac{1}{2} x^T A x - U(x)} \, dx \]

- Quartic potential (mimicking Coulomb interaction)

\[U(x) = \frac{1}{8} \sum_{i,j=1}^{N} v_{ij} x_i^2 x_j^2 \]

- Two-point correlator (Green’s function)

\[G_{ij} = \frac{1}{Z} \int_{\mathbb{R}^N} x_i x_j e^{-\frac{1}{2} x^T A x - U(x)} \, dx \equiv \langle x_i x_j \rangle \]
Bold diagrams

- “thin-line” diagram: expand with G_0

- “thick-line” diagram ("bold" diagram): expand with G

\[\begin{align*}
\text{[Diagram]} &= \text{[Diagram]} + \text{[Diagram]} + \text{[Diagram]} + \ldots
\end{align*} \]

- Partial resummation to infinite order
Green’s function insertion
Bold diagram simplifies self energy

- Just 2 terms for 2nd order expansion!

- All bold diagrams are 2-particle irreducible (2PI)

- Luttinger-Ward formalism [Luttinger-Ward 1960]: perturbative argument
Constrained minimization

Theorem (Variational structure)

\[\Omega[A] = \inf_{G \in S_{++}^N} \left(\frac{1}{2} \text{Tr}[AG] - \mathcal{F}[G] \right) \]

where

\[\mathcal{F}[G] = \sup_{\rho \in \mathcal{G}^{-1}(G)} S[\rho] - \int U \rho dx \]

Levy-Lieb, density matrix functional theory
Luttinger-Ward functional

- Luttinger-Ward functional:

\[\Phi[G] = 2\mathcal{F}[G] - \text{Tr}[\log G] - N\log(2\pi e) \]

Does it remove singularity in general?

Theorem (Continuous extension)

\[\Phi[G] \text{ extends continuously to } \partial S_+^N \]
Bold diagrams, rigorous statement

Quartic interaction $\epsilon U(x)$

Theorem (bold diagrammatic expansion)

$$
\Phi[G] = \sum_{n=0}^{\infty} \epsilon^n \Phi^{(n)}[G], \quad \Sigma[G] = \sum_{n=1}^{\infty} \epsilon^n \Sigma^{(n)}[G]
$$

$\Sigma^{(n)}[G]$: n-th order bold diagram. Asymptotic expansion

$$
\Phi^{(n)} = \frac{1}{2n} \text{Tr}[G \Sigma^{(n)}[G]]
$$

Bold diagram explained!
Open questions / future works

- Overlapping elements: causality
- Long range interaction
- Combine with ab initio methods. Diagrammatic methods.
- Why DMFT could be a good theory [Metzner, Vollhardt, PRL 1989] \((d = \infty)\): \(\Sigma\) decays faster than \(G\) (rigorous proof)
- Whether one can / how to fix Luttinger-Ward for fermions
- Further increase the robustness of hybridization fitting
- Symmetry (can be included in the relaxation)
- Continued fraction representation / matrix orthogonal polynomials / Matrix product states
Acknowledgement

• Michael Lindsey (UCB, soon NSF postdoc at Courant)
• Leonardo Zepeda-Núñez (UCB, soon TT UW Madison)
• Carlos Majuto-Zaera (UCB Chem)
• Norm Tubman (NASA)
• Reinhold Schneider (TU Berlin)
• Birgitta Whaley (UCB Chem)

DOE Early Career; CAMERA; DOD MURI

Thank you for your attention!