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Background: Malignant cutaneous melanoma is the most
deadly form of skin cancer with an increasing incidence over
the past decades. The final diagnosis provided is typically
based on a biopsy of the skin lesion under consideration. To
assist the naked-eye examination and decision on whether
or not a biopsy is necessary, digital image processing
techniques provide promising results.

Hypothesis and aims: The hypothesis of this study was that
a computer-aided assessment tool could assist the evalua-
tion of a pigmented skin lesion. Hence, the overall aim was
to discriminate between malignant and benign pigmented
skin lesions using digital image processing.

Methods: Discriminating algorithms utilizing novel well-es-
tablished morphological operations and methods were con-
structed. The algorithms were implemented utilizing
graphical programming (LabVIEW Vision). Verification was
performed with reference to an image database consisting
of 97 pigmented skin lesion pictures of various resolutions
and light distributions. The outcome of the algorithms was

analysed statistically with MATLAB and a prediction model
was constructed.

Results/Conclusion: The prediction model evaluates pig-
mented skin lesions with regards to the overall shape,
border and colour distribution with a total of nine different
discriminating parameters. The prediction model outputs an
index score, and by using the optimal threshold value, a
diagnostic accuracy of 77% in discriminating between ma-
lignant and benign skin lesions was obtained. This is an
improvement compared with the naked-eye analysis per-
formed by professionals, rendering the system a significant
assistance in detecting malignant cutaneous melanoma.

Key words: malignant melanoma — receiver operating char-
acteristics — automated vision analysis — LabVIEW -
prediction model
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ALIGNANT CUTANEOUS melanoma is the most

deadly form of skin cancer and the inci-

dence has been alarmingly increasing over the

past 30 years (1, 2). Despite increased public

awareness and education including free cancer

screenings, the incidence and mortality of malig-
nant melanoma continue to rise (3).

Figure 1 shows the incidence rate regarding
malignant melanoma for men and for women in a
period of 33 years from 1970 to 2003 in Scandi-
navia.

The tendency is clear with a steady rise in
incidence from 1970 to 2003. This can partly be
explained by the greater awareness of malignant
melanoma among people and professionals. This,
however, states the importance of developing

new and improved methods for diagnosis of
malignant cutaneous melanoma.

The prognoses for the disease highly depend
on which phase the diagnoses are given. If it is
treated in the curable early stages, the prognosis
is good (4).

A final and exact diagnosis can only be given
subsequent to a biopsy of the inspected skin
lesion. It is, therefore, a general practitioner’s or
a dermatologist’s subjective judgment whether
or not this biopsy is necessary (5). For this
evaluation, the doctor will have a number of
criteria available which all rely on a naked-
eye analysis (1, 2, 4). In addition, remote analysis
of skin lesions is an increasing topic in tele-
medicine.
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Fig.1. Incidence of malignant melanoma from 1970 to 2003 in Scandinavia. The incidence is given in number of concurrences per 100,000.

Fig.2. Removing hairs morphologically. Image obtained from Online Atlas. Published online at http:/[www.dermis.net/doia/

In this work, a computer-assisted prediction
model utilizing the most significant methods
found in literature to visually discriminate be-
tween benign and malignant skin lesions is
developed. The goal is to at least match the
diagnostic accuracy of 64% achieved by derma-
tologists (1).

Image Pre-Processing

Segmentation partitions the digital image into
two regions consisting of the skin lesion and the
surrounding skin and thereby facilitates further
analysis. An incorrect segmentation algorithm
will result in an image analysis with a strong
bias. Therefore, it is crucial that the segmentation
algorithm is stabile and unaffected by the differ-
ent appearances of skin lesions size, colour, con-
trast to the surrounding skin, etc. Furthermore,
hair disturbs the segmentation of the skin lesion
since their colours correlate strongly.

Removing artefacts
Using grey scale morphology, thin or thick hair
can be removed from the image. This is done
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using a morphological closing operation, which
is shown in the images in Fig. 2.

Threshold

Mendoca et al. (6) have recently shown that
adaptive histogram thresholding gives the best
result in segmentation of a skin lesion among
methods such as watershed, neural networks,
edge detection and others.

Adaptive threshold is furthermore considered
as one of the simplest methods for segmentation
and can therefore be implemented with a re-
duced amount of time use compared with other
methods (6).

According to Ganster et al., (7) a threshold using
the blue plane of the RGB colour model gave the
best segmentation results. Furthermore, the blue
plane represents the best contrast between the
skin lesion and the surrounding skin (8).

Local adaptive threshold will compensate for
non-uniform lighting changes throughout the im-
age. This is done by adapting the threshold level
individually to different segments of the image.
The method selects an individual threshold for
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Fig.3. The inspection image is processed with a mask of the same
dimensions. Thereby the pixels to be processed will minimise use to
one-fourth of the inspection image pixels.

each pixel based on the magnitude of the pixels in
its local neighbourhood. Thereby, the effect of light
variations throughout the image is minimized and
the algorithm will be more stable with regard to
input images from different sources.

Optimal threshold requires a region of interest
(ROI) descriptor of a minimum of the same size
as the skin lesion.

To overcome problems with different image
and skin lesion sizes, the ROI descriptor is
chosen to be the same size as the image under
inspection. This ensures that a sufficient number
of pixels are included in the calculation of the
mean value within the ROI descriptor. The situa-
tion is depicted in Fig. 3.

The pixels included in the calculation of the
mean value will be the intersection of the inspec-
tion image and the ROI descriptor (grey area in
Fig. 3). Pixels of the ROI descriptor outside the
inspection image will be 0.

The background corrected pixel (Xo,Yy) is cal-
culated as I3(Xy,Yo) = I(Xy,Yo) — m(Xy,Y,), where
I(Xo,Y)) is the original pixel value of the inspec-
tion image and m(X,,Y)) is the local mean at pixel
(Xo,Yo) calculated on basis of the ROI descriptor.

After the background corrected image is cre-
ated, an auto threshold is performed using Otsu’s
algorithm as described by Liao et al. (9).

Image post processing

Unwanted noise particles and particles touching
the border of the image are removed by applying
simple morphological operations.

Finally, the segmentation is done using a sim-
ple AND function with the original RGB colour
image. Pixels within the border will be the skin
lesion and pixels outside the border will be the
surrounding skin.

The final result is shown in Fig. 4.

Pre-diagnostic digital imaging prediction model
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Fig.4. Final segmentation result of the threshold algorithm. Diepgen
TL, et al. Dermatology Online Atlas. Published online at: http://
www.dermis.net/doia/

Feature Extraction

Several features have been used as classifiers in
the prediction model.

Border parameter analysis

Border irregularities of a skin lesion are generally
seen divided into two subgroups: structural irre-
gularities and texture irregularities. Texture irre-
gularities are small variations along the edge of
the whole skin lesion (roughness). Both situations
are depicted in Fig. 5.

The textural irregularities are highly sensitive
to noise and are very dependent on precise
segmentation which is why they are not included
as a feature in the model (8).

Mean curvature (MC) vs. smooth

Melanomas have a higher tendency to exhibit
protrusions and indentations, which can be de-
tected by analysing the curvature function of a
skin lesion border (10).

Curvature extremes define the tip points of
concave or convex segments in the skin lesion.
A protrusion is then defined as a segment begin-
ning with a concave extreme followed by a convex
extreme and ending with a concave extreme. Like-
wise, an indentation is defined as a segment
beginning with a convex extreme followed by a
concave extreme and ending with a convex
extreme.

By taking the absolute value to the curvature
function, the magnitude of the mean value will
indicate the curvedness. The mean value will
increase in magnitude when numerous protru-
sions and indentations are present in the border.

To compromise the variety in image quality, a
relationship between the original border and a
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Fig.5. Three skin lesions with border irregularities: (a) Textural irregularities. (b) Structural protrusion. (c) Structural indentation.
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Fig.6. The left figure shows the outline of a benign skin lesion and the
corresponding smoothed version. To the right the outline of a
malignant skin lesion is shown together with its smoothed version.
Several indentations and protrusions are eliminated after smoothing
the malignant skin lesion.

smooth version of the border is utilized. Figure 6
shows two skin lesions and their respective
smoothed versions. The lesion to the left is benign,
and the smoothed version can hardly be distin-
guished from the original skin lesion border. This
will result in mean curvature values of almost
equal magnitude. The lesion to the right is malig-
nant and several indentations are smoothed out
from the original lesion border. This will result in
an evident difference in mean curvature values.

Global edge irreqularity
The global edge irregularity of the skin lesion can
be evaluated utilizing the border irregularity
index (BI) mentioned by Farina et al. (11). BI is
defined as

By = Perime

perim;

In the above definition, perimc is the perimeter
of the convex hull enclosing the lesion (see figure
7) and perimy, is the perimeter of the skin lesion. It
is clearly seen by the definition of BI that an
ideally round lesion with regular borders will
result in a parameter score equal to 1. BI will then
decrease proportional with the degree of irregu-
larity of the lesion borders because of the increase
in perimy. Bl considers the skin lesion globally
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and is able to detect large indentations or protru-
sions, which would not have been identified by
MC because of the small radius of curvature in
this case.

Additionally indentations and protrusions can
be measured using an area index (AI) which rely
on a relationship between the area of the skin
lesion and the area of its convex hull.

The Al is defined as

aredac
areay,

Al

In the above definition, areac is the area of the
convex hull containing the lesion and areay, is the
area of the skin lesion. In digital imaging, area is
equal to the number of pixels.

It is seen that for a lesion with no protrusions
and indentations, the AI will equal to 1. If
protrusions or indentations exist within the skin
lesion, areac will increase more than area;, and the
parameter score will be higher.

Figure 7 shows the profile of two skin lesions
from the image database and their convex hull.

Best-fit ellipse index (BEI)
According to Chang et al., (12) melanomas have a
greater tendency than benign skin lesions to have
an ellipse-shaped form.

The shape of the skin lesion can be evaluated
using a BEL The BEI is defined as

ab

BEl = ———
2n(a? + b?)

Where a and b are the length of the major and
minor axes of the best-fit ellipse surrounding the
skin lesion.

In earlier clinical studies, dermatologists exam-
ined 60 clinical image lesions and yielded two
errors using the BEI (12).

Standard deviation of mean radius (SD)
Manousaki et al. (1) suggests the use of SD of the
skin lesion as a geometric factor for evaluating



Fig.7. Profile of two skin lesions and their surrounding convex hull.
The skin lesion to the left is benign and the one to the right is
malignant.
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Fig.8. Profile of a malignant skin lesion. The radius is calculated from
the center of mass in the skin lesion.

the skin lesion border. The radius is calculated
from the centre of mass in the skin lesion and
with respect to a number of different points along
the skin lesion perimeter. Next, a standard devia-
tion is derived from these measurements. A large
standard deviation will imply the presence of
structural irregularities. The concept is depicted
in Fig. 8.

In the above example, the protrusion on the left
side of the skin lesion will cause the radius to
deviate from the mean radius. This will again
cause a larger SD than in the situation where the
protrusions are not present.

Roundness (R)

According to Farina et al., (11) the R factor of a
skin lesion is an important aspect to consider
when looking for melanoma. The R factor tells
how much the skin lesion resembles a circle. It is
defined as

47 - areay,

(perim, )?
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It is seen that when the R factor is calculated for
a circle, R becomes

4m - areay,  4Anr*m AmPr?

B (perimL)2 B (2rm)? T a2

Protrusions and indentations in a skin lesion will
create a disproportion in area vs. perimeter. Because
the skin lesion perimeter is squared, R will decrease
as a result of protrusions and indentations.

Heywood circularity index (HCI)

In the same way that the roundness index,
described above, compares the skin lesion with
a circle, the HCI utilizes a comparison between
the skin lesion and a circle. The HCI is defined as

perim;
2\/mareay,

perimy, is the skin lesion perimeter and area is the
skin lesion area. Thereby, the HCI is the perimeter
(P) divided by a circle with the same area as the
skin lesion. This is seen when the definition of the
area of a circle is inserted in the formula

HCI= P_r

2V rmr? "2 P
It is then noticed that for a perfectly round
circle, the HCI becomes 1. If the perimeter length
P isincreased and the area A is maintained due to
structural irregularities, the HCI increases.

HCI =

Colour parameter analysis

Before analysing the skin lesion with regards to
its colours, the surrounding skin is removed from
the image using the threshold algorithm de-
scribed above. Furthermore, the border thickness
is dilated. This ensures that no skin situated
between the segmented skin lesion border and
the actual skin lesion is included in the analysis.
The border region of a skin lesion is often cor-
rupted with light reflections or shadows causing
a bias in the colour analysis.

To reduce the bias from these light reflections,
all pixels with greyscale values >70% of the
maximum value within the skin lesion is ex-
cluded from the colour analysis.

Furthermore, to create consensus between dif-
ferent image qualities, all pixel values are ex-
panded to cover the full dynamic intensity range
(grey level intensity from 0 to 255).

In this study, all implemented methods are cal-
culated from the greyscale histogram of either the
red or blue colour plane of the RGB colour model or
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the luminance colour plane of the HSL colour
model to identify the optimal colour plane to use.

The green colour plane of the RGB colour
model contains little information with regard to
the skin lesion because of the dominance in red
and blue colour spectrum and will therefore not
be evaluated (1).

Mean greyscale value (MGV)

According to Seidenari et al. (13) and Manousaki
et al. (1) a difference in benign and malignant
skin lesions can be measured by calculating the
MGV for the skin lesion. The mean|x is the
arithmetic average of the pixel values contained
within the skin lesion, calculated as

I .
x:N;p,’

pi is the i-th pixel intensity and N is the total
amount of pixels within the skin lesion.

Standard deviation greyscale histogram (SDG)
The SDG is a measure of the dispersion of pixel
values from the mean grey scale value. If the grey
scale pixel values are concentrated close to the
mean value in the image, the SDG is small.
According to Seidenari et al. (13) and Manou-
saki et al., (1) melanomas exhibit a heterogeneous
distribution of grey scale values within the lesion.
This will result in a higher SDG.
The standard deviation, o, is calculated as the
square root of the second standardized moment

pi is the i-th pixel intensity, x is the mean intensity
and N is the total amount of pixels within the skin
lesion.

The above calculation of variance is based on
Gaussian distributions. This is not necessarily the
distribution when analyzing skin lesion images.
However SDG is still a valid measure despite
other histogram distributions.

Histogram waveform analysis

According to Manousaki et al., (1) the irregularity
in colour distribution within the lesion is an
indicator of malignancy. It is therefore relevant
to examine the shape of the greyscale histogram
produced by the red, blue or luminance colour
plane of the skin lesion.
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Fig.9. Different distribution functions with same standard deviation
but different shape.

To measure the degree of irregularity consisted
within a histogram waveform, the number of
peaks exceeding a certain threshold can be
counted (Peaks). Perfectly smooth histogram wa-
veforms will have no peaks resulting from irre-
gularity.

Kurtosis
The use of SDG will not always be a descriptor of
the overall waveform shape which can be seen
by observing figure 9. The mean values and the
standard deviations of the two histograms| in
Fig. 9 is equal, even though the shape of the
histogram to the right seem more peaked. Malig-
nant skin lesions tend to have more flat distribu-
tions as the one shown to the left in the figure,
resulting from higher deviation of greyscale va-
lues. A measurement for these tendencies is
kurtosis. It measures if the pixel distribution are
peaked or flat relative to a normal distribution.
Histograms with a higher kurtosis tend to have a
distinct peak near the mean and then decline
rather hastily, and have fatter tails. Histograms
with lower kurtosis tend to have a flat top near
the mean and have wider shoulders.

Kurtosis, o*, is the fourth standardized mo-
ment and is calculated as

pi is the i-th pixel intensity, x is the mean intensity
and N is the total amount of pixels within the skin
lesion.

Prediction Model

A prediction model was developed to discrimi-
nate between malignant and benign skin lesions.

The procedure of developing this prediction
model involves two steps:

The first step is to individually evaluate the
parameters described above, of their significance
to the final prediction model. This is to avoid
including parameters with no or negative asso-
ciation to the final outcome.



The second step is to join the included para-
meters and by this, develop a final prediction
model.

Statistical data analysis

A total of 97 skin lesions (43 benign and 54
malignant) were successfully segmented and
analysed with respect to the above described
parameters.

Evaluation of border parameters

The evaluation of border parameters regarding
their ability to function as classifiers is done by
calculating receiver operating characteristics
(ROC) curves, by which the sensitivity and spe-
cificity of the prediction model can be evaluated.
One ROC curve is calculated for each parameter.

To compare the different parameters against
each other, the area under the ROC curve (AUC)
and the optimal accuracy (ACC) is calculated.

Table 1 shows AUC and ACC for all the border
parameters.

It is seen that parameters MC and SD exhibit
the lowest AUC and ACC score. The objective of
this project is to reach a discriminating accuracy
better than 64% in the final prediction model.

The two parameters MC and SD both have an
accuracy of approximately 64%. Furthermore,
they have the lowest AUC score, which indicates
no significant impact in the final prediction
model. Therefore, these parameters are excluded
as classifiers in the final prediction model.

Evaluation of colour parameters

Colour parameter ROC curves are calculated for
each of the three selected colour planes, red, blue
and luminance. They are then compared in one
plot to identify which colour plane is optimal
with regards to discrimination.

TABLE 1. Parameter AUC and ACC score.

Parameter AUC ACC
MC 0.61 0.63
Bl 0.68 0.68
Al 0.73 0.69
BEI 0.71 0.70
SD 0.60 0.65
HCI 0.71 0.70
R 0.71 0.71

AUC, ACC, area under the ROC curve (AUC) and the optimal accuracy
(ACC); MC, mean curvature; Bl, border irregularity index; Al, area index;
BEI, best-fit ellipse index; SD, standard deviation of mean radius; HCI,
Heywood circularity index; R, roundness.

Pre-diagnostic digital imaging prediction model

TABLE 2. Parameter AUC and ACC score

Parameter AUC ACC Colour plane
MGV 0.72 0.68 Red
SDC 0.84 0.78 Red
Peaks 0.75 0.73 Red
Kurtosis 0.66 0.66 Blue

AUC, ACC, area under the ROC curve (AUC) and the optimal accuracy
(ACC); MGV, mean greyscale value; SDC, standard deviation greyscale
histogram.

Additionally, AUC and ACC are calculated.
The optimal result and the corresponding colour
plane are listed in Table 2.

As seen in the table, all of the colour para-
meters, ACC are above 64%. Furthermore, they
all exhibit relatively good AUC. The kurtosis
parameter gave the highest AUC score using
the blue colour plane.

Building a classification model

To reach a final classification of the skin lesion, all
measurements of benign and malignant skin
lesions, respectively, are summed together. By
doing this, the importance of every parameter
can be examined and one single parameter can be
identified to discriminate between skin lesions.

The summing will consist of two cases:

Benign skin lesions are expected to exhibit a
higher parameter score than malignant skin
lesions.
Benign skin lesions are expected to exhibit a
lower parameter score than malignant skin
lesions.

The two cases are summed together using
opposing signs, thereby, creating a consensus
between all the parameters.

Before summing the data arrays from all the
parameters, the difference in the parameter score
must be considered. This is to ensure that a
parameter exhibiting a score with a low magni-
tude also has an influence on the sum compared
with a parameter score with a high magnitude.

The levelling of dynamic range is done by
multiplying each parameter data array with the
factor X defined as

where B; is the parameter measurement for the
benign skin lesions. Hence all parameter scores
are lifted or lowered so that the benign skin
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Fig.10. Receiver operating characteristics curve showing character-
istics before and after excluding of parameter MC and SD. The dotted
line represents the ROC before excluding parameters and the solid line
represents the ROC after excluding the parameters.

lesions mean value is 100. It is important to
mention that the factor X is found for the data
arrays containing data from benign skin lesions
only but is multiplied on both benign and malig-
nant skin lesion data.

After summing the scaled parameters together,
a ROC curve is calculated (see figure 8). The true-
positive rate (TPR) on the ROC curve (y-axis) is
equal to the sensitivity of the prediction model.
The false-positive rate (FPR) is equal to 1- speci-
ficity of the prediction model (x-axis). Every
point plotted on the ROC curve is a possible
threshold value and thereby a possible discrimi-
nation line. The solid curve shows the prediction
model after the parameters MC and SD are
excluded.

It is clearly seen on the ROC curve that the
prediction model will perform optimally with the
parameters excluded.

Furthermore, AUC was calculated to 0.78 with
all parameters included and 0.84 with MC and
SD excluded. This indicates an improvement of
the prediction model with 7.7%.

Weighting of parameters

All results presented above rely on an equal
weighting of the parameters used. As it is sug-
gested by Voigt and Classens (4), the individual
parameters needs to be distinctly weighted. This
will increase the final diagnostic accuracy of the
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prediction model because not all parameters are
equally important to the final prediction out-
come.

To assign weighting scales to the individual
parameters, a dedicated program has been devel-
oped. The program utilizes a visual assessment of
the influence of weighting scales on the indivi-
dual parameters. The first step in the optimiza-
tion of the prediction model is to exclude the
parameters which are not to be used. Next,
parameter SDG, Al, Peaks and R are negated to
build a consensus between all parameters.

To assist the visual assessment of the influence
of changing the parameter weighting scales, a
ROC curve and the corresponding AUC are
calculated continuously. The objective is to
change the parameter weighting scales so that
AUC of the prediction model is maximized.

The highest possible AUC calculated was 0.87.
The impact of using parameter weighting scales
thereby results in an increase in AUC of 3.6%.

In Fig. 11, the ROC curve are shown with and
without the parameter weighting scales.

Discrimination value
The optimal discrimination value between malig-
nant and benign skin lesions is found by examin-
ing the ACC of the prediction model.

The ACC is equal to the total number of
correctly diagnosed instances in relation to the

ROC curve - prediction model with and without
parameter weighting scales
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Fig.11. Receiver operating characteristics curves showing the
influence of weighting scales. The dotted curve is without the use
of weighting scale and the solid curve is with the use of weighting
scales.



total number of instances. It is calculated as a
function of the amount of correctly diagnosed
positive (benign) instances, true-positive (TP)
and the amount of correctly diagnosed negative
(malignant) instances, true-negative (TIN)

TP + TN

ACC =
«C P+N

P and N are the total amount of positive (benign)
and negative (malignant) instances, respectively.

By computing ACC for a number of threshold
levels in the dynamic range of the prediction
model score, a function of the accuracy vs. thresh-
old level is produced. The highest accuracy is
found at a threshold level of —43.

Using ROC curve analyse
To acquire a balanced relationship between sen-
sitivity and specificity, both are plotted in a three-
axis graph showing sensitivity and specificity vs.
threshold level in the dynamic range of the
prediction model score. This is seen in Fig. 12.
From the graph, it is seen that the optimal
threshold should be —50.3 - the intersection
between sensitivity and specificity. The plotted
data around the threshold are shown in Table 3.
From the table, it is seen that by choosing a
threshold level of —50.3, we can obtain a sensi-
tivity of 76.74% and a specificity of 75.93%. If we
choose a threshold level of —35.2 in a prediction
model score instead, we would achieve a sensi-
tivity of 86.05%. This is an improvement in
sensitivity of 9.31 percentage point (12.1%) at
the expense of a 5.56 percentage point (7.9%)
lack in specificity.

Pre-diagnostic digital imaging prediction model

Results

The prediction model developed has an outcome
score in the range — 286 to 215 for the 97 images
used. The prediction model is developed so that
benign skin lesion scores are higher than malig-
nant skin lesion scores.

The final prediction model results in a ROC
shown in Fig. 13.

The optimal threshold is in the range —35 to
—40. By choosing a threshold value of —35.2, a
sensitivity of 86% and a specificity of 70.37% is
achieved.

A final contingency table is calculated using
the above stated threshold. The data are shown in
Table 4.

Next, a final accuracy for the developed pre-
diction model using a threshold of —35.2 is
calculated as ACC =0.77.

Discussion

The objective was to reach an accuracy of at least
64%. This accuracy corresponds to that an experi-
enced dermatologist would achieve (1). The final
prediction model developed exhibits an accuracy
of 77% and will thereby represent an improve-
ment in diagnostic accuracy.

In spite of the many different appearances and
qualities of the images in the image database, it
has been possible to develop a prediction model
with an accuracy better than that expected from
an experienced dermatologist. The algorithms are
thereby stable and not dependent of the quality
of the image |under inspection. These new tools
can also be utilized in telemedicine, where
images can be uploaded to an automated web-
based database and analyzed.

Plot of sensitivity and specificity vs. threshold level
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Fig.12. Plot of sensitivity and specificity vs. threshold value. The optimal balance is identified in the intersection of sensitivity with specificity.
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TABLE 3. Sensitivity and specificity of the prediction model at different
threshold values.

Threshold Sensitivity (%) Specificity (%)
—65.3 69.77 77.78
—60.3 69.77 77.78
—55.3 72.09 77.78
—50.3 76.74 75.93
—45.2 79.07 74.07
—40.2 81.40 72.22
—-35.2 86.05 70.37
; ROC curve - final prediction model
0.9

“Threshold = -35.2
" Sensitivity = 86% TR
Specificity = 70.37% !

TPR
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Fig.13. Final receiver operating characteristics curve developed from
the results from the prediction model.

The parameter MC was not implemented be-
cause of a low AUC score (0.61). This implies that
the parameter is poor in discriminating between
the two types of skin lesions. The reason for the
low AUC score could be identified in the seg-
mentation algorithm used. The spatial resolution
of the inspection image is a highly determining
factor in how well and precise the borders of the
skin lesion is represented and segmented. The
image database contains a wide range of different
spatial resolution images. The curvature function
in a low-resolution image will not be as detailed
as in a high-resolution image and the mean
curvature value will be highly dependent of this
resolution. The parameter is therefore a poor
discriminator when working with images of dif-
ferent resolution.

The parameter SD, like MC, exhibits an un-
satisfactory AUC score (0.60). The SD is calcu-
lated as an absolute value, in spite of the fact that
spatial resolutions vary in the images. An image
where the skin lesion makes up half the amount
of pixels as opposed to a second inspection
image, will exhibit lower SD even though their
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TABLE 4. Contingency for the final prediction model.

Actual diagnosis

Malignant Benign Total
Prediction model diagnosis
Malignant TP=37 FP=16 53
Benign FN=6 TN =238 44
Total 43 54

TP, true-positive; TN, true-negative; FP, false-positive; FN, false-
negative.

shape are alike. To solve this problem, the SD
needs to be related to the actual skin lesion size.

Three of the parameters for evaluating the
colour behaviour of the skin lesion exhibit the
best results using the red colour plane of the RGB
colour model. The parameter Kurtosis exhibits
the best results using the blue colour plane of the
RGB colour model. This indicates that optimal
result prediction can be achieved using a combi-
nation of different colour planes.

The results presented with regard to the
final ROC, are based on skin lesions from the
image database. It is seen that the amount of
false-positive (FP) diagnoses is higher than the
amount of false-negative (FN) diagnoses. It is a
difficult choice when dealing with medical
diagnosis whether it is better to diagnose a
positive instance as negative or a negative in-
stance as positive. With regards to this study, the
FP rate should be higher than the FN
rate, creating a safety margin. It is better to be
treated for a malignant melanoma even though it
actually is benign, than not receive any treatment
at all while suffering from a malignant skin
lesion.

Conclusion

The work presented in this paper shows that it is
possible to develop and implement a pre-diag-
nostic evaluation tool for skin lesions using Lab-
VIEW. The evaluation tool is meant to help
clinicians and dermatologist in the diagnosis of
skin lesions, especially in distinguishing between
malignant melanomas and benign melanocytic
skin lesions. The evaluation tool consists of a
prediction model, which on the basis of the skin
lesion border, shape and colour behaviour will
predict a diagnosis.

The chosen discrimination value of a
prediction model score of —35.2 results in a



sensitivity of 86% and a specificity of 70.37% and
is therefore concluded to be the optimal choice.

The prediction model is built by statistical
analysis of nine different evaluating parameters,
which evaluate the inspected skin lesion with
regards to its overall shape, border irregularity
and grey scale histogram behaviour. All nine
parameters contribute with different signifi-
cances to the prediction model outcome.

The final accuracy achieved is based upon an
analysis of a total of 97 skin lesion images con-
taining 43 benign skin lesions and 54 melanomas.
These images have also been used in developing
the discriminating algorithms, and the final ac-
curacy achieved needs therefore be verified by an
analysis of more images. This analysis is also
necessary before making use of the prediction
model.

Using digital image processing technique as an
alternative to the naked-eye analysis performed
by a dermatologist has been proven possible. It
should by no means replace an experienced
dermatologist, but could be used as guidance to
determine whether or not a certain skin lesion
should be examined by a professional.

References

1. Manousaki AG, Manios AG, Tsompanaki EI, Panayio-
tides JG, Tsiftsis DD, Kostaki AK, Tosca AD. A simple
digital image processing system to aid in melanoma
diagnosis in an everyday melanocytic skin lesion unit. A
preliminary report. Int ] Dermatol 2006; 45: 402—410.

2. Calonje E. The histological reporting of melanoma. J Clin
Pathol 2000; 53: 587-590.

10.

11.

12.

13.

Pre-diagnostic digital imaging prediction model

. Lang PG. Current concepts in the management of

patients with melanoma. Am J Clin Dermatol 2002; 3:
401-426.

. Voigt H., Classsen R. Computer vision and digital

imaging technology in melanoma detection. Semin On-
col 2002; 4: 308-327.

. Available at http://www.cancer.dk, visited on 10/9,

2007.

. Mendonca T, Marcal ARS, Vieira A, Nascimento JC,

Silveira M, Marques JS, Rozeira ]. 2007. Comparison of
segmentation methods for automatic diagnosis of der-
moscopy images. Conference of the IEEE EMBS, Cité
Internationale, Lyon, France, August 23-26.

. Ganster H, Pinz A, Rodrer R, Wildling E, Binder M,

Kittler H. Automated melanoma recognition. IEEE Trans
Med Imaging 2001; 20: 233-239.

. Lee TK, Claridge E. Predictive power of irregular border

shapes for malignant melanomas. Skin Res Technol 2005;
11: 1-8.

. Liao P, Chen T, Chung P. A fast algorithm for multilevel

thresholding. J Inform Sci Eng 2001; 17: 713-727.

Lee TK, McLean D], Stella AM. Irregularity index: a new
border irregularity measure for cutaneous melanocytic
lesions. Med Image Anal 2003; 7: 47-64.

Farina B, Bartoli C, Bono A, Colombo A, Lualdi M,
Tragni G, Marchesini R. Multispectral imaging approach
in the diagnosis of cutaneous melanoma: potentiality
and limits. Phys Med Biol 2000; 45: 1243-1254.

Chang R, Stanley J, Moss RH, Stoecker WV. A systematic
heuristic approach for feature selection for melanoma
discrimination using clinical images. Skin Res Technol
2005; 11: 165-178.

Seidenari S, Pellacani G, Grana C. Pigment distribution
in melanocytic lesion images: a digital parameter to be
employed for computer-aided diagnosis. Skin Res Tech-
nol 2005; 11: 236-241.

Address:

Jeppe Hoey Christensen
Strandvejen 8b, 3. Tv

8000 Aarhus

Denmark

Tel: +45 28760559

e-mail: jabbahc@hotmail.com

11


http://www.cancer.dk
http://www.cancer.dk
mailto:jabbahc@hotmail.com

