Probing the ground state of Landau polaritons with transport and ultrafast field measurements

Jérôme Faist
ETH Zurich
Engineering the vacuum via cavities

Casimir effect

Light-matter coupling (weak)

\[\Omega = d \times E_{\text{vac}} / \hbar \]

Mathematics. — *On the attraction between two perfectly conducting plates.* By H. B. G. CASIMIR.

(Communicated at the meeting of May 29, 1948.)

Strong light-matter coupling

\[H = \hbar \omega_{cav} a^\dagger a + \hbar \omega_c b^\dagger b \]
\[+ i\hbar \Omega(a^\dagger b - ab^\dagger) \]

Ultra-strong light-matter coupling (Hopfield model)

\[H = \hbar \omega_{cav} a^\dagger a + \hbar \omega_c b^\dagger b \]
\[+ i \hbar \Omega (a^\dagger b - ab^\dagger) + D(a^\dagger a + aa^\dagger) \]
\[+ i \hbar \Omega (ab - a^\dagger b^\dagger) + D(aa + a^\dagger a^\dagger) \]

Vacuum Rabi frequency \(\Omega \)

anti-resonant and diamagnetic terms
Ultra-strong light-matter coupling (Hopfield model)

Energy

Tuning parameter

Polaritons

cavity exc.
matter exc.

2Ω

Energy

Vacuum Rabi frequency Ω

anti-resonant and diamagnetic terms

Ground state contains photons!

What are the implications for the material?

\[H = \hbar \omega_{ca} a^\dagger a + \hbar \omega_c b^\dagger b \]
\[+ i\hbar \Omega (a^\dagger b - ab^\dagger) + D(a^\dagger a + aa^\dagger) \]
\[+ i\hbar \Omega (ab - a^\dagger b^\dagger) + D(aa + a^\dagger a^\dagger) \]
New phases of matter

Superradiant phase transition in Graphene

Cavity QED of the Graphene Cyclotron Transition

David Hagemüller and Cristiano Ciuti
Laboratoire Matériaux et Photonique Quantiques, Université Paris Diderot-Paris 7 and CNRS, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
(Received 15 November 2011, published 27 December 2012)

Superradiant phase transition in excitonic insulators

Cavity QED of Strongly Correlated Electron Systems: A No-go Theorem for Photon Condensation

G.M. Andolina,1,2 F.M.D. Pellegrino,3,4 V. Giovannetti,5 A.H. MacDonald,5 and M. Polini2
1ENEA, Sez. Catania, I-95125 Catania, Italy
2Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, I-16163 Genova, Italy
3Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA
4INFN, Sez. Catania, I-95125 Catania, Italy
5Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
(Received 21 May 2010; revised manuscript received 5 February 2010; published 4 April 2010)

Cavity-induced superconductivity

How can we probe these phases?
Systems in the ultrastrong light-matter coupling

- Studying the Landau polariton system
- Engineering strong coupling via metamaterial
 - Enhancing the vacuum field
- Probe the ultrastrong coupling beyond optical response?
 - Electro-optic sampling
 - Transport
Maximize Coupling strength

- The coupling energy is given by

\[\hbar \Omega_R = q \sqrt{N} d_{ij} \mathcal{E}_v \]

- Increase the number of oscillators
- Large dipole
- Matrix element

- The vacuum electric field for a single photon:

\[\mathcal{E}_v = \sqrt{\frac{\hbar \omega}{2 \varepsilon_r \varepsilon_0 V}} \]

- Minimize volume V:
Landau levels of a 2D electron gas

- Tunable frequency
- Large transition dipole moment

\(d \sim e \times \text{cyclotron radius} \)

\[\omega_c = \frac{eB}{m^*} \]

Hagenmüller et al., PRB 81, 235303 (2010)
G. Scalari et al., Science, 335, 1323 (2012)
Our system: SRR resonator as Cavity

Split-ring resonator (SRR)

- Subwavelength Cavity $V_{cav} \sim 10^{-4} \left(\frac{\lambda}{2\pi n}\right)^3$
- Strong Vacuum field $E_{\text{vac}} \sim 50$ V/m

Ratio of Rabi to transition Ω_R/ω of unity or above

$$\frac{\Omega}{\omega} = 0.78$$

Recent results: $\Omega/\omega = 1.43$

G. Scalari et al., Science, 335, 1323 (2012)
Can vacuum change electronic transport?
Carrier transport enhanced by coupling to vacuum fields

Conductivity in organic semiconductors hybridized with the vacuum field

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

ETH Zürich
Transport in SRR cavity

Split-ring resonator (SRR)

Transport in SRR cavity

Split-ring resonator (SRR)

2DEG stripe
Transport in SRR cavity

Split-ring resonator (SRR)
Transport in SRR cavity

Split-ring resonator (SRR)

current

2DEG stripe

V_{xx}

GaAs

Ti/Au Cavity

Cavity

z

40 \mu m

current
Vacuum fields change magneto-transport
no real photons!

\[\langle n_{\text{photons}} \rangle < 10^{-3} \]

\[T_{\text{mix}} = 10 \text{ mK} \]
\[T_{\text{electrons}} = 100 \text{ mK} \]

Vacuum fields change magneto-transport no real photons!

\[\langle n_{\text{photons}} \rangle < 10^{-3} \]

\[T_{\text{mix}} = 10 \text{ mK} \]
\[T_{\text{electrons}} = 100 \text{ mK} \]

Theory: Kubo approach

The main idea is to follow a Kubo approach to determine the dc magneto conductivity.

\[
\sigma_{ij}^{dc} = i \sum_{\xi' \neq \xi} \frac{e^{-\beta E_{\xi'}} - e^{-\beta E_\xi}}{AZ(E_{\xi'} - E_\xi)} \frac{\langle \xi | \hat{J}_j | \xi' \rangle \langle \xi' | \hat{J}_i | \xi \rangle}{(\omega_\xi - \omega_{\xi'}) + i/\tau_{\xi\xi'}}
\]

→ Bright excitations control also transport!

→ Low T: dc conductivity depends on transitions from ground to excited states
Comparison to experiment

\[\sigma_{dc} = \frac{n_e e^2}{m_*} \sum_r \left| x_r - z_r \right|^2 \tau_r \frac{\left(\begin{array}{cc} \frac{\omega_r}{\omega_{cyc}} & -\frac{\omega_r \tau_r}{\omega_{cyc}} \\ \frac{\omega_r}{\omega_{cyc}} & \frac{\omega_r \tau_r}{\omega_{cyc}} \end{array} \right)}{1 + \left(\frac{\omega_r}{\omega_{cyc}} \right)^2 } \right) \]

\[r \in \{LP, UP\} \]

Comparison to experiment

\[\sigma_{dc} = \frac{n_e e^2}{m_*} \sum_r \frac{|x_r - z_r|^2 \tau_r}{1 + (\omega_r \tau_r)^2} \left(\begin{array}{cc} \frac{\omega_r}{\omega_{cy}c} & -\omega_r \tau_r \\ \omega_r \tau_r & \frac{\omega_{cy}c}{\omega_r} \end{array} \right) \]

\[\uparrow r \in \{LP, UP\} \]

\[\frac{1}{\tau_r} = \frac{W_{e,r}}{\tau_e} + \frac{W_{p,r}}{\tau_p} \]

Comparison to experiment

![Graphs comparing theoretical and experimental data in the context of magnetic field and resistance.](image)

How to probe a ground state optically? (start with vacuum)
Revisit field correlation function: $G^{(1)}(\tau)$

Typical measurement: an interferometer

$$G^{(1)}(\tau, \delta \vec{r}) = \langle E^*(t, \vec{r}) E(t + \tau, \vec{r} + \delta \vec{r}) \rangle$$

The correlation of fields is inferred from an intensity measurement at the detector

$$\langle I_1(\tau) \rangle \sim (1 + \Re\{g^{(1)}(\tau)\})$$

The correlation of fields is inferred from an intensity measurement at the detector

$$\langle \hat{a}^\dagger \hat{a} \rangle$$

Will yield zero if applied to the ground state of the radiation

$$G^{(1)}(\tau, \delta \vec{r}) = \langle 0 | \hat{E}^- (t, \vec{r}) \hat{E}^+ (t + \tau, \vec{r} + \delta \vec{r}) |0 \rangle = 0$$
Revisit field correlation function: $G^{(1)}(\tau)$

Typical measurement: an interferometer

$$G^{(1)}(\tau, \delta \vec{r}) = \langle E^*(t, \vec{r}) E(t + \tau, \vec{r} + \delta \vec{r}) \rangle$$

What about measuring the field directly?
Measuring the fields directly

- Implementing a field measurement enables a direct construction of the correlator

\[
G^{(1)}(\tau, \delta \vec{r}) = \langle \hat{E}(t, \vec{r}) \hat{E}(t + \tau, \vec{r} + \delta \vec{r}) \rangle
\]

Field measurement: electro-optic sampling

Field correlation using electro-optic sampling

Interpretation:

- Pulse length shorter than $1/\text{bandwidth}$ experimental setup:

- Vacuum field fluctuations should show correlations at short time scales
Quantum mechanical interpretation

- Electro-optic measurement is basically a field measurement

\[\hat{S}_{eo}(t, \vec{r}) = \sqrt{C} \sum_{\Omega} \sqrt{\frac{\hbar \Omega}{2 \epsilon_0 \epsilon_r}} (\hat{a}(\Omega) R(\Omega)) e^{-i(\Omega t - \vec{k} \vec{r})} - h.c. \]

Responsivity: phase matching, pulse length.

- Therefore the "electro-optic" \(G^{(1)} \) is

\[\hat{G}^{(1)}_{eo} = -\frac{1}{2C} \left\{ \hat{S}_{eo}(t + \tau, \vec{r} + \delta \vec{r}), \hat{S}_{eo}(t, \vec{r}) \right\} \]

- Yields on a thermal photon state

\[G^{(1)}_{eo}(\tau, 0) = \sum_{\Omega} \frac{\hbar \Omega}{2 \epsilon_0 \epsilon_r V} (1 + 2\langle \hat{n}(\Omega) \rangle) |R(\Omega)|^2 \cos(\Omega \tau) \]

Non-zero even on the vacuum state!

\[\langle 0 | \hat{a} \hat{a}^\dagger | 0 \rangle = 1 \]
Experimental setup

To control the thermal population, the measurement must be performed in a cryostat.
Signal-to-noise properties

\[\Delta \hat{E}_{\text{vac}} = \sqrt{\int_0^\infty d\Omega \frac{\hbar \Omega}{2\varepsilon_0 \varepsilon V} |R(\Omega)|^2} \sim \frac{1}{\lambda^2} \]

SNR single pulse
Field measurement 0.001
G\(^{(1)}\)(\(\tau\)) measurement 3\(\times 10^{-6}\)

Integration over at least \(10^{11}\) pulses!
Room temperature measurement

\[G_{eo}^{(1)}(\tau, 0) = \sum_{\Omega} \frac{\hbar \Omega}{2 \varepsilon_0 \varepsilon_r V} \left(1 + 2 \langle \hat{n}(\Omega) \rangle \right) |R(\Omega)|^2 \cos(\Omega \tau) \]

Response dominated by thermal photons

![Graphs showing the response and spectrum](image-url)
Going to 4K \((\langle n \rangle = 0)\)

\[
G_{eo}^{(1)}(\tau, 0) = \sum_{\Omega} \frac{\hbar \Omega}{2\epsilon_0 \epsilon_r V} \left(1 + 2\langle \hat{n}(\Omega) \rangle\right) |R(\Omega)|^2 \cos(\Omega \tau)
\]

Check: $T = 45K$

Enables the comparison because refractive index (phase matching) are approximately the same

Spatial coherence

Measuring the field at two different spatial locations

Spatial coherence

Interpretation of the measurement

- In contrast to the coherent state, the vacuum state has no well-defined time dependence of the electric field.

- Classical value of the two-time correlation should be 0!
- Correlation arises from the effect of the first measurement.

Conclusion

- In the ultra-strong light-matter coupling, the ground state is modified
- Measured the effect on electronic transport
 - Transport is driven by the polaritons!
 - See a strong change in the Shubnikov-de Haas oscillations as predicted.
- Developed a THz field correlation measurement
 - Performed the measurement on both thermal and vacuum state
 - Found correlation function as function of delay and displacement, a maximum value of 0.25V²/m² is measured
 - Result requires the back-action of one measurement on the second one, and can be interpreted in the framework of a spontaneous parametric down conversion.
 - Could be a technique to generate entangled photon pairs
Thanks

- Giacomo Scalari
- Metamaterial Study:
 - Shima Rajabali
- Transport:
 - Gian Lorenzo Paravicini Bagliani (soon Univ Strasbourg)
 - Felice Appugliese
 - Johan Andberger
- Vacuum Fields:
 - Cristina Benea Chelmus (now Harvard)
 - Fabiana Settembrini
- Growth:
 - M. Beck
 - W. Wegscheider,